
HAL Id: hal-04796339
https://hal.science/hal-04796339v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Signature-based Approach for Data-driven Analysis of
the Inter-modal Demand Dynamics

Ali Shateri Benam, Angelo Furno, Nour-Eddin El Faouzi

To cite this version:
Ali Shateri Benam, Angelo Furno, Nour-Eddin El Faouzi. A Signature-based Approach for Data-
driven Analysis of the Inter-modal Demand Dynamics. International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), Jun 2023, Nice, France. pp.1 - 6,
�10.1109/mt-its56129.2023.10241701�. �hal-04796339�

https://hal.science/hal-04796339v1
https://hal.archives-ouvertes.fr


A Signature-based Approach for Data-driven
Analysis of the Inter-modal Demand Dynamics

Ali Shateri Benam
LICIT-ECO7 UMR T9401

Univ. Gustave Eiffel, Univ. Lyon, ENTPE
Lyon, France

ali.shateribenam@entpe.fr

Angelo Furno, Ph.D.
LICIT-ECO7 UMR T9401

Univ. Gustave Eiffel, Univ. Lyon, ENTPE
Lyon, France

angelo.furno@univ-eiffel.fr

Nour-Eddin El Faouzi, Ph.D.
LICIT-ECO7 UMR T9401

Univ. Gustave Eiffel, Univ. Lyon, ENTPE
Lyon, France

nour-eddin.elfaouzi@univ-eiffel.fr

Abstract—Transport systems are prone to disruptions due
to various factors, from extreme weather conditions to public
transport failures and road accidents. These disruptions alter
travel dynamics and affect expected travel time and cost, prompt-
ing passengers to cancel trips, wait for resolution, or change
paths and mode. This paper aims to provide a data-driven
methodology for gaining insights into how mode choice is affected
by disruptions. First, we use multi-source data to form a unified
multi-modal dataset of car, public transport, and bike-sharing
demand data. Then, by introducing a signature range, we define
an hourly range of expected demand. Utilising this signature
range, we first detect hours with irregular demand in each mode
and then proceed to spot instances where a potential inter-modal
demand spillover has occurred. Finally, exploring our data from
Lyon, France, we showcase examples of implementing our method
to actual recorded data. Our study paves the way for more
extensive studies on the inter-modal demand spillover and its
management implications.

Index Terms—Transport disruption, Travel behaviour, Multi-
modal mobility, Spillover

I. INTRODUCTION

The increasing accessibility of mobility data through smart
public transport passes, GPS data, and shared mobility ap-
plications’ data has opened novel doors for exploring urban
mobility. As each mobility data source captures a specific
side of urban travel (e.g. a particular mode), it is essential
to integrate and jointly leverage such sources to form a more
coherent analysis framework for multi-modal mobility [1].

Transport system disruptions jeopardise the transport level
of service by increasing user’s travel cost and time [2].
These disruptive events inflict complex effects on passengers’
travel behaviour (e.g. trip cancellation, route change, or mode
change). Thus, exploring these events can give us insights into
passenger’s responsive behaviour to external changes, be it
minor perturbations or significant long-term changes [3].

As detailed in Sec. II, various data-driven methods from
different scientific fields have been utilised for detecting and
identifying anomalies. However, such studies are limited in
addressing disruptions from single transportation modes’ point
of view. In the urban mobility context, a multi-modal perspec-
tive appears more appropriate as it could unveil the complex

and interrelated modal dynamics of travel behaviour through
disruptive events. This dynamic relies on many factors, such
as the nature of the disruption, its time, the affected transport
modes and the properties of the network itself.

The demand spillover phenomena in the urban mobility
context can be described as an excess of demand moving
between modes of transport due to a sudden or incremental
decrease in the original mode’s capacity, or an increase in
the original mode’s demand. This paper aims to take an
exploratory and empirical approach to investigate this multi-
modal dynamic based on multi-source recorded data for the
city of Lyon, France. Such a unique dataset is produced
by merging the existing mobility data gathered by various
sources from different transport operators in a uniform format.
We rely on this merged dataset to develop a novel method-
ology for detecting network-wide anomalies in multi-modal
travel demand. Afterwards, we study a few unique scenarios
of transport disruptions where possible inter-modal demand
spillover is observed. These scenarios include weather-induced
disruptions, terrorist attacks, and large-scale public events. The
contributions of our paper could be summarized as follows:

• Integration of multi-source travel demand data in order
to target multi-modality in the empirical exploration of
urban mobility under disruptions.

