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Abstract—Satellite beacon receivers are metrology 

instruments measuring beacon power in order to determine 

excess tropospheric attenuation. In presence of thermal noise, 

beacon power measurements are biased and should be corrected 

a posteriori using unbiased (or with minimum bias) estimators 

to remove or at least to reduce the noise contribution. When 

satellite beacon receivers are able to measure the noise power 

level in a frequency band adjacent to the beacon frequency 

band, it is shown that this additional information can be used 

opportunely to reduce the estimation bias. In this context, three 

estimators are discussed, one of which is an originality 

introduced to take into account the particular processing of 

beacon measurements. The performances of these estimators 

are assessed using synthetic time series simulating beacon 

measurements. For the new estimator, the results show a 

dynamic range improvement of about 12 dB, using typical 

beacon receiver characteristics. When considering long-term 

statistics of attenuation, the improvement is even larger. The 

estimators are applied to experimental beacon receiver data 

collected in Ka and Q bands in Toulouse (France). The results 

confirm the potentiality of the approach to improve significantly 

the dynamic range of beacon measurements. 

Index Terms—propagation, signal processing, power 

estimation, tropospheric attenuation, beacon measurements 

I. INTRODUCTION

ATELLITE SYSTEMS are transitioning to high frequency

bands (Ka-band and above), benefiting from wider

bandwidth in order to provide higher data rates. At these 

frequencies, tropospheric attenuation (that can amount to 

several tens of decibels, mainly due to rain) severely affects 

system performances and must be quantified. Beacon 

receivers are metrology instruments used to derive 

experimental time series of rain attenuation with good 

accuracy and high dynamic range [1], using post-processing 

techniques to remove both hardware issues (antenna 

mispointing, RF chain drifts, etc.), free space loss and clear 

sky atmospheric conditions [2]. 

Beacon data have proven to be useful not only to produce 

statistics of rain attenuation to determine link budget margins 

in the design of satcom systems, but also to quantify the 

attenuation in real time to optimise fade mitigation techniques 

control loops (such as uplink power control) [3]. 

The design of beacon receivers has been extensively 

studied in the literature (e.g. [4], [5], [6], [7], [8]). In 

particular, one of the figures of performance of a beacon 
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receiver is its dynamic range, which characterises the range 

of attenuation it can accurately measure. The dynamic range 

of a beacon receiver depends on the quality of its components 

(such as its noise figure, receiving chain linearity, etc.), on the 

signal processing techniques used [9], but also on the level of 

thermal noise. Thermal noise, intrinsically of random nature, 

artificially enhances the “true” power at the input of the 

receiver while preventing any exploitable measurements 

below the noise floor. Therefore, in presence of thermal 

noise, beacon receivers do not measure only the power 

coming from the beacon but rather a noisy power that should 

be corrected a posteriori, using unbiased (or with minimum 

bias) estimators to remove or at least to reduce the noise 

contribution. 

This is the object of the present paper, which proposes a 

methodology to improve the dynamic range of a beacon 

receiver thanks to the concurrent measurement of the noise 

power in a frequency band adjacent to the beacon frequency 

band. 

The paper is organised as follows. In Section II, the generic 

architecture of a beacon receiver is presented, along with the 

hypotheses on the signal and the receiver used throughout the 

paper. Section III defines the parameters of interest and 

discusses dynamic range definitions. Section IV is devoted to 

the mathematical derivations of estimators of the power of the 

beacon signal. The performances of these estimators are then 

compared in Section V using numerical simulations of a 

beacon receiver fed with synthetic power time series. In 

Section VI, the impact of the measurement bandwidth on the 

dynamic range is discussed. Finally, section VII discusses the 

applicability of the newly derived estimator to actual 

experimental beacon data measured at Ka and Q bands. 

II. BEACON RECEIVER MODEL

Being metrology instruments, beacon receiver design is 

quite specific. Nevertheless, from a signal processing point of 

view, their architecture can be reduced to a few elementary 

functions. Typically, beacon receivers are composed of two 

parts. The analogic part fulfils the functions of amplification 

of the signal, mixing (for the purpose of shifting the signal to 

a lower frequency), filtering and digitization, as depicted in 

Fig. 1. The digital part, shown in Fig. 2, measures the power 

of the signal in a narrow band, the beacon frequency band 

(bandwidth 𝐵𝑆), centred around the beacon carrier frequency

𝑓𝑏. Importantly, some beacon receivers (e.g. [8]) also measure

the noise power 𝑁 in a wider frequency band, adjacent to the 

beacon frequency band in order to evaluate the noise power 

Laurent Féral is with the Laboratoire d’Aérologie (LAERO), Université 
de Toulouse, CNRS, UT3, IRD, Toulouse, France (e-mail: 

laurent.feral@aero.obs-mip.fr). 

Xavier Boulanger is with the Centre National d'Études Spatiales (CNES), 
DTN/TPI/TCP, Toulouse, France (e-mail: xavier.boulanger@cnes.fr). 

Dynamic Range Improvements for Beacon 

Receivers Using Noise Power Measurements 

Étienne Suquet, Laurent Castanet, Laurent Féral, Hugo Bourgoin and Xavier Boulanger 

S 

mailto:etienne.suquet@onera.fr
mailto:laurent.castanet@onera.fr
mailto:hugo.bourgoin@onera.fr
mailto:laurent.feral@aero.obs-mip.fr
mailto:xavier.boulanger@cnes.fr


2 

spectral density 𝑁0, as illustrated in Fig. 3. One possible

application is to use the receiver as a radiometer (e.g. [4], 

[10]). In this paper, this frequency band containing noise will 

be referred to as the ‘adjacent frequency band’, with a 

bandwidth 𝐵𝑁. Typically, 𝐵𝑆 amounts for a few tens of hertz,

and  𝐵𝑁 for several kHz.

Fig. 1. Simplified block diagram of the analogic part of a generic beacon 

receiver. 

Fig. 2. Block diagram of the digital part of a generic beacon receiver and its 

outputs. 

Fig. 3. Illustration of the power spectral density of a beacon receiver, as well 

as the power measurements (𝑃, 𝑆 and 𝑁) over the beacon and adjacent 

frequency bands, which bandwidth are respectively 𝐵𝑆 and  𝐵𝑁. 𝑓𝑏 is the 

beacon frequency. 𝑃 is the noiseless power in the beacon frequency band 

without the effect of thermal noise. 𝑆 is the power actually measured in the 

same frequency band in presence of thermal noise. 𝑁 is the noise power in 

the adjacent frequency band solely affected by thermal noise. 

The digital part of the beacon receiver (Fig. 2) can be 

implemented in various ways. Filtering and power 

measurements can be performed either in the time domain or 

in the Fourier frequency domain, with equivalent results from 

Parseval’s theorem. Sometimes, a non-rectangular 

integration window is used in the time domain, such as in [4]. 

Using particular windows can reduce the spectral leakage 

with respect to rectangular windows, but will reduce the 

signal-to-noise ratio [11]. The equivalent noise bandwidth of 

a rectangular window being the lowest possible, a rectangular 

window is used in this paper, with the advantage of 

simplifying analytic formulations. Further considerations 

about spectral leakage are discussed in Section VI. Also, 

some authors use overlapping power estimates, such as in [4]. 

While for a fixed sampling frequency, such estimates are 

more precise than non-overlapping ones (being integrated 

over longer durations), they introduce a correlation between 

the samples, which effectively leads to a reduction of the 

sampling frequency. As a consequence, in the following 

sections, power measurements are computed using non-

overlapping rectangular windows. 

In order to derive the estimators, it is assumed that apart 

from the thermal noise generated by the sky and the beacon 

receiver itself, all the components are ideal: amplifiers are 

assumed to be perfectly linear, the local oscillator does not 

generate phase noise, the filters have a flat frequency 

response, the quantization noise from the Analog to Digital 

Converter (ADC) is negligible, and the band-pass filters have 

a perfect rectangular frequency response. Some of these 

hypotheses will be reconsidered in Section VII. Besides, the 

thermal noise is modelled as an Additive, White Gaussian 

Noise (AWGN), which is a common assumption [12]. 

III. PARAMETERS AND DYNAMIC RANGE DEFINITIONS

A. Definition of the main data processing parameters

Beacon receivers retrieve experimental time series of

attenuation 𝐴(𝑡) from power measurements in the frequency 

band of the satellite beacon, coupled with post-processing 

techniques [13], summarized hereinafter. A first step is to 

synchronize all data to a common reference time. Afterwards, 

doubtful and erroneous data are flagged. Then, the raw time 

series of power 𝑆(𝑡) are converted to decibels (𝑆𝑑𝐵𝑊(𝑡)) and

low-pass filtered (𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡)) with a cut-off frequency 𝑓𝑐

(usually 0.025 Hz in temperate climates [14]) in order to 

remove fast fluctuations of the signals, mainly caused by 

tropospheric scintillation. It has to be stressed that the power 

is low-pass filtered in decibel-watts (dBW), rather than watts, 

as it is admitted that the tropospheric scintillation has a 

centred, normal distribution when expressed in decibels (at 

least for weak scintillations under conditions of stationarity 

[15]). Finally, the experimenter defines a reference power 

level 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡), from which attenuation 𝐴𝑑𝐵(𝑡) is defined as

𝐴𝑑𝐵(𝑡) ≝ 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡) − 𝑃𝑑𝐵𝑊

𝑓𝑖𝑙𝑡 (𝑡), (1) 

where 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) is the power from low frequency components 

(below the frequency 𝑓𝑐) mainly associated to tropospheric

attenuating effects, that would be measured by a perfect 

beacon receiver (in particular, with no influence from any sort 

of noise). Because actual measurements are always affected 

by noise, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) is unknown, and once  𝑃𝑑𝐵𝑊

𝑟𝑒𝑓 (𝑡) is set, 

determining the attenuation consists in estimating 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) 

from the measurement 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡), which is the subject of this 

paper. 

Whether 𝐴𝑑𝐵(𝑡) refers to rain attenuation, an aggregation

of rain and clouds attenuation, or total tropospheric 

attenuation depends on the definition of 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡), which is 

decided by the experimenter (sometimes, 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡) is set using 

additional instruments, such as radiometers [13], or other 

methods [16]). The estimation of 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) is therefore

independent of which tropospheric attenuating effects are 

considered.  

The dynamic range of a beacon receiver is affected by 

thermal noise, whose power in the frequency band of the 

beacon (𝐵𝑆) is noted σ𝑆
2(𝑡). Thermal noise artificially

enhances the ‘true’ power 𝑃(𝑡) − and so 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) − at the 
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receiver while preventing any exploitable measurements 

below the noise floor. Therefore, in presence of thermal 

noise, beacon receivers do not measure 𝑃(𝑡) but rather a 

noisy power 𝑆(𝑡) (see Fig. 3) that should be corrected for 

noise a posteriori, using unbiased (or with minimum bias) 

estimators 𝑃̂. 

Three estimators 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(𝑖)

, 𝑖 ∈ 1,2,3 are considered. They 

all infer estimates  𝐴𝑑𝐵̂ of the attenuation from beacon

measurements 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

: 

𝐴𝑑𝐵̂(𝑡) ≝ 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡) − 𝑃𝑑𝐵𝑊

𝑓𝑖𝑙𝑡̂
(𝑖)

(𝑡). (2) 

The first estimator, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

, that is named the ‘customary’ 

estimator in this paper, consists in directly using the filtered 

beacon power measurements 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

(𝑡) = 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡), as it is 

customary when noise power measurements are not available. 

The second estimator, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

, proposed in [5], uses the

additional measurement of the noise power density in the 

frequency band 𝐵𝑁 adjacent to the one of the beacon. This

estimator considers that the power is processed in its natural 

unit (i.e. in watts), hence it is referred to as the ‘natural’ 

estimator. Because it is established that the beacon 

measurements should be processed in decibel-watts (in 

particular the low-pass filter with a cut-off frequency 𝑓𝑐
mentioned previously), and the logarithm is a non-linear 

transformation, the natural estimator is actually biased. 

Nevertheless, it will be shown in this paper that the bias of 

the natural estimator is still lower than the bias of the 

customary estimator. Finally, the originality of this paper lays 

in the formulation of a third estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

, taking into 

account the bias introduced by the logarithm in the data 

processing. It is therefore named the logarithmic estimator. 

B. Dynamic Range Definition

In electrical engineering, the dynamic range  𝑅𝐷 is

generally defined as the ratio (or the difference in decibels) 

between the highest and lowest values an instrument can 

measure with acceptable levels of distortion [17]. 

Nevertheless, what constitutes an acceptable level of 

distortion can be specified in different ways [18]: deviations 

from linearity (e.g. definitions using the 1-dB compression 

point), distance from noise floor (e.g. by specifying a 

minimum signal-to-noise ratio), etc. In the particular case of 

beacon receivers, the quantity of interest is the 

attenuation 𝐴𝑑𝐵, so the dynamic range  𝑅𝐷 is the difference

𝑅𝐷 ≝ 𝐴𝑑𝐵
𝑀 − 𝐴𝑑𝐵

𝑚 , (3) 

between the highest attenuation 𝐴𝑑𝐵
𝑀  and the lowest 𝐴𝑑𝐵

𝑚

attenuation the instrument can measure without distortion. A 

properly designed beacon receiver should not distort the 

measurements in clear sky conditions, so that 𝐴𝑑𝐵
𝑚  equals 0

dB (attenuation cannot be negative by definition). On the 

other hand, the definition of the highest measurable 

attenuation 𝐴𝑑𝐵
𝑀  is not straightforward. It could be defined, for

instance, as the mean attenuation measured by the beacon 

receiver when the signal is absent (noise floor), or as the mean 

attenuation measured for a particular signal-to-noise ratio. 

Depending on which definition is used, the dynamic range 

 𝑅𝐷 can take a rather wide extent of values.

In propagation studies, the value of the dynamic range 𝑅𝐷
is often given in order to characterize the performance of the 

beacon receiver. Nevertheless, its exact definition is rarely 

provided. One exception is [5] where the authors relate  𝑅𝐷 to

the signal-to-noise ratio, as described hereafter. Let 𝑃(𝑡) be 

the (deterministic) power level, in watts, at the output of a 

noiseless beacon receiver, and 𝑆(𝑡) the (random) power level, 

in watts, actually measured at the output of the receiver in 

presence of (random) thermal noise. Then the noisy beacon 

power 𝑆 is a first estimator 𝑃̂(1) of the ideal, noiseless, signal

𝑃. If, as commonly assumed, the thermal noise and the 

noiseless power 𝑃 are independent, then the expected value 

𝔼[𝑆] (in watts) of the noisy beacon power 𝑆 is the sum of 𝑃 

(in watts) and the noise power 𝜎𝑆
2 (in watts) in the frequency

band of the beacon (𝐵𝑆):

𝔼[𝑆] = 𝜎𝑆
2 + 𝑃, (4) 

where 𝔼[⋅] is the expectation operator. In presence of noise, 

𝜎𝑆
2 is strictly positive. Therefore, from (4), 𝔼[𝑆] is greater

than 𝑃. It follows that 𝑃̂(1) ≝ 𝑆 is a (positively) biased 

estimator of 𝑃. In [5], a first definition of the ‘measurement 

bias’ Δ(1) of the estimator 𝑆 is proposed:

Δ(1) ≝ 10 log10 (𝔼 [
𝑆

𝑃
]) 

= 10 log10 (
𝔼[𝑆]

𝑃
), 

(5) 

with S and P in watts. Defining 𝑆𝑁𝑅 ≝ 𝑃/𝜎𝑆
2  as the signal-

to-noise ratio measured in the beacon frequency band, (4) in 

(5) leads to:

Δ(1) = 10 log10 (1 +
1

𝑆𝑁𝑅
). (6) 

A first definition of the dynamic range 𝑅𝐷
(1)

of a beacon 

receiver, inherited from [5], emerges: 

𝑅𝐷
(1) ≝ max{ 𝐴𝑑𝐵̂(𝑡)} | Δ

(1) ≤ Δ𝑚𝑎𝑥
(1) (7) 

where Δ𝑚𝑎𝑥
(1)

, in dB, is the maximum acceptable bias above 

which the signal is assumed too noisy to be usable in practice 

(i.e. it exceeds the dynamic range), and the vertical bar should 

be read ‘such that’. 𝑅𝐷
(1)

 can be viewed as the maximum

attenuation value that can be estimated with a bias smaller 

than Δ𝑚𝑎𝑥
(1)

. Fig. 4 illustrates the situation on a log scale (i.e. 

in dBW), considering the customary estimator. The measured 

beacon signal 𝑆(𝑡) remains in its dynamic range if the 

difference between its expected value 𝔼[𝑆] and the noiseless 

signal 𝑃 is smaller than Δ𝑚𝑎𝑥
(1)

 (right part of Fig. 4). On the

contrary, when 𝔼[𝑆] departs from 𝑃 (left part of Fig. 4), the 

measurement bias Δ(1) exceeds Δ𝑚𝑎𝑥
(1)

, so that the beacon 

signal 𝑆 is outside its dynamic range and cannot be considered 

accurate. For instance, [5] considered that Δ𝑚𝑎𝑥
(1)

 is equal to

0.4 dB, leading to a minimum signal-to-noise ratio of 

approximately 10 dB according to (6). Thus, for beacon data 

users, (6) provides valuable information, that is the typical 

error originating from thermal noise when reaching the limits 

of the receiver dynamic range. 
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Fig. 4. Illustration of the dynamic range definition 𝑅𝐷
(1)

 in (7) for the 

estimator 𝑃̂(1) = 𝑆 in presence of thermal noise (red), which is biased when 

compared to the power of the noiseless signal 𝑃𝑑𝐵𝑊 (in blue). 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

 is the 

reference power, set by the experimenter. 

One problem with the definition of the dynamic range in 

(7) is that it does not consider the variance of 𝑆, but solely its

bias 𝔼[𝑆] (see (5)). While this is acceptable for estimators

with large biases with respect to their variances (it is the case

for 𝑆 when the signal-to-noise ratio is low, see left part of Fig.

4), this is an issue for less biased estimators (leading to an

infinite dynamic range 𝑅𝐷
(1)

for an unbiased estimator of 𝑃).

Because the goal of the present paper is precisely to propose

an estimator with a bias as low as possible, the dynamic range

definition in (7) is modified in three ways: (a) the Root Mean

Square Error (RMSE) is used in place of the mean error to

take into account the variance of the estimator, (b) the error

of the logarithm is used rather than the logarithm of the error,

and (c) the quantity to be estimated is the filtered power, as it

is usual in propagation studies. In such conditions, (6)

becomes:

Δ(2) ≝ √𝔼 [(𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

− 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡
)
2

], (8) 

leading to the new dynamic range definition 𝑅𝐷
(2)

, in 

compliance with (7): 

𝑅𝐷
(2) ≝ max{𝐴𝑑𝐵̂(𝑡)} | Δ

(2) < Δ𝑚𝑎𝑥
(2) ,

= max {𝑃𝑑𝐵𝑊
𝑟𝑒𝑓 (𝑡) −  𝑃𝑑𝐵𝑊

𝑓𝑖𝑙𝑡̂ (𝑡)} | Δ(2) < Δ𝑚𝑎𝑥
(2) ,

(9) 

where Δ𝑚𝑎𝑥
(2)

, in dB, is the maximum error tolerated by the 

user of the beacon data. 

Because the reference power 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

 is generally not

constant (it fluctuates due to movements of the satellite, drifts 

of the receiver, attenuation from atmospheric gases, 

scintillation effects…), the dynamic range might actually 

change with respect to time. However, as mentioned 

previously, when extracting attenuation from beacon 

measurements, fast signal fluctuations related to scintillation 

effects are commonly partly removed by low-pass filtering 

(see Section IV.B). As for the other effects, they are expected 

to be quite low (typically less than 1 or 2 dB throughout a day 

[8]). Lastly, it has to be noted that the dynamic range is not 

only affected by the characteristics of the beacon receiver, but 

also by the characteristics of the satellite (mainly its EIRP, 

and marginally on the characteristics of the signal sent, such 

as its phase noise, or the Doppler shift of the carrier 

frequency). The climatological differences between locations 

should also play a role (sky noise power depends on its 

physical temperature and dynamics of gaseous attenuation 

depend on the location), but are assumed to be of second 

order. 

IV. NOISE CORRECTIONS BY MINIMISING THE ESTIMATION 

BIAS 

As mentioned in Section III, due to the presence of thermal 

noise originating from the sky and from the receiver 

components, the noisy power 𝑆𝑑𝐵𝑊  at the output of a beacon

receiver is a positively biased estimator 𝑃𝑑𝐵𝑊̂
(1)

 of the

noiseless power 𝑃𝑑𝐵𝑊. Therefore, this section is dedicated to

the definition and the mathematical derivation of the 

statistical properties of two estimators, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

𝑎𝑛𝑑 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

, 

that both reduce the estimation bias (i.e. the noise 

contribution). They both rely on the estimation of the noise 

power 𝜎𝑆
2 in the beacon frequency band 𝐵𝑆. To do so, an

estimator 𝑁0̂ of the noise power spectral density 𝑁0 is first

required. This estimator 𝑁0̂ is defined from power

measurements in the adjacent frequency band 𝐵𝑁.