• A fine-grained automatic data-driven detection of disrup-
tive events with inter-modal demand spillover potential,
based on a signature-based anomaly detection method.

Understanding how the multi- and inter-modal dynamics of
travel demand take form under distinct contextual structures
of various disruptions will facilitate the management of short-
term perturbations and provide insights into travellers’ adapt-
ability to disruptive events. The latter may also be valuable
for policymakers as said insights shed light on the potential
of planned interventions for desired modal shifts.

In the remaining sections of the paper, we first analyse, in
Section II, related research on demand dynamics in presence
of disruptions. Then, in Section III, we detail the data we use
for this study. Following that, we construe our methodology
in Section IV. Next, we showcase examples of results derived
from our methods in Section V. Finally, we discuss our
findings and future directions in Section VI.978-1-6654-5530-5/23/$31.00 ©2023 IEEE
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II. RELATED WORK

When it comes to analysing the demand dynamics from a
user perspective in the context of transport disruptions, the
literature has often looked at this problem in a mono-modal
manner, mostly taking road users into account. There are fun-
damental differences between car and public transport users,
resulting in different dynamics of response to disruptions [4].
Consilvio et al. [5] argue that a multi-modal integration of
different transport modes needs to be considered to manage
transport network disruptions, stating that recovery strategies
are adopted more smoothly in the integrated context.

Some papers have explored passengers’ short-term travel
behaviour responses to various disruptions. Zhu et al. (2017)
[6] explore user responses to transit service disruptions using
a survey-based method and observe the reactions to different
disruptions. Budnitz et al. (2017) [7] survey the bus users’
travel behaviour under weather-induced disruptions and re-
mark that the demand for bus use decreases with precipitation;
however, the scope of this decrease depends on the purpose of
the initially planned trip. Zhang et al. (2022) [8] use mobile
data to observe human mobility during two typhoons and
conclude that while the movement of people reduces under
extreme weather events, recurring trips tend to have weaker
perturbations compared to a general average of trips. Lepage
et al. (2020) [9] analyse the impact of activities, weather, and
transport service disruptions on multi-modal demand and use
statistical models to predict passenger behaviour through said
contextual conditions. These studies use various forms of data
and methodologies to analyse the users’ responses to specific
disruptions. However, a multi-modal, fully integrated and
automated approach is absent from the literature in inspecting
the demand dynamics through transport network perturbations.

Although rational preference and behavioural inertia play
vital roles in passengers’ mode choices during disruptive
events [10], a significant change in transport supply can also
lead to modal changes. Mainly, the studies have focused on the
effects of the modal shift from public transport to cars in ser-
vice disruptions [11]–[13]. While analysing demand dynamics
through these events has relied chiefly on surveys, our data-
driven approach can contribute to the current state of the art, as
the possible difference between stated and observed preference
remains an inherent shortcoming for travel behaviour surveys.
Van Exel et al. [12] observe a 15% difference in responses
to a survey regarding the mode choice in reaction to a rail
strike before and after the event. The emphasis on the inter-
modal demand spillover effects of transport disruptions has
been absent from the literature. Only a few studies explore the
demand dynamics of different modes during said disruptions.
Li et al. [14] and Michaelides et al. [15] use Beijing and
Athens’ data, respectively, to analyse the demand response
dynamics between public transport modes under specific
shocks. They both observe the demand spillover phenomena
within public transport modes. Saberi et al. (2018) [16] and
Yang et al. (2022) [17] study the public transport demand
spillover into shared-bike use during a metro strike and note

a considerable increase in shared bikes. The works mentioned
above consider only two modes of urban transportation in
the demand spillover context. Differently, we aim to stretch
our investigation of the potential demand spillover during
disruptions to a multi-modal horizon consisting of road, public
transport and shared-bike users. The data-driven approach to
identifying disruptive scenarios within the recorded demand
data requires anomaly detection procedures for singling out
instances of irregularity. There is rich literature on anomaly
detection techniques and methods, spanning various fields
of science [18]–[20]. Prasad et al. (2009) [21] define an
anomaly as a pattern that does not conform to expected normal
behaviour, and hence describe the anomaly detection as an
effort to outline a normal behaviour range and detect any
instance where data is outside this range.

In this paper, to automatically detect anomalies, we adapt
an existing methodology from the state of the art [22], based
on the definition of a spatialised demand signature (for mobile
phone data), to multi-modal travel demand. Furthermore, we
also develop an algorithm to pick out anomalous instances
with a potential for demand spillover. Then, we dive more
deeply into analysing specific scenarios of disruptive events
to understand the multi-modal demand dynamics better.

III. DATA

Floating Car Data (FCD): The FCD has been provided by
the Autoroutes Traffic company. The data are stored as daily
datasets for 2019 and include timestamped geo-localisation
data collected via GPS from moving vehicles. Each observa-
tion contains the speed for each moving vehicle ID in km/h,
its direction and the map-matched link identifier from the
road network topology, with a 30-seconds average observation
frequency. The daily datasets are merged to form the general
FCD dataset, denoted by DCar. To get a proxy corresponding
to demand, we consider the number of observations represen-
tative of car presence on the road network.

One limitation of this assumption is that a low number
of observations can translate to lower demand for car use;
however, a higher number of observations on the road network
could also mean congestion. Additionally, the number of
tracked floating cars corresponding to a roughly estimated 3%
to 12% of the whole car park of the city, is a known limitation
for this dataset. However, as shown in Section V, the available
sample has proved to be sufficiently sensitive concerning the
purpose of highlighting demand spillover phenomena.

Ticketing data: Lyon’s public transport system consists
of underground metro, funiculars, tramways and bus lines.
Passengers must validate their tickets before entering metro
and funicular stations, and before boarding on buses and trams.
The dataset of 2019’s recorded validations for Lyon has been
provided by the Keolis company and is denoted as DPT in
the following. DPT contains the aggregated number of hourly
validations per line for each mode in 2019. It should be noted
that metro and funicular validations were recorded as a single
mode in the public transport dataset.
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Bike Sharing Data: Lyon has a system of dock-based
shared bikes with stations scattered across the city. The dataset
at our disposal includes the information mentioned above for
2019. This dataset denoted as DBike, provided by the JCDe-
caux company, represents the shared-bike trips and includes
the origin and the destination stops and timestamps for the
retraction and the return of the bicycle, respectively indicating
the start and the end of the trip. As we are concerned with the
demand, we only use the retractions and their corresponding
timestamps for our analyses.

It needs to mentioned that bike-sharing accounts for only
a quarter of daily bike trips in Lyon. Additionally, each bike
station has a limited number of racks, meaning some stations
might be empty for some hours, putting a cap on the supply
side for shared bikes.

IV. METHODOLOGY

This section presents our proposed framework for identi-
fying moments in time when travel demand on each mode
diverges significantly from the signature, and for detecting
instances with a potential inter-modal demand spillover. The
next four steps detail our methodology.

Step 1 - Data pre-processing for multi-modal demand re-
construction: We transform the datasets at our disposal into
a unified format and merge them into one single dataset. In
particular, each of the input datasets DCar, DPT , and DBike

are pre-processed by aggregating the provided observations to
an hourly basis, selected as the common temporal granularity
of our final unified dataset, denoted as Ddemand.

This unification is carried out on the foundation of a
few assumptions. First, we use the number of network-wide
hourly retractions of shared bikes as an indicator of shared-
bike demand. Second, we associate the network-wide hourly
number of ticketing validations for public transport modes with
the hourly demand for the respective mode. Third, utilising
the FCD data, we consider the hourly number of observations
in the dataset as the city-wide number of moving cars on
the road network. Such values are thus considered as hourly
counts of the demand for each mode. The final unified and pre-
processed dataset can be denoted as Ddemand = {Nq

t }, where
Nq

t represents the observed amount of demand for mode q
on the generic 1-hour time slot t from the time span of data
availability, and q ∈ Q = {bus, tram, metro, bike, car}.