A. Noise Spectral Density Estimation

Let 𝑖 be an integer,  𝑇𝑆 the sampling period of the ADC in

Fig. 1 and 𝑣𝑁(𝑖 ⋅ 𝑇𝑆) the I/Q samples after going through the

band-pass filter in Fig. 2, which isolates the spectral 

components solely due to thermal noise in the adjacent 

frequency band. The samples 𝑣𝑁(𝑖 ⋅ 𝑇𝑆) are a root-power

quantity (a voltage or a current, up to a multiplicative 

constant). In compliance with Fig. 5, from the discrete 

summation of the square of the modulus of 𝑣𝑁(𝑖 ⋅ 𝑇𝑆) over the

integration time 𝑇𝐼  , the receiver provides an estimator 𝑁 of

the noise power 𝜎𝑁
2 in the adjacent frequency band:

𝑁(𝑘 ⋅ 𝑇𝐼) ≝
1

𝑟
∑ |𝑣𝑁(𝑖 ⋅ 𝑇𝑆)|

2

(𝑘+1)⋅𝑟−1

𝑖=𝑘⋅𝑟 

, (10) 

where 𝑟 = 𝑇𝐼/𝑇𝑆 is the number of I/Q samples (right after the

ADC) over the integration time 𝑇𝐼 . 𝑁 could alternatively be

computed in the Fourier frequency domain, with equivalent 

results, in virtue of Parseval’s theorem. 

Fig. 5. Beacon receiver estimation 𝑁(𝑘 ⋅ 𝑇𝐼) of the noise power 𝜎𝑁
2 from the 

integration of the square of the modulus of 𝑣𝑁(𝑖 ⋅ 𝑇𝑠) produced by the ADC 

in Fig. 2 over the interval 𝑘 ⋅ 𝑇𝐼 ≤ 𝑡 ≤ (𝑘 + 1) ⋅ 𝑇𝐼.
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Under the AWGN assumption, the samples 𝑣𝑁(𝑖 ⋅ 𝑇𝑠) are

normally distributed, with a variance equal to the noise power 

𝜎𝑁
2 in the adjacent frequency band. Although 𝜎𝑁

2 is likely to

change over time (for instance due to variations of the sky 

brightness temperature), it is assumed that over the beacon 

integration time 𝑇𝐼  (typically less than a second) the noise is

stationary. In such conditions, the samples 𝑣𝑁(𝑖 ⋅ 𝑇𝑠) follow

a normal law: 

𝑣𝑁~ 𝒩(0, 𝜎𝑁
2). (11) 

Now, let 𝑚 be the time-bandwidth product: 

𝑚 ≝ 𝐵𝑁 ⋅ 𝑇𝐼 (12) 

where 𝑚 is supposed to be an integer (it is the case for 

brickwall filters implemented using the Discrete Fourier 

Transform DFT). In compliance with [19], the distribution of 

the power of a band-limited, AWGN follows a chi-square 

(𝜒2) distribution with a number of degrees of freedom equal

to twice the time-bandwidth product 𝑚. Therefore, from (10), 

the distribution of 𝑁 follows a chi-square distribution: 

𝑁 ~ 
𝜎𝑁
2

2𝑚
𝜒2(2𝑚), (13) 

and its Probability Density Function (PDF) 𝑓𝑁 is given by:

𝑓𝑁(𝑥) =
𝑥𝑚−1𝑒

−
𝑚

𝜎𝑁
2 ⋅𝑥

Γ(m) (
σN
2

𝑚
)
𝑚 , (14) 

where Γ is the gamma function. 

From (13) and [20], the expected value 𝔼[𝑁] and the 

variance 𝑣𝑎𝑟(𝑁) of the estimator 𝑁 are given by: 

𝔼[𝑁] = 𝜎𝑁
2, (15) 

and 

𝑣𝑎𝑟(𝑁) =
𝜎𝑁
4

𝑚
. (16) 

Equation (15) shows that 𝑁 is an unbiased estimator of the 

noise power 𝜎𝑁
2 in the band 𝐵𝑁. Equation (16) indicates that

𝑁 estimates all the better 𝜎𝑁
2 as 𝑚 increases (i.e. as the

measurement bandwidth 𝐵𝑁 or the integration time 𝑇𝐼
increases). In practice, 𝑇𝐼  is low (less than 1s) while 𝐵𝑁 can

be large (several kHz, see Table II), as the frequency bands 

adjacent to the beacon frequency band are usually guard 

bands, i.e. free of signals. 

Now, the noise power spectral density 𝑁0 is commonly

expressed from the noise power 𝜎𝑁
2 in the adjacent frequency

band: 

𝑁0 ≝
𝜎𝑁
2

𝐵𝑁
, (17) 

so that using (15), the expected value 𝔼[𝑁] of the estimator 

𝑁 is related to 𝑁0 through:

𝔼[𝑁] = 𝑁0 ⋅ 𝐵𝑁 . (18) 

Assuming that 𝑁 is stationary over time periods longer 

than 𝑇𝐼 , 𝑙 consecutive samples of 𝑁 can be used to estimate

the noise power density 𝑁0. In these conditions, the maximum

likelihood estimator 𝑁0̂ of the noise power spectral density is

the empirical mean of the samples 𝑁(𝑘 ⋅ 𝑇𝐼):

𝑁0̂(𝑘 ⋅ 𝑇𝐼) ≝
1

𝑙 ⋅ 𝐵𝑁
∑𝑁[(𝑘 + 𝑖) ⋅ 𝑇𝐼]

𝑙−1

𝑖=0

. (19) 

 Although equations (10) and (19) could be performed in a 

single step, in practice, the I/Q samples are not stored directly, 

as this operation would require too much storage capacity in 

the receiver. Instead, the samples 𝑁(𝑘 ⋅ 𝑇𝐼) are stored with a

sampling period 𝑇𝐼 , requiring that the estimation driven by

(19) is computed in two separate steps.

Considering independent and identically distributed

random variables, it follows from (18) and (19) that: 

𝔼[𝑁0̂] =
𝔼[𝑁]

𝐵𝑁
= 𝑁0,

(20) 

and 

𝑣𝑎𝑟(𝑁0̂) =
𝑙 ⋅ 𝑣𝑎𝑟(𝑁)

(𝑙 ⋅ 𝐵𝑁)
2

=
𝜎𝑁
4

𝑙 ⋅ 𝑚 ⋅ 𝐵𝑁
2

=
𝑁0
2

𝐵𝑁 ⋅ 𝑇𝐼 ⋅ 𝑙
. 

(21) 

 Under the hypothesis of stationarity of the noise, (20) 

shows that 𝑁0̂ in (19) is an unbiased estimator of 𝑁0 while

(21) indicates that the noise power spectral density estimator

𝑁0̂ has a lower variance as the product 𝐵𝑁 ⋅ 𝑇𝐼 ⋅ 𝑙 increases.

Particularly, increasing 𝑙 produces better estimates of 𝑁0.

However, if 𝑙 is too large, the hypothesis of stationarity of the 

signal might not hold. From empirical measurements (a few 

tens of GHz, with antenna sizes of roughly 1 m), it was 

determined that over periods of 10 seconds, the noise power 

remains nearly constant (i.e. 𝑙 ⋅ 𝑇𝐼 = 10 𝑠 should be

acceptable to estimate the noise spectral power density). 

B. Signal Power Estimation

1) Description of the method to derive the estimators

As mentioned in Section III, attenuation time series 𝐴𝑑𝐵̂(𝑡)
are derived from beacon receivers using (2), where the 

reference power 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

is fixed by the experimenter. 

Therefore, it remains to estimate the quantity 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

, which

contains the low frequency components of the ideal, noiseless 

power 𝑃𝑑𝐵𝑊, mainly caused by tropospheric attenuation

effects. Usually, the low-pass filtered, noisy power 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

measured by the beacon receiver is used as a first estimate 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

(the customary estimator) of 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 [2]. 

Nevertheless, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

= 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

is a biased estimator 

overestimating the filtered noiseless power 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

.

Consequently, this standard process that ignores noise power, 

though widely used in the propagation community, leads to 

an underestimation of 𝐴𝑑𝐵. This underestimation is stronger

as the signal-to-noise ratio is low (i.e. as the attenuation is 

high). 

Therefore, in the next subsections, two estimators 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

and 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

 are proposed. Precise estimation methods (such 

as maximum likelihood estimation) would require an 

expression of the probability density function of 𝑆𝑑𝐵
𝑓𝑖𝑙𝑡

, which 
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is unknown. As a consequence, the method of moments is 

used to derive these estimators, which solely requires an 

expression of the expected value of 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

. Finding 𝔼[𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

] 

is the object of subsections IV.B.2) through IV.B.4). 

2) Definition of the noisy power 𝑆 measured by the beacon

receiver

Analogous to (12), let 𝑛 be the time-bandwidth product in 

the beacon frequency band: 

𝑛 ≝ 𝐵𝑆 ⋅ 𝑇𝐼 . (22) 

𝑛 is assumed to be an integer (it is the case if the filter to 

isolate the beacon frequency band is a brick-wall filter 

implemented using the DFT). 

The power of the noisy signal 𝑆(𝑘 ⋅ 𝑇𝑖𝑛𝑡) measured by the

beacon receiver results from the discrete integration of the 

square of the modulus of the complex samples 𝑣𝑆 (cf. Fig. 2):

𝑆(𝑘 ⋅ 𝑇𝐼) ≝
1

𝑟
∑ |𝑣𝑆(𝑖 ⋅ 𝑇𝑠)|

2

(𝑘+1)⋅𝑟−1

𝑖=𝑘⋅𝑟

, (23) 

where, as before, 𝑘 is the index of the samples 𝑆 and 𝑟 =
𝑇𝐼/𝑇𝑆.

As stated in Section II, thermal noise is modelled as an 

AWGN. Consequently, the measured signal 𝑣𝑆(𝑡) can be

decomposed into the sum of the noiseless signal 𝑣𝑃(𝑡) with a

white, Gaussian noise 𝑣𝑁′(𝑡) (the prime being used to

differentiate the noise contribution 𝑣𝑁′(𝑡) in the beacon

frequency band from 𝑣𝑁(𝑡) in section IV.A that refers to the

noise in the adjacent frequency band 𝐵𝑁):

𝑣𝑆(𝑡) = 𝑣𝑃(𝑡) + 𝑣𝑁′(𝑡), (24) 

and 

𝑣𝑁′(𝑡)~𝒩(0, 𝜎𝑆
2(𝑡)). (25) 

Similarly, the power 𝑃 in the absence of sources of thermal 

noise, integrated over 𝑇𝐼 , expressed in watts, is defined as

𝑃(𝑘 ⋅ 𝑇𝐼) ≝
1

𝑟
∑ |𝑣𝑃(𝑖 ⋅ 𝑇𝑠)|

2

(𝑘+1)⋅𝑟−1

𝑖=𝑘⋅𝑟

. (26) 

Although 𝑃 is unknown, it is considered a parameter (i.e. 

it is not a random variable). Fig. 6 illustrates 𝑆 and 𝑃 defined 

by equations (23) and (26) for two different signal-to-noise 

ratios. When the signal-to-noise ratio is high (red dashed 

curve), 𝑆 is rather close to 𝑃. On the other hand, if the signal-

to-noise ratio is low, 𝑆 strongly overestimates 𝑃. As 

previously stated, 𝑆𝑑𝐵𝑊 is also expected to be a positively

biased estimator of 𝑃𝑑𝐵𝑊.

3) Derivation of the expected value of 𝑆
As shown in [21], since the samples 𝑣𝑁′  are normally

distributed with variance 𝜎𝑆
2 in compliance with (25), then 𝑆

in (23) follows a non-central chi-square (𝜒𝑛𝑐
2 ) distribution

with 2𝑛 degrees of freedom, and a non-centrality parameter

equal to the ratio of signal power to the noise power spectral

density:

𝑆 ∼
𝜎𝑆
2

2𝑛
⋅ 𝜒𝑛𝑐

2 (2𝑛,
2𝑛

𝜎𝑆
2 𝑃). (27) 

Consequently, the PDF of 𝑆 is given by 

𝑓𝑆(𝑥) =
2𝑛

𝜎𝑆
2 ⋅ 𝜒𝑛𝑐

2 (
2𝑛

𝜎𝑆
2 𝑥; 2𝑛,

2𝑛

𝜎𝑆
2 𝑃 ), (28) 

where 𝜒𝑛𝑐
2 (⋅; 𝑘, 𝜆) is the non-central chi-square PDF, defined

as 

𝜒𝑛𝑐
2 (𝑡;  𝑘, 𝜆) ≝

𝑒−
𝜆+𝑡
2

2
⋅ (
𝑡

𝜆
)

𝑘
4
−
1
2
⋅ 𝐼𝑘
2
−1
(√𝜆𝑡), (29) 

where 𝐼𝑘
2
−1

 is the modified Bessel function of the first kind, 

which order is 
𝑘

2
− 1.

Fig. 7. PDF 𝑓𝑆(𝑥) of the power S in the beacon frequency band given by (28), 

for two values of the signal-to-noise ratio (plain red line: 0 dB, dashed red 

line: 10 dB), for 𝑛 = 5, along with the expected values of the distributions 

as vertical red lines. 

Using (27) and [20], the expected value of 𝑆 can be 

expressed as 

𝔼[𝑆] =
𝜎𝑆
2

2𝑛
⋅ (2𝑛 +

2𝑛 ⋅ 𝑃

𝜎𝑆
2 ) 

= 𝜎𝑆
2 + 𝑃,

(30) 

which is an expected result, the power of two independent 

signals being the sum of the power of the individual signals. 

In fact, (30) holds independently of the noise characteristics, 

provided that it is independent of the signal (in particular, it 

Fig. 6. Illustration of the power measured by the beacon receiver from the 

integration of the instantaneous power 𝑣𝑝(𝑡) over 𝑇𝐼 seconds, for two values 

of the signal-to-noise ratio (plain red line: a signal-to-noise ratio of 0 dB, 

dashed red line: a signal-to-noise ratio of 10 dB). The blue curve is the 

noiseless power that would measure an ideal beacon receiver in the absence 

of thermal noise. 
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does not need to be a Gaussian noise). The PDF of 𝑆 is plotted 

in Fig. 7, for two values of the signal-to-noise ratio. In the 

particular case of a signal-to-noise ratio of 0 dB (i.e. 𝑃 = 𝜎2,
shown as a plain red line in Fig. 7), the expected value 𝔼[𝑆] 
is twice the power of the signal in compliance with (30). For 

higher values of the signal-to-noise ratio, the bias of 𝑆 is 

usually low with respect to its variance (see the dashed curve 

in Fig. 7). 

 Because the noise is considered to be white, the power 

spectral density is constant, therefore: 

𝜎𝑆
2 = 𝑁0 ⋅ 𝐵𝑆 , (31) 

and (30) becomes: 

𝔼[𝑆] = 𝐵𝑆 ⋅ 𝑁0 + 𝑃. (32) 

4) Derivation of the expected value of 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

Due to the monotonicity of the logarithm, from (28), the

PDF 𝑓𝑆𝑑𝐵𝑊 of 𝑆𝑑𝐵𝑊 ≝ 10 log10(𝑆) can be expressed as

𝑓𝑆𝑑𝐵𝑊(𝑥) =

2𝑛 ⋅ ln(10)

10𝜎𝑆
2 𝜒2 (

2𝑛

𝜎𝑆
2 10

(
𝑥
10
)
; 2𝑛,

2𝑛𝑃

𝜎𝑆
2  ) 10

𝑥
10. 

(33) 

A closed form of the expected value of the logarithm of a 

chi-square distribution is given in [22]. Applied on (33), one 

obtains: 

𝔼[𝑆𝑑𝐵𝑊] = 10 log10 (
𝜎𝑆
2

𝑛
) +

10

ln(10)
𝑔𝑛 (

𝑛𝑃

𝜎𝑆
2), (34) 

where 𝑔𝑛 is a continuous, strictly increasing function given

by: 

𝑔𝑛(𝑥) ≝ 

{

𝜓(𝑛), 𝑖𝑓 𝑥 = 0

ln(𝑥) − 𝐸𝑖(−𝑥) +∑(−
1

𝑥
)
𝑖

⋅ (𝑒−𝑥(𝑗 − 1)! −
(𝑛 − 1)!

𝑗(𝑛 − 1 − 𝑗)!
) ,

𝑛−1

𝑖−1

𝑒𝑙𝑠𝑒
,

(35) 

with 𝜓(⋅) the digamma function and 𝐸𝑖(⋅) the exponential 

integral function, defined as 

𝐸𝑖(𝑥) ≝ ∫
𝑒𝑡

𝑡
𝑑𝑡

𝑥

−∞

. (36) 

Now, as the low-pass filter to remove scintillation is linear, 

with a frequency response 𝐻, and assuming that 𝑆𝑑𝐵𝑊(𝑡) is a

stationary random process with power spectral density 

𝒮𝑆𝑑𝐵𝑊(𝑓), then the power spectral density of the filtered

signal 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) is given by: 

𝒮
𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑓) = |𝐻(𝑓)|2 ⋅ 𝒮𝑆𝑑𝐵𝑊(𝑓). (37) 

In particular, 𝐻(0) = 1, so it follows that the expected 

value (the DC component) of 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 is equal to the expected 

value of 𝑆𝑑𝐵𝑊 so that, using (34),

𝔼[𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

] = 𝔼[𝑆𝑑𝐵𝑊] 

= 10 log10 (
𝜎𝑆
2

𝑛
) +

10

ln(10)
𝑔𝑛 (

𝑛𝑃

𝜎𝑆
2), 

(38) 

The stationarity of 𝑆𝑑𝐵𝑊 is a questionable hypothesis, as

rain or clouds attenuation can change substantially within 

tens of seconds. Consequently, the performance of the 

estimators derived in subsection IV.B.5), using this 

hypothesis will be tested on synthetic data aiming at 

reproducing actual attenuation dynamics in Section V. 

5) Definition of the estimators

From the previous paragraphs, three estimators are

proposed. 

✓ “Customary” estimator

As mentioned in previous sections, the first estimator

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

, referred as the customary estimator hereafter, is the 

estimator generally used in propagation studies when noise 

measurements are not available: 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

≝ 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

. (39) 

As previously discussed, when the signal-to-noise ratio is 

low, the positive bias associated with 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

 is expected to

be significant and the actual attenuation is underestimated. 

✓ “Natural” estimator

An estimator 𝑃̂(2), proposed in [4], is derived from the

expression of the expected value 𝔼[𝑆] of 𝑆 in watts in (32), 

using the method of moments: 

𝑃̂(2) = 𝑆 − 𝐵𝑆 ⋅ 𝑁0̂. (40) 

However, since (40) gives negative values if 𝑆 < 𝐵𝑆 ⋅ 𝑁0̂,

a revised expression is proposed so that (40) becomes: 

𝑃̂(2)
′
= {𝑆 − 𝐵𝑆 ⋅ 𝑁0̂ 𝑖𝑓 𝑆 ≥ 𝐵𝑆 ⋅ 𝑁0̂
0 𝑒𝑙𝑠𝑒

. (41) 

After a change of variable 𝑆𝑑𝐵𝑊 = 10 ⋅ log10(𝑆), the natural

estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

of the noiseless power 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 emerges: 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

= 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

+ ℎ

(

10
(
𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

10
)

𝐵𝑆 ⋅ 𝑁0̂

)

, (42) 

where ℎ is a function given by 

ℎ(𝑥) ≝ {10 log10 (1 −
1

𝑥
) 𝑖𝑓 𝑥 > 1

−∞ 𝑒𝑙𝑠𝑒

. (43) 

Because the change of variables is not linear, it is expected 

that 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

is a biased estimator of 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

. 

✓ “Logarithmic” estimator

Instead, using the method of moments directly on the

expected value of 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 should give a less biased estimator. 

Inverting (38) gives the logarithmic estimator: 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

=
𝜎𝑆
2

𝑛
⋅ 𝑔𝑛

−1 [
ln 10

10
(𝑆𝑑𝐵𝑊

− 10 log10 (
𝜎𝑆
2

𝑛
))] 

= 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

+ ℎ𝑛

(

10
(
𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

10
)

𝐵𝑆 ⋅ 𝑁0̂

)

, 

(44) 

where ℎ𝑛 is defined as
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ℎ𝑛(𝑥) ≝ {
10 log10 (

𝑔𝑛
−1[ln(𝑛𝑥)]

𝑛𝑥
) 𝑖𝑓 𝑥 >

𝑒𝜓(𝑛)

𝑛

−∞ 𝑒𝑙𝑠𝑒

. (45) 

The value −∞ for 𝑥 smaller than 𝑒𝜓(𝑛)/𝑛 is obtained by

analytic continuation of ℎ𝑛, and is consistent with the

expected behaviour of ℎ𝑛: a measured power lower than the

noise floor is most likely caused by a null power from the 

beacon, i.e. −∞ dB. From an experimenter point of view, this 

infinite value is not an issue, as attenuation values exceeding 

the dynamic range (that remains to be set) are generally 

marked as unreliable. A practical implementation of 𝑔𝑛
−1 is

proposed in Appendix A.  