Step 2 - Signature extraction: In this paper, similarly to
the approach from [22] for mobile phone data, we consider
a weekly-hourly temporal support for the computation of the
signature from historical data. In other words, the signature
is a compressed filtered representation on 24*7 time slots of
the observed travel demand over a given observation period.
Differently from [22], we propose distinct monthly signatures
to avoid mixing seasonal travel behaviour. We then propose
the following formal definition of signature, which denotes
the normal or expected range of travel demand for a given
transport mode at a specific time slot.

In our temporal support (m,w, h) for the computation of
the signature, m ∈ M, represents the month variable from

an ordered set of selected months M; w ∈ W, represents
the day of the week variable from an ordered set of selected
week days W, and h ∈ H, represents the hour of the day
variable from an ordered set of selected hours H. It is worth
noting that the (m,w, h) support identifies a set of time slots
that will be considered for aggregation during the computation
of the signature. As an example from our Ddemand dataset,
if m = March, w = Monday and h = 10, the support
(m,w, h) will correspond to the set of all the time slots related
to 10:00 - 10:59 on every Monday of March 2019.

Based on the temporal support (m,w, h) and transport
mode ∈ Q, the signature element Sq

(m,w,h) is defined as:

Sq
(m,w,h) = (µq

(m,w,h) ± λq
(m,w,h)) (1)

where µq
(m,w,h) represents the average of the demand counts

for the mode q for each weekday of the month; and λq
(m,w,h)

represents the range amplitude of the signature. We consider
the range amplitude of the signature as a product of the hourly
standard deviation σq

(m,w,h).

Fig. 1: Percentage of anomalous hours based on the standard
coefficient

To define the signature range amplitude, we performed a
sensitivity analysis on the percentage of hours that would
fall outside said range. We adopted a heuristic approach for
determining the standard deviation coefficient covering major
disruptive events without leaving too much noise behind.
We opted for a knee/elbow point in our sensitivity graph
[23]. With this approach, as shown in Fig. 1, the standard
deviation coefficient of 1.5 at the elbow point corresponds
to a confidence interval of around 96% in all datasets. Our
sensitivity analysis also confirms a Gaussian distribution for
distances of counts from their respective means for each
mode. The amplitude of range λq

(m,w,h) is thus defined as
1.5× σq

(m,w,h).
Based on the previous definitions, the final signature for a

given mode q on the reference time span induced by definition
of the ordered sets M,W,H is thus:

Sq =
∣∣∣
m∈M,w∈W,h∈H

Sq
(m,w,h) (2)
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(c) The signature for the number of metro validations

Fig. 2: The weekly signature of counts and observations for
March 2019

where the
∣∣∣ operator denotes the temporally sorted concatena-

tion of the elements it is applied to.

Fig. 2, as an example, represents the signature for
car observations, bike retractions, and metro valida-
tions for March 2019, when M = {March},W =
{Monday, ..., Sunday},H = {00, ..., 23}. For each mode
q, the signature demonstrated in these figures includes the
hourly average count µq

(m,w,h) and the amplitude λq
(m,w,h) on

each support (m,w, h) from the time span. It is worth noting
that the signature range for each mode changes hourly, as it
corresponds to the standard deviation of the hourly-weekly
demand counts on that month. Therefore, greater demand
fluctuations in certain weekday-hours result in wider signature
ranges. Rainfall on Saturday March 2nd, Thursday March 14th,
and Sunday March 17th has reduced shared-bike retractions
and widened the signature range, as seen in Fig. 2b.

Step 3 - Anomaly detection: We label every count Nq
t from

Ddemand with an anomaly indicator, denoted as θqt , set to 0
if Nq

t belongs in the corresponding signature range Sq
(m,w,h).

The indicator is set to 1, if the count number is larger than
the higher edge of the signature, and -1, if it is lower than
the lower edge of the range. The resulting dataset, denoted
by Dθ, represents the hourly multi-modal demand record
of our time range, including the anomaly indicator θq(m,w,h)
and filtered over the time span induced by the selection of
M,W,H. Algorithm 1 shows the pseudo-code for generating
this indicator.