Intuitively, the functions ℎ and ℎ𝑛, plotted in Fig. 8,

correspond to the corrections applied to 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 (that is, again, 

commonly used to estimate 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

) to obtain respectively the 

natural 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

and logarithmic 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

estimators. In 

compliance with Fig. 8, the corrections applied to 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 are

substantial, especially when 𝑛 is higher than 1: it can amount 

to several dB for low values of the signal-to-noise ratio. On 

the contrary, for high values of the signal-to-noise ratio, the 

corrective functions ℎ and ℎ𝑛 approach 0 dB. Besides, as

shown in Appendix B, the functions ℎ and ℎ𝑛 are

asymptotically equal as 𝑛 tends towards infinity. In other 

words, 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

in (42) becomes increasingly close to 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

in (44) when increasing the measurement bandwidth 𝐵𝑆, i.e.

when 𝑛 increases in compliance with (22). 

Fig. 8. The correction functions ℎ and ℎ𝑛, for a few values of 𝑛 (1, 2, 3, 5, 

11, 51). 

V. PERFORMANCE OF THE ESTIMATORS

The estimators previously defined have been derived 

assuming 𝑆𝑑𝐵𝑊 is a stationary process. However, this

hypothesis is questionable, since attenuation can change 

drastically within seconds. Consequently, the performances 

of the customary 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

, natural 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

 and logarithmic 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

 estimators are assessed from simulations of synthetic 

time series of total tropospheric attenuation associated with 

the beacon receiver model described in Section II. 

A. Synthetic Time Series Generation

Synthetic time series of total tropospheric attenuation

𝐴𝑑𝐵
𝑡𝑜𝑡(𝑡) have been generated using Recommendation ITU-R

P.1853-2 [23]. Since experimental beacon data collected at

Ka and Q bands in Toulouse (South-West of France) will be

used in Section VII, the selected beacon frequency is 𝑓𝑏 =
39.4 𝐺𝐻𝑧 and Rec. ITU-R P.1853-2 is used from the

geographical coordinates of Toulouse. For simulation

purposes, the signal and noise powers are computed at the

input of the beacon receiver (right after the antenna in Fig. 1),

while the noise generated by the receiver is virtually brought

back to the input of the receiver in order to avoid having

unnecessary characteristics of the receiver in the following

equations (such as the gain of the receiving chain) [24].

The synthetic time series of noiseless power level 𝑃𝑑𝐵𝑊(𝑡)
(in dBW) and 𝑃(𝑡) (in watts) at the input of the beacon 

antenna are computed according to: 

𝑃𝑑𝐵𝑊(𝑡) = 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

− 𝐴𝑑𝐵
𝑡𝑜𝑡(𝑡), (46) 

and 

𝑃(𝑡) = 10𝑃𝑑𝐵𝑊(𝑡)/10, (47) 

where 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

 is the reference power that would be received in 

the absence of atmosphere (since, in this case, total 

attenuation is considered). 𝑃𝑑𝐵𝑊
𝑟𝑒𝑓

is assumed constant 

(ignoring variations induced by movements of the satellite or 

drifts of the RF chain), and is fixed arbitrarily, so that the 

signal-to-noise ratio in clear sky conditions is equal to 32 dB, 

i.e. a value similar to the one of the Q-band receiver

considered in Section VII. Taking values for the parameters

similar to the ones of the experimental beacon receiver will

ease comparisons afterwards.

 The equivalent noise temperature generated by the 

receiver, measured at the input of the receiver, is by 

definition: 

𝑇𝑟 = 𝑇0(𝐹 − 1), (48) 

where 𝑇0 is the reference temperature (290 K), and 𝐹 the

noise figure of the receiver defined in Table I. 

The sky brightness temperature at the input of the receiver, 

is given by [25]: 

𝑇𝑏(𝑡) = 𝑇𝑚𝑟([1 − 𝐴
′(𝑡)]) + 2.7𝐴′(𝑡), (49) 

where 𝐴′(𝑡) (unitless) is the total atmospheric attenuation

(gases, clouds and rain) excluding scintillation, averaged over 

the radiation pattern of the receiving antenna. 𝑇𝑚𝑟 = 275𝐾 is

the effective mean radiating temperature of the sky. 

Assuming the LNB is located just after the antenna feeder to 

avoid noticeable loss from the cables, and the receiving 

antenna is sufficiently directive to neglect noise originating 

from the ground, the total effective noise temperature, at the 

input of the receiver, is 

𝑇𝑒(𝑡) = 𝑇𝑏(𝑡) + 𝑇𝑟, (50) 

and the noise power in the beacon receiver band is finally 

given in watts by: 

𝜎𝑆
2(𝑡) = 𝑘𝑇𝑒(𝑡)/𝑇𝑠, (51) 

where 𝑘 is the Boltzmann constant and 𝑇𝑠 is still the ADC

sampling period. 

It has to be noted that, strictly speaking, attenuation times 

series measured by a beacon receiver are only affected by the 
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propagation medium in a small area (essentially equal to the 

first Fresnel zone of the link), whereas the power of the noise 

is impacted by a larger portion of the sky (the beam width of 

the antenna). This distinction should have little effects 

considering the high directivity of the antenna, and should act 

as a worst-case scenario: in practice, variations of the noise 

temperature should be lower, so the hypothesis of stationarity 

of the noise power spectral density should hold even more. 

B. Beacon Receiver Model

The generic beacon receiver described in Section II has

been implemented numerically according to the block 

diagram in Fig. 9. The parameters are given in Table I. They 

are identical to the parameters of the experimental receivers 

presented in Section VII. 

 From Table I and (22), the value of the parameter 𝑛 is 5. 

The value of 𝑙 has been fixed to obtain an effective integration 

time for the estimation of the noise power spectral density of 

𝑙 × 𝑇𝐼 = 10 seconds. This is a conservative value,

considering that the sky noise temperature evolves generally 

slowly, as it is integrated over the radiation pattern of the 

receiving antenna. Also, experimental data at Ka and Q bands 

have shown that the noise power spectral density is almost 

constant over time periods of a few seconds. 

The band-pass filters that isolate the beacon frequency 

band (in red in Fig. 9) and the adjacent frequency band (in 

green in Fig. 9) are brick-wall filters implemented using the 

DFT. The low-pass filter used to remove scintillation is a 

forward-backward Butterworth filter of 3rd order (effective 6th 

order), with a cut-off frequency of 0.025 Hz. 

Fig. 10 shows time series of excess attenuation generated 

using ITU-R P.1853-2 (dashed, black line 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

), along with

simulated beacon receiver data in presence of thermal noise 

(thin blue line 𝑆𝑑𝐵𝑊), and the three estimators (customary,

natural and logarithmic) defined in Section IV.B.5). The 

noise power in the frequency band of the beacon is shown as 

a red line. When the signal-to-noise ratio is high (e.g. between 

0 and 3 minutes), all three estimators are accurate. For a 

signal-to-noise ratio close to unity (between 4 and 8 minutes, 

or around 14 minutes), the customary estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

 is 

clearly overestimating the power level, the natural estimator 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

 tends to slightly underestimate the power level, while 

the logarithmic estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

 is accurate. Now, when the

power of the signal is significantly lower than the power of 

the noise (between 9 and 12 minutes), none of the estimators 

are accurate. In particular, the natural and logarithmic 

estimators output infinite values. 

Fig. 10. Synthetic rainy event generated using ITU-R P.1853, along with the 

three estimators. 

C. Root Mean Square Error of the Estimators

The generic error figure for beacon power time series is the

Root Mean Square Error (RMSE) 𝛥(2) defined in (8).

 As the total attenuation synthesizer in Rec. ITU-R P.1853-

2 is based on a mixed dirac-lognormal approach, it is 

necessary to generate a large database of tropospheric 

attenuation in order to get high attenuation values (which 

happen with a low probability), close to the beacon receiver 

saturation. It was found that 20 years of synthetic data is 

sufficient for the RMSE to converge (or, in other words, to 

obtain smooth curves). 

Fig. 11 gives the RMSE of the three estimators previously 

defined, as a function of the carrier-to-noise density ratio 

𝐶/𝑁0. As shown in Appendix C, the RMSE of the estimators

only depends on the signal-to-noise ratio (or equivalently the 

signal-to-noise density ratio 𝐶/𝑁0, as the receiver bandwidth

is constant). The customary estimator has the highest error. In 

comparison, the natural estimator shows significant 

improvements: for an acceptable error level 𝛥(2) of 1 dB, the

dynamic range is increased by about 7 dB. The logarithmic 

estimator, although more complex, is even more precise: for 

TABLE I 
PARAMETERS OF THE BEACON RECEIVER MODEL 

𝐵𝑁 𝐵𝑆 𝑇𝐼 𝐹 𝑙 
25 kHz 50 Hz 0.1 s 2 dB 100 

Fig. 9. Block diagram of the numerical implementation of the beacon receiver model. 
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the same level of error, it increases the dynamic range by 

about 12 dB. The bias Δ(1) given by (5) is plotted as a dashed

black curve. It is higher than the RMSE of the customary 

estimator, due to its definition using the power level in watts, 

rather than dBW. 

Fig. 11. RMSE 𝛥(2) of the three estimators (plain curves), simulated with 

20 years of synthetic data, as well as the bias Δ(1), according to (5) for 𝑛 =
5 (see Table I and (22)). 

D. Application of the Estimators to Distributions of

Attenuation

The same estimators can be used to compute 

Complementary Cumulative Distribution Functions (CCDFs) 

of excess attenuation. Fig. 12 shows the CCDF of excess 

attenuation computed from the simulated synthetic time 

series (the ‘true’ CCDF computed from noiseless time series 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑡) as a dashed black line, and the CCDFs derived from

the three estimated time series 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)
(𝑡), 𝑃𝑑𝐵𝑊

𝑓𝑖𝑙𝑡̂
(2)
(𝑡) and

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)
(𝑡) in presence of noise as coloured lines). As

expected, for low attenuations (high signal-to-noise ratio), all 

the estimators yield CCDFs identical to the one of the 

noiseless signal. It can be seen that using the customary 

estimator, there is a saturation effect: the attenuation cannot 

exceed a value (here about 32 dB) determined by the noise 

floor of the receiver. Using the natural estimator, a large part 

of the bias is removed, leading to a CCDF closer to the one 

of the noiseless synthetic signal. Finally, the logarithmic 

estimator yields a CCDF that is almost indistinguishable from 

the one using a noiseless receiver, up to attenuation levels 10 

dB above the noise floor (a signal-to-noise ratio of 

approximately -10 dB). 

VI. EFFECT OF THE BANDWIDTH

Because of several unwanted effects, such as the Doppler 

shift, as well as the frequency stability of the clocks of the 

satellite and of the receiver, the beacon carrier frequency 𝑓𝑏
might change quite significantly over a day. For instance, [26] 

presents a beacon receiver using the satellite Alphasat, with 

frequency variations of more than 1 kHz over a day. 

Consequently, the carrier frequency must be estimated, which 

is the subject of many papers in the literature, such as [27]. In 

fact, several frequency estimation algorithms exist, with a 

significant impact on the dynamic range of the receiver. 

One way to counteract the impact of noise estimation errors 

is to increase the measurement bandwidth of the receiver (𝐵𝑆)

[27]. However, when only the measurement in the beacon 

frequency band is used, increasing the measurement 

bandwidth will reduce the signal-to-noise ratio and therefore 

the dynamic range of the receiver. Consequently, the 

parameter 𝑛, proportional to the bandwidth 𝐵𝑆 (see (22)), is

chosen as a trade-off between the signal-to-noise ratio in the 

beacon frequency band, and the impact of frequency 

estimation errors. In Section V, 𝑛 was set to 5 in compliance 

with Table I. Now, Fig. 13 shows the carrier to noise spectral 

density ratio 𝐶/𝑁0 required to obtain an RMSE Δ(2) lower

than 1dB, for 𝑛 ranging from 1 to 51. Note that for 𝑛 = 5, 

Fig. 13 is consistent with the values of 𝐶/𝑁0 for Δ(2) = 1 dB

in Fig. 11. When 𝑛 is equal to one, the customary estimator 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

requires a 𝐶/𝑁0 nearly 3 dB higher than the

logarithmic estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

. However, considering the 

uncertainties of the beacon frequency (𝑓𝑏) estimation, actual

beacon receivers usually opt for values of 𝑛 higher than 1, so 

that the beacon frequency remains inside the beacon 

frequency band. For increasing values of 𝑛, the 𝐶/𝑁0
required for the same level of error rapidly increases, whereas 

for the logarithmic estimator, it is quite contained. For 

instance, increasing 𝑛 from 1 to 5 would increase the required 

𝐶/𝑁0 by more than 10 dB when considering the customary

estimator (effectively decreasing the dynamic range by the 

same value), whereas using the logarithmic estimator only 

results in an increase in the required 𝐶/𝑁0 of less than 3 dB

(see Fig. 13). For that reason, the value of the receiver 

bandwidth 𝐵𝑆 maximizing the dynamic range of the beacon

receiver will be higher when using the logarithmic estimator, 

rather than the customary estimator. Especially, considering 

that actual beacon signals are not perfectly pure carriers (due 

to phase noise, and even more if the signal of the beacon is 

modulated), increasing the measurement bandwidth would 

increase the power of the signal in the frequency band of 

interest. For beacon signals occupying a large enough 

frequency band, one could even expect that the required 𝐶/𝑁0
actually decreases for increasing measurement bandwidths, 

although that remains to be proven on actual beacon 

receivers. 

Fig. 12. CCDFs of excess attenuation from the noiseless synthetic time series 

(ideal receiver) generated using ITU-R P.1853, and from the three estimators 

in presence of thermal noise (actual receiver). 
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VII. APPLICATION TO BEACON RECEIVER MEASUREMENTS

In this section, the procedure to obtain excess attenuation 

time series using the three estimators is now illustrated on 

actual beacon receiver data measured by a Ka-band receiver 

(Astra 3B, 20.2 GHz beacon) and a Q-band receiver 

(Alphasat, 39.4 GHz beacon). Both are situated in Toulouse. 

These receivers are presented in details in [28]. More than 7 

years of measurements are available at both frequencies. The 

two receivers share the same characteristics, as summarized 

in Table II. 

The two beacon receivers record power measurements in 

the beacon frequency band 𝐵𝑆, and in the adjacent frequency

band 𝐵𝑁. The beacon receivers do not keep the I/Q symbols

in memory, as they would represent a volume of data too high 

to be stored permanently. Fig. 14 shows the power level 

during a deep fade event at Q-band (in dB), relatively to a 

power reference intrinsic to the receiving chain (which actual 

value in unimportant, as it cancels out when computing 

attenuation in (1)). The power level measured in the beacon 

frequency band is displayed as a greenish-blue line 𝑆𝑑𝐵𝑊,

along with its low-pass filtered version (bold line 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

). The

noise power, normalised to be computed on the same 

bandwidth is plotted in red. The first point to notice is the 

discontinuity at the end of the event (around 2:41). This is due 

to a loss of lock, which would prevent from using the 

estimators previously defined (the attenuation would be 

overestimated around 2:40). This lock of loss happened for 

two reasons: (a) the Alphasat satellite has a slightly inclined 

and eccentric orbit, resulting in a relatively high Doppler 

frequency shift, and (b) the deep fade rain event is rather long, 

so when the signal emerges from the noise, the carrier 

frequency has drifted outside the beacon frequency band, 

therefore it takes a few seconds for the receiver to lock back 

to the carrier frequency. Nevertheless, deep fade events with 

such durations happen rarely, and only a few of these events 

actually resulted in a loss of lock (there were only two loss of 

lock during the 7 years of the experiment). The receiver at Ka 

band never lost lock (because deep fade events are shorter, 

while the Doppler shift of the satellite Astra 3B is lower as it 

is kept in geostationary position). Generally, an experimenter 

must be careful that the carrier is always in lock, otherwise 

the power estimation technique is not applicable. 

The second thing to notice on Fig. 14 is that the filtered 

beacon signal 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 and the normalized noise power are not 

at the same level during the deep fade event. This indicates 

that the noise is not perfectly white. Indeed, a true white noise 

has by definition a flat power spectral density, so in the 

absence of a signal, the power normalized by the bandwidth 

should be the same in the useful signal frequency band and in 

the noise adjacent frequency band. This has been attributed to 

the analogic filters of the RF chain, as it is common that these 

filters do not always have a perfectly flat frequency response 

(e.g. in [6]). Consequently, the estimation of the noise power 

density 𝑁0̂ driven by (19) in the adjacent frequency band is

not applicable as such to the beacon frequency band. 

Nevertheless, with the less restrictive hypothesis that the 

noise power spectral density is constant with respect to time 

(in other words, the frequency response of the analogic filters 

of the receivers do not change with respect to time, and the 

Doppler shift does not induce variations of the gain of the 

receiving RF chain), it is possible to infer the difference of 

noise power density between the two frequency bands. For 

the two beacon receivers of this paper, this difference can be 

measured by comparing the values of 𝑆𝑑𝐵𝑊 (or equivalently

𝑆 in natural units) to the normalised noise power during deep 

fade events. Indeed, when the atmospheric attenuation is very 

high, the signal of the beacon can be considered absent, 

leaving the measurements solely affected by thermal noise. 

During deep fade events, the difference 𝛿 can then be 

computed in natural units (i.e. not in dB) using the following 

equation: 

δ ≝
𝔼[𝑆] ⋅ 𝐵𝑁
𝔼[𝑁] ⋅ 𝐵𝑆

. (52) 

In order to measure 𝛿 for each receiver, several deep fade 

rain events have been identified during the 7 years of 

experiment. At Q-band, the receiver saturates for about 

0.02% of the time whereas at Ka-band, the receiver saturates 

TABLE II 

CHARACTERISTICS OF THE TWO EXPERIMENTAL BEACON RECEIVERS 

Carrier 

frequency 
𝑇𝐼 𝐵𝑆 𝐵𝑁

Ka band 39.4 GHz 
0.1 s 50 Hz 25 kHz 

Q band 20.2 GHz 

Fig. 13. Required carrier-to-noise-density ratio for an RMSE 𝛥
(2)

 lower than 

1 dB, as a function of the parameter 𝑛. The RMSE of the estimators are 

derived from synthetic time series of tropospheric attenuation (ITU-R 

P.1853). 
Fig. 14. Example of a deep fade rain event at Q band, collected on the 20th of 

July, 2018, in Toulouse, with the measured signal 𝑆𝑑𝐵𝑊 in blue, 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

 at the 

output of a low-pass filter in blue bold, and the normalized noise level in red. 
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for about 0.003% of the time. This difference is explained by 

the higher tropospheric attenuation at Q-band with respect to 

Ka-band, but also by the lower dynamic range of the Q-band 

receiver with respect to the Ka-band one. At Q-band, 18 deep 

fade events of more than 10 minutes were visually identified 

(shorter deep fade events were not kept, as it is harder to 

precisely identify the beginning and the end of the deep fade). 

At Ka-band, no deep fade event was long enough to mask the 

signal of the beacon during 10 minutes over the 7 years. 

Consequently, deep fade events with durations above 5 

minutes have been considered, resulting in the identification 

of 6 deep fade events. The values of 𝛿𝑖 (𝑖 corresponding to

the index of the deep fade events) in dB are shown in Fig. 15, 

each dot corresponding to a deep fade event at Ka (blue) or Q 

(red) band. The average values of 𝛿𝑖 at Ka and Q band,

weighted by the duration of each event, are shown as dashed 

lines. Additionally, the theoretical standard deviation 

(equivalent to a 68% confidence interval) of the value 𝛿𝑖 is
displayed as error bars. At Q-band, the 𝛿𝑖 values are stable

over the 7 years. Their weighted average (red dashed line) is 

most of the time in the confidence intervals, indicating that 𝛿 

is likely constant, and the weighted average is a good 

candidate. At Ka-band, the 𝛿𝑖 values are not as stable. Most

importantly, the weighted average (blue dashed line) is not in 

the confidence intervals of the individual samples. 

Nevertheless, it is not clear whether it is due to the 

identification of deep fade events (the signal could still be 

slightly present), or to drifts of the frequency response of the 

analog part of the receiver, making 𝛿 change with respect to 

time. Overall, the variations of the 𝛿𝑖 values are quite small

(about 0.1 dB), so one could expect little impact on the 

performance of the estimators. 

Fig. 15. Values of δ for a few deep fade rain events at Ka (blue) and Q (red) 

bands, with theoretical one-standard error bars considering white and 
Gaussian thermal noise. The dashed lines are the weighted average of the 

values 𝛿𝑖 at Ka (blue) and Q (red) bands.

Nevertheless, the noise power spectral density estimator 

can now be modified to mitigate the slight difference in gain 

between the beacon frequency band and the adjacent 

frequency band: 

𝑁0 ′̂ ≝ 𝛿 ⋅ 𝑁0̂. (53) 

During deep fades, the signal can be considered as absent, 

i.e. 𝑃 = 0. From (13) and (27), it follows that the PDF of the

ratio 𝑅 of 𝑆 to 𝑁, normalized to their bandwidth, only depends

on known parameters:

𝑅 ≝
𝑆

𝑁
⋅
𝐵𝑁
𝐵𝑆

 ~
𝑚

𝑛
⋅
𝜒2(2𝑛)

𝜒2(2𝑚)
. 