Algorithm 1 Anomaly detection
1: Input: Ddemand,M,W,H
2: Output: Dθ

3: Dθ ← ∅
4: for Nq

t ∈ Ddemand do
5: extract (m,w, h) from t
6: if (m,w, h) /∈M×W ×H then
7: continue ▷ skip to next iteration
8: if Nq

t > µq
(m,w,h)

+ λq
(m,w,h)

then
9: θq

t = 1
10: else if Nq

(m,w,h)
< µq

(m,w,h)
− λq

(m,w,h)
then

11: θq
t = -1

12: else
13: θq

t = 0
14: end if
15: Dθ ← Dθ ∪ (Nq

t , θ
q
t )

16: end for
17: return Dθ

Step 4 - Detection of anomaly instances with potential
inter-modal spillover: After the production of Dθ, we define
another indicator ζt to identify anomalous hourly time slots t
with an inter-modal spillover potential. The ζt indicator is a
binary indicator defined by inspecting Dθ over an observation
time period T . ζt is considered to be non-zero for anomalous
hourly time slots exhibiting, simultaneously, opposite values
(1 and -1) of the θqt anomaly indicator for at least one pair of
modes (q, r). The rationale behind such an indicator is that the
presence of a spillover during an anomaly shall translate into
a gain of travel demand for one mode and a loss for another
one, both with an amplitude beyond normal ranges for each
of the two involved modes. Algorithm 2 formally describes, in
pseudo-code, how the final dataset Dζ , including the potential
spillover information is produced.

Algorithm 2 Potential multi-modal demand spillover detection
1: Input: Dθ , T , Q
2: Output: Dζ

3: Dζ ← ∅
4: for t ∈ T do
5: ζt ← 0
6: for (i, j) ∈ Q×Q− {i} do
7: Retrieve (Ni

t , θ
i
t) and (Nj

t , θ
j
t ) from Dθ

8: if θi
t = −θj

t then
9: ζt ← 1

10: break
11: end if
12: end for
13: Dζ ← Dζ ∪ (t, ζt)
14: end for
15: return Dζ

V. RESULTS

In order to evaluate the capability of our framework in
detecting potential inter-modal demand spillover during dis-
ruptions, we analyse the Dζ dataset, by taking into account,
as ground truth, the recorded weather data for Lyon, as well as
local news available over the timeframe of interest. Our data
did not track the users’ potential modal change decisions under
disruptions, so the conclusion of inter-modal demand spillover
with the same passengers remains a possible hypothesis.

We mostly ignore the first few hours of the day, as the low
number of counts and observations results in high deviance,
and consequently in positive spillover indications. We only
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consider instances between 6:00 and 24:00 (the hours from
00:00 to 5:59 are filtered out from T , used as input to Alg. 2).

Among instances with positive spillover indicator ζt, we
identified more than ten cases and verified them with ground
truth. These events included terrorist attacks, precipitation-
induced disruptions, large-scale social events, and public hol-
idays. As these disruptive events differed in their affected
mode, duration, time of occurrence, nature and spatial scope,
their spillover dynamics also varied. Although diverse, these
dynamics demonstrated similar patterns too. For instance,
heavy precipitation was usually followed by a demand de-
crease in shared bikes and an increase in other modes, while
the changes were dissimilar based on the rainfall’s time and
duration. In this section, as examples, we provide three distinct
cases of potential spillover cases and their progression of
demand dynamics during their corresponding disruptive event.

In addition to the anomaly indicator θqt , we defined a
continuous variable δqt to calculate a standardised deviance
of each count Nq

t from its corresponding average µq
(m,w,h).

This variable, formulated in Eq. 3, is used in producing the
radar chart plots proposed later in the section.

δqt =
Nq

t − µq
(m,w,h)

σq
(m,w,h)

(3)

Fig. 3 demonstrates the progression for multi-modal dy-
namics of standardised demand counts during said detected
events. For each day, a 5-hour portion is selected to showcase
dynamics during disruption hours. Each hour is exhibited with
a radar chart, with transport modes being represented on the
angular axis, and the demand deviance of the corresponding
hour from the normal signature δqt on the radial axis. The
vertical alignment of hourly plots in the figure displays the
progress for the multi-modal relationship of demand deviance
from the signature through disruption hours. The upper and
lower limits of the signature are also illustrated in the plots
with light and dark grey polygons, respectively.