(54) 

The PDF of 𝑅 is known as a non-central F distribution with 

2𝑛 and 2𝑚 degrees of freedom [29]: 

𝑅~𝐹2𝑛,2𝑚. (55) 

Because 𝑚 is much greater than 𝑛, the 𝐹2𝑛,2𝑚 distribution is

almost indiscernible from a 𝜒2(2𝑛)/2𝑛 distribution.

The empirical PDFs of the samples 𝑅 collected during the 

deep fade events identified on Fig. 15 are shown on Fig. 16 

at (a) Ka-band and (b) Q-band, along with their theoretical 

distribution in red dashed curves, under the hypothesis of a 

white Gaussian noise, as well as the 𝐹2𝑛,2𝑚 distribution using

a correction factor 𝛿. The theoretical histogram is a good fit 

for the experimental data, indicating that the noise generated 

by the sky and by the receiver is indeed Gaussian. 

Fig. 16. Empirical PDFs of the samples 𝑅 during deep fade events at Ka-

band (a) and at Q-band (b), along with the theoretical 𝐹𝑛,𝑚 distribution in 

red, and the distribution corrected by a factor δ in orange. 

The time series of excess attenuation are then computed 

from the power level 𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡

, using each of the three estimators

defined in this paper. A rain event example is shown in Fig. 

17, with the time series of attenuation at Ka-band (blue), and 

at Q-band (red). The attenuation saturates at Q-band, but not 
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at Ka-band, due to the higher EIRP of the satellite. The 

customary estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

 is displayed as dashed lines, 

whereas the new logarithmic estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

 is in plain

lines. At Ka-band, the difference between the two estimators 

reaches 5 dB at the peak attenuation. At Q-band, the receiver 

saturates between 14:46 and 15:01, so the estimated 

attenuation is accurate for none of the estimators. For the 

logarithmic estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

, data exceeding the dynamic 

range have been displayed with dotted lines. The value of the 

dynamic range has been set using Fig. 11: if the maximum 

acceptable RMSE (Δ(2)) is 1 dB, the dynamic range is reached

for a 𝐶/𝑁0 of 10 dB, corresponding for this receiver to 40 dB

of attenuation (considering a 50 Hz bandwidth and a clear-

sky SNR close to 32 dB). Ideally, the dynamic range should 

be set by characterizing the receiver in a laboratory, by 

checking that the output of the beacon receiver corresponds 

to a controlled input value. It is interesting to note that 

between 14:55 and 15:00, although the proposed estimator is 

beyond its dynamic range, the estimated attenuation is lower 

than the attenuation between 14:41 and 14:55. This is 

consistent with the attenuation at Ka band, which is lower at 

the same time frame. While the error is probably too high for 

most applications, this indicates that the beacon frequency 

band is still aligned with the carrier frequency, even at very 

low signal-to-noise ratios. 

Fig. 17. Rain event measured on the 12th of August, 2020, in Toulouse, at 

Ka and Q bands. 

Now, 7 years of propagation measurements collected at Ka 

and Q bands in Toulouse are used to compute reliable CCDFs 

of excess attenuation at both frequencies (see Fig. 18). Due to 

the absence of a ‘true’ value of the attenuation, the dynamic 

range of each estimator has been set using simulated results 

(see Fig. 12): in the case of CCDFs, the dynamic range is 

defined as the highest value of attenuation, for which the 

difference between the estimated CCDF and the true CCDF 

is lower than 0.5 dB (analogous to the definition in (9) for 

time series). This corresponds, for the customary, natural and 

logarithmic estimators, to respectively 24 dB, 32 dB and 

42 dB at Q-band, and to 33 dB, 41 dB and 51 dB at Ka band. 

Fig. 18. CCDFs of rain attenuation at Ka and Q band, measured in Toulouse 

between 2016 and 2022 (7 years), using the three different estimators. 

VIII. CONCLUSION

In this paper a methodology is described to increase the 

dynamic range of propagation measurements carried out from 

satellite beacon signals. This is possible because the noise 

power is measured in a wide frequency band adjacent to the 

beacon frequency (typically several tens of kHz), in addition 

to the usual measurements of the beacon power in a narrow 

frequency band around the beacon frequency (typically 

several tens of Hz). 

Three estimators of the power received from a satellite 

beacon, respectively referred as the customary, natural, and 

logarithmic estimators, have been reviewed. The customary 

estimator 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(1)

directly considers the noisy power 

measurement to be equal to the beacon signal power. In 

addition to the measurement of the power in the frequency 

band of the beacon, the natural 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(2)

and logarithmic 

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)

 estimators require a measurement of the noise power 

spectral density in an adjacent frequency band. Using 

simulations under realistic conditions, both estimators result 

in an extended dynamic range with respect to the customary 

estimator. The logarithmic estimator is especially accurate to 

determine high values of attenuation (equivalent to a low 

signal-to-noise ratio), due to its processing in decibels.  

It remains to be confirmed whether the dynamic range 

improvements obtained from synthetic data can be transposed 

to experimental data. Indeed, several assumptions about the 

receiver have been made to mathematically derive the 

estimators. Namely, it is assumed that all sources of noise are 

white and Gaussian, and that the beacon carrier frequency is 

perfectly estimated. For this reason, the performance of the 

estimators should be assessed on beacon receivers under 

laboratory conditions, expressly with a controlled and known 

input. 

APPENDIX A: STEP-BY-STEP PROCEDURE TO COMPUTE 

CORRECTED BEACON POWER 

A. Implementation of the functions ℎ𝑛

Following its definition in (45), ℎ𝑛 is expressed from the

reciprocal function 𝑔𝑛
−1 of 𝑔𝑛 defined in (35). 𝑔𝑛

−1 is

calculated numerically by interpolating an list of couples 
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(𝑥, 𝑔𝑛(𝑥)). For small values of 𝑥, and large values of 𝑛, the

numerical implementation of 𝑔𝑛(𝑥) in (45) produces large

errors when using floating-point numerical variables with 

conventional precision. Therefore, the bounds of the function 

𝑔𝑛 proposed in [22] are used to mitigate these numerical

errors. 

Case 1: 𝑛 ≤ 100: 

1) Generate a vector (𝑦𝑖)𝑖∈1..1001 geometrically spaced

between 0.01 ⋅ 𝑛 and 100 ⋅ 𝑛, i.e.:

{
𝑦0 = 0

𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 1001, 𝑦𝑖 = 10
(𝑖−1 250⁄ ) ⋅ 𝑛

(𝐴. 1) 

2) Generate a vector (𝑧𝑖)𝑖∈1..1001, defined as:

𝑧𝑖 = {
𝑔𝑛(𝑦𝑖), 𝑖𝑓 𝑖 > 0

𝜓(𝑛), 𝑖𝑓 𝑖 = 0
, (𝐴. 2) 

where: 

𝑔𝑛(𝑦𝑖) = ln(𝑦𝑖) − 𝐸𝑖(−𝑦𝑖)

+∑(−
1

𝑦𝑖
)
𝑗𝑛−1

𝑗=1

⋅ (𝑒−𝑦𝑖 ⋅ (𝑗 − 1)! −
(𝑛 − 1)!

𝑗 ⋅ (𝑛 − 1 − 𝑗)!
) , 

(𝐴. 3) 

with 𝐸𝑖(⋅) the exponential integral function, and 𝜓(⋅) the 

digamma function. 

3) Generate a vector (𝑥𝑖)𝑖∈1..1001, defined as:

𝑥𝑖 = {

𝑏𝑙 𝑖𝑓 𝑧𝑖 < 𝑏𝑙
𝑧𝑖 𝑖𝑓 𝑏𝑙 ≤ 𝑧𝑖 ≤ 𝑏𝑢
𝑏𝑢 𝑖𝑓 𝑏𝑢 < 𝑧𝑖

, (𝐴. 4) 

where: 

𝑏𝑙 = ln (
𝑧𝑖 + 𝑛

𝑛
) + 𝜓(𝑛), (𝐴. 5) 

and 

𝑏𝑢 =
𝑛 + 1

𝑛
⋅ ln (

𝑧𝑖 + 𝑛 + 1

𝑛 + 1
) + 𝜓(𝑛). (𝐴. 6) 

4) Numerical interpolation to define 𝑔𝑛
−1:

𝑔𝑛
−1(𝑥) is defined solely if 𝑥 ≥ 𝑥0, with 𝑥0 = 𝜓(𝑛).

- If 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, 𝑔𝑛
−1(𝑥) is defined as the linear

interpolation of the points (𝑥𝑖 , 𝑦𝑖) at the point 𝑥.

- If 𝑥𝑛 < 𝑥, 𝑔𝑛
−1(𝑥) is defined as

𝑔𝑛
−1(𝑥) = 𝑒𝑥 − 𝑛 + 1. (𝐴. 7) 

5) Finally, the function ℎ𝑛 is defined for all 𝑢 ≥ 0 as

ℎ𝑛(𝑢) = {
10 log10 (

1

𝑛 ⋅ 𝑢
⋅ 𝑔𝑛

−1(ln(𝑛 ⋅ 𝑢))) 𝑖𝑓 𝑢 >
𝑒𝜓(𝑛)

𝑛

−∞ 𝑒𝑙𝑠𝑒
(𝐴. 8) 

Case 2: 𝑛 > 100: 

In this case, the function ℎ𝑛 is simply defined for all 𝑢 ≥ 0 as

ℎ𝑛(𝑢) = 10 ⋅ log10 (1 −
1

𝑢
) . (𝐴. 9) 

B. Step-by-step procedure

It is assumed that a receiver delivers the samples 𝑆(𝑘 ⋅ 𝑇𝐼)
and 𝑁(𝑘 ⋅ 𝑇𝐼), in watts, respectively measured in the

frequency bands of the beacon (with a narrow bandwidth 𝐵𝑆)

and in an adjacent frequency band where solely the thermal 

noise is present (with a wider bandwidth 𝐵𝑁), with a sampling

period of 𝑇𝐼  in seconds. One should be careful that, in the

following equations, 𝑁(𝑘 ⋅ 𝑇𝐼) is not normalized by 𝐵𝑆/𝐵𝑁 as

it is sometimes the case. 

Let 𝑆𝑑𝐵𝑊 be the logarithm of the power in dBW:

𝑆𝑑𝐵𝑊(𝑘 ⋅ 𝑇𝐼) ≝ 10 log10(𝑆(𝑘 ⋅ 𝑇𝐼)) , (𝐴. 10) 

and 

𝑛 = 𝐵𝑆 ⋅ 𝑇𝐼 . (𝐴. 11) 

It will be assumed that 𝑛 is an integer. 

The step-by-step methodology described hereafter can be 

followed: 

1) Compute the noise power spectral density 𝑁0 (in

W/Hz) using the following formula:

𝑁0̂(𝑘 ⋅ 𝑇𝐼) =
1

(2𝑙 + 1) ⋅ 𝐵𝑁
∑𝑁((𝑘 + 𝑖) ⋅ 𝑇𝐼)

𝑙

𝑖=−𝑙

, (𝐴. 12) 

with: 

𝑙 = ⌊
5

𝑇𝐼
⌋ , (𝐴. 13) 

where ⌊⋅⌋ is the floor function ((𝐴. 13) corresponds to an 

integration time of 10 seconds). 

2) Low-pass filter the signal:

𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑘 ⋅ 𝑇𝐼) = (𝒽 ⋆ 𝑆𝑑𝐵)(𝑘 ⋅ 𝑇𝐼), (𝐴. 14) 

where 𝒽 is the impulse response of the low-pass filter, and ⋆ 

is the convolution operation (the cut-off frequency of the 

filter is usually set to 0.025 Hz in temperate climates). Note 

that for applications requiring synchronicity, zero-phase 

filters are usually used (such as forward-backward filters). 

3) Compute the samples of estimated power level

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)
(𝑘 ⋅ 𝑇𝐼):

𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)
(𝑘 ⋅ 𝑇𝐼) = 𝑆𝑑𝐵𝑊

𝑓𝑖𝑙𝑡 (𝑘 ⋅ 𝑇𝐼) + ℎ𝑛

(

10
(
𝑆𝑑𝐵𝑊
𝑓𝑖𝑙𝑡 (𝑘⋅𝑇𝐼)

10
)

𝐵𝑆 ⋅ 𝑁0̂

)
(𝐴. 15) 

The samples 𝑃𝑑𝐵𝑊
𝑓𝑖𝑙𝑡̂

(3)
(𝑘 ⋅ 𝑇𝐼), expressed in dBW, can then be

used as in the conventional procedure to compute attenuation 

in (2), i.e. by removing the reference power level set by the 

experimenter (which is equal to the clear sky level if the goal 

is to obtain excess attenuation). 
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APPENDIX B: PROOF THAT THE LOGARITHMIC ESTIMATOR 

ASYMPTOTICALLY CONVERGES TO THE NATURAL ESTIMATOR 

AS N TENDS TO INFINITY 

From the definitions of the logarithmic estimator in (44) and 

the natural estimator in (42), it is equivalent to show that ℎ𝑛,

defined in (45), asymptotically converges to ℎ, defined in 

(43), as 𝑛 tends to infinity. From [22], Theorem 7, for 𝑧 ≥ 0, 

and 𝑛 ≥ 1, we have: 

ln(𝑧 + 𝑛 − 1) ≤ 𝑔𝑛(𝑧) ≤ ln(𝑧 + 𝑛) . (𝐵. 1)
From [22], Proposition 6, 𝑔𝑛 is a strictly increasing function.

Therefore, its inverse, 𝑔𝑛
−1 is also strictly increasing.

Consequently: 

𝑔𝑛
−1(ln(𝑧 + 𝑛 − 1)) ≤ 𝑔𝑛

−1(𝑔𝑛(𝑧)) ≤ 𝑔𝑛
−1(ln(𝑧 + 𝑛)),

(𝐵. 2) 
so 

𝑔𝑛
−1(ln(𝑧 + 𝑛 − 1)) ≤ 𝑧 ≤ 𝑔𝑛

−1(ln(𝑧 + 𝑛)), (𝐵. 3) 
which can be rewritten as 

{
𝑔𝑛
−1(ln(𝑧 + 𝑛 − 1)) ≤ 𝑒ln(𝑧+𝑛−1) − 𝑛 + 1

𝑒ln(𝑧+𝑛) − 𝑛 ≤ 𝑔𝑛
−1(ln(𝑧 + 𝑛))

. (𝐵. 4) 

Let 𝑢 = l n(𝑧 + 𝑛 − 1), and 𝑣 = ln(𝑧 + 𝑛). Equation (B.4) 

becomes 

{
𝑔𝑛
−1(𝑢) ≤ 𝑒𝑢 − 𝑛 + 1

𝑒𝑣 − 𝑛 ≤ 𝑔𝑛
−1(𝑣)

, (𝐵. 5) 

or, equivalently, 

𝑒𝑦 − 𝑛 ≤ 𝑔𝑛
−1(𝑦) ≤ 𝑒𝑦 − 𝑛 + 1. (𝐵. 6) 

Let 𝑥 =
𝑒𝑦

𝑛
, then 

𝑛 ⋅ 𝑥 − 𝑛 ≤ 𝑔𝑛
−1(ln(𝑛 ⋅ 𝑥)) ≤ 𝑛 ⋅ 𝑥 − 𝑛 + 1. (𝐵. 7) 

Case 1: 𝑥 > 1: 

Equation (B.7) can be rewritten 

1 −
1

𝑥
≤
𝑔𝑛
−1(ln(𝑛 ⋅ 𝑥))

𝑛 ⋅ 𝑥
≤ 1 −

1

𝑥
+

1

𝑛 ⋅ 𝑥
. (𝐵. 8) 

Because the logarithm is a strictly increasing function, 

10 ⋅ log10 (1 −
1

𝑥
) ≤ 10 ⋅ log10 (

𝑔𝑛
−1(ln(𝑛 ⋅ 𝑥))

𝑛 ⋅ 𝑥
)

≤ 10 ⋅ log10 (1 −
1

𝑥
+

1

𝑛 ⋅ 𝑥
) . 

(𝐵. 9) 
Because: 

lim
𝑛→∞

10 ⋅ log10 (1 −
1

𝑥
+

1

𝑛 ⋅ 𝑥
) = 10 ⋅ log10 (1 −

1

𝑥
) , 

(𝐵. 10) 
using the squeeze theorem, we get: 

lim
𝑛→∞

10 ⋅ log10 (
𝑔𝑛
−1(ln(𝑛 ⋅ 𝑥))

𝑛 ⋅ 𝑥
) = 10 ⋅ log10 (1 −

1

𝑥
) . 

(𝐵. 11) 

lim
𝑛→∞

ℎ𝑛(𝑥) = 10 ⋅ log10 (1 −
1

𝑥
) 

= ℎ(𝑥) (𝐵. 12) 
Case 2: 0 < 𝑥 ≤ 1: 

By definition, the natural estimator gives −∞. 

lim
𝑛→∞

𝑒𝜓(𝑛)

𝑛
= 0 (𝐵. 13) 

Because 𝑥 is strictly positive, after a certain rank 𝑛0, 
𝑒𝜓(𝑛)

𝑛
<

𝑥. 

Using the definition of ℎ𝑛, for 𝑛 ≥ 𝑛0, ℎ𝑛(𝑥) = −∞.

Therefore, 

lim
𝑛→∞

ℎ𝑛(𝑥) = −∞ 

= ℎ(𝑥) (𝐵. 14) 
Case 2: 𝑥 = 0: 

By definition, ℎ and ℎ𝑛 both equal −∞.

APPENDIX C: PROOF THAT THE RMSE OF THE LOGARITHMIC 

ESTIMATOR IS A SOLE FUNCTION OF THE SIGNAL-TO-NOISE 

RATIO 

Under stationarity conditions, two parameters affect the Root 

Mean Square Error (RMSE) of the logarithmic estimator: 𝑃 

and 𝜎𝑆. Indeed, its definition is as follows:

𝑅𝑀𝑆𝐸 ≝ √𝔼 [(𝑃𝑑𝐵𝑊̂ − 𝑃𝑑𝐵𝑊)
2
] , (𝐶. 1) 

where 𝑃𝑑𝐵𝑊̂ is the logarithmic estimator defined as

𝑃𝑑𝐵𝑊̂ ≝ 10 log10(𝑆) + ℎ𝑛 (
𝑆

𝐵𝑆 ⋅ 𝑁0̂
) , (𝐶. 2) 

with ℎ𝑛 the function defined in (45).

In fact, the quantity 

𝑃𝑑𝐵𝑊̂ − 𝑃𝑑𝐵𝑊 = 10 log10 (
𝑆

𝑃
) + ℎ𝑛 (

𝑆

𝐵𝑆 ⋅ 𝑁0̂
) (𝐶. 3) 

can be expressed a function of a single parameter, the signal-

to-noise ratio 𝜉 (𝑆𝑁𝑅 in the body of the paper), with the 

following definition: 

𝜉 ≝
𝑃

𝜎𝑆
2 . (𝐶. 4) 

Using (27), 

𝑆

𝑃
~

𝜎𝑆
2

2𝑛 ⋅ 𝑃
⋅ 𝜒𝑛𝑐

2 (2𝑛;
2𝑛 ⋅ 𝑃

𝜎𝑆
2 ) , (𝐶. 5)

where the symbol ~ denotes the equality in distribution. 

Equivalently, 
𝑆

𝑃
~

1

2𝑛 ⋅ 𝜉
⋅ 𝜒𝑛𝑐

2 (2𝑛; 2𝑛 ⋅ 𝜉), (𝐶. 6) 

which shows that the first member of (𝐶. 3) only depends on 

the signal-to-noise ratio. 

From (13) and (19), considering that 𝑁 is a stationary process, 

𝑁0̂~
𝜎𝑁
2

2𝑚 ⋅ 𝑙 ⋅ 𝐵𝑁
⋅ 𝜒2(2𝑚 ⋅ 𝑙). (𝐶. 7) 

Using (17) and (31), it follows that 

𝑆

𝐵𝑆 ⋅ 𝑁0̂
~

𝜎𝑆
2

2𝑛
⋅ 𝜒𝑛𝑐

2 (2𝑛;
2𝑛 ⋅ 𝑃
𝜎2

)

𝜎𝑆
2

2𝑚
⋅ 𝜒2(2𝑚)

, (𝐶. 8) 

or equivalently, 

𝑆

𝐵𝑆 ⋅ 𝑁0̂
~
𝑚 ⋅ 𝜒𝑛𝑐

2 (2𝑛; 2𝑛 ⋅ 𝜉)

𝑛 ⋅ 𝜒2(2𝑚)
, (𝐶. 9) 

therefore the second member of (𝐶. 3) also depends solely on 

the signal-to-noise ratio 𝜉. Consequently, the root mean 

square error of the logarithmic estimator defined in (𝐶. 1) 
only depends on the signal-to-noise ratio. 
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