A. Terrorist Attack

On May 24th 2019, a bomb exploded in a busy central street
in Lyon at 17:40, leading to the temporary closure of three
central metro stations, of which one was an interchange station
connecting two of the four metro lines.

Fig. 3a shows the deviation of demand counts for different
modes through 5 hours following the incident. It appears
reasonable to speculate that public transport users had to
switch to other modes as their primary mode was unavailable.
The immediate increased deviance from signature in bus and
tram validations after the incident backs up this hypothesis.

B. Weather Induced Disruption

On Saturday, June 15th 2019, a high volume of precipitation
was observed through our recorded weather data. Rainfall
started from noon and continued until around 16:00. Fig. 3b
represents a 5-hour progression of multi-modal deviance from
signature demand, starting from noon. The plots showcase
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(a) May 24th 19:00 to
23:59 (terrorist attack)
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(b) June 15th 12:00 to
16:59 (heavy rainfall)
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(c) December 8th 17:00
to 21:59 (festival of
lights)

Fig. 3: The progression of Multi-modal demand dynamics
during disruptive events

a potential spillover instance after 15:00, where a sharp
decrease among shared-bike retractions is illustrated alongside
increased metro validations and car observations. We thus hy-
pothesize that under the precipitation condition, usual shared-
bike users turn to other modes of transport, specifically metro
and personal cars in this case. Towards the evening, a demand
decrease in all public transport modes is observable compared
to the expected demand. This decrease can be explained by
the weather-induced cancellation of leisure trips, which usually
take up an essential portion of urban travel on a typical Sunday
afternoon.

C. Large-scale Community Event

Every year on December 8th, the Festival of Lights takes
place in the city of Lyon, with major shows being held in the
city’s historic centre. On the afternoon of December 8th, 2019,
passengers were able to use Lyon’s metro for free for the rest
of the day. Therefore, no metro validations were recorded after
16:00 that day. Additionally, a few bus lines paused their daily
routes around the city’s centre, as some streets were closed for
the festival.

As Fig. 3c illustrates 5 hours of free metro service from
17:00 onward, a change in demand dynamic is visible on the
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radar plots. The counts for public transport modes are under
the normal range, while car and bike counts have increased.
We hypothesise that the free service of the metro fueled the
noticeable decrease in demand for other modes of public
transport. It is worth mentioning that despite an initial relative
decrease in the counts for shared bikes, the relative number of
retracted Velo’v bikes significantly increased in this day’s final
hours, which surging return trips from the shows can explain.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we explored the network-wide multi-modal
demand dynamics under disruptions. We unified multi-source
data for Lyon, merged them into one, and assigned indicators
for detecting anomalies in an hourly-based structure. Among
the detected anomalies, we identified the instances with po-
tential inter-modal demand spillover and scanned them with
recorded real-life events (weather and news) used as ground
truth. We presented three identified instances to paint examples
of our method’s functionality on real data.

Contrary to the literature on travel behaviour response
to disruptions, we have developed a method to analyse the
demand dynamics of several transportation modes simultane-
ously. By providing a straightforward data-driven monitoring
approach, this method demonstrates the capacity to detect
anomaly instances in a network-wide scope of demand. It
also lets us dive deeper into exploring the effects of various
disruption scenarios on multi-modal travel demand. As our
results suggest that different forms of disruption bring about
different multi-modal demand dynamics; the methodology
is serviceable for a scenario-based multi-modal analysis of
disruption travel behaviour.

We plan to continue analysing the multi-modal dynamics
of travel demand under disruptions. Our next direction will be
dedicated to classifying disruption types based on their effects
on multi-modal demand. Building on this paper’s approach,
where we individually matched the detected scenarios to the
ground truth, we plan to develop machine-learning techniques
to identify clusters of multi-modal demand counts in our future
direction. We also consider to develop data-driven methods to
forecast possible inter-modal demand spillover under various
contextual changes such as extreme weather events.
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