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Abstract

Self-training methods have gained significant attention in recent years due to their
effectiveness in leveraging small labeled datasets and large unlabeled observations
for prediction tasks. These models identify decision boundaries in low-density
regions without additional assumptions about data distribution, using the confi-
dence scores of a learned classifier. The core principle of self-training involves
iteratively assigning pseudo-labels to unlabeled samples with confidence scores
above a certain threshold, enriching the labeled dataset and retraining the clas-
sifier. This paper presents self-training methods for binary and multi-class clas-
sification, along with variants and related approaches such as consistency-based
methods and transductive learning. We also briefly describe self-supervised learn-
ing and reinforced self-training. Furthermore, we highlight popular applications
of self-training and discuss the importance of dynamic thresholding and reducing
pseudo-label noise for performance improvement.

To the best of our knowledge, this is the first thorough and complete survey on
self-training.
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1. Introduction

Self-training is a branch of semi-supervised learning and has emerged as a
prominent approach within the machine learning domain, addressing the core
challenge of leveraging both labeled and unlabeled data for improved inference.
This approach is particularly valuable in scenarios where labeled examples are
scarce but there is an abundance of unlabeled data available for training. Self-
training has proven highly relevant in a range of applications, such as computer



vision, natural language processing, and speech recognition, where the acquisi-
tion of labeled data can be costly and time-consuming [92, 19, 29, 63]. By iter-
atively assigning pseudo-labels to unlabeled samples and retraining the classifier,
self-training methods enhance the model’s performance and generalization capa-
bilities.

1.1. Central hypothesis
In general, it remains unclear how unlabeled data can be used in training and

what value it can bring. The basic assumption in semi-supervised learning, called
smoothness, stipulates that two examples in a high density region should have
identical class labels [14, 2]. This means that if two points are part of the same
group or cluster, their class labels will most likely be the same. If they are sep-
arated by a low density zone, on the other hand, their desired labels should be
different. Hence, if the examples of the same class form a partition, unlabeled
training data might aid in determining the partition boundary more efficiently than
if just labeled training examples were utilized.

1.2. Three main semi-supervised learning families
There are three main families of semi-supervised methods, each with its own

adaptation of the smoothness hypothesis. These adaptations are usually referred
to as assumptions, albeit loosely, since they rather represent different paradigms
for implementing semi-supervised learning.

Data clustering uses a mixture model and assigns class labels to groups using
the labeled data they include; and it constitutes the working principle of genera-
tive approaches [40]. The cluster assumption, which underpins these approaches,
asserts that if two examples are in the same group, they are likely to be in the
same class (Figure 1 (a)). This hypothesis may be explained as follows: if a group
is formed by a large number of instances, it is rare that they belong to different
classes. This does not imply that a class is constituted by a single group of exam-
ples, but rather that two examples from distinct classes are unlikely to be found in
the same cluster.

If we consider the partitions of instances to be high density areas, a form of
the cluster assumption known as low density separation entails determining the
decision boundary over low density regions (Figure 1 (b)), and it constitutes the
basis of discriminant techniques. The main difference between generative and dis-
criminant techniques is that discriminant approaches find directly the prediction
function without making any assumption on how the data are generated [1].
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Density estimation is often based on a notion of distance, which may be-
come meaningless for high dimensional spaces. A third hypothesis, known as
the manifold assumption, stipulates that in high-dimensional spaces, instances re-
side on low-dimensional topological spaces that are locally Euclidean (Figure 1
(c)), which is supported by a variety of semi-supervised models called graphical
approaches [6].

Figure 1: Illustration of three main hypotheses made in semi-supervised learning: (a)
cluster assumption, (b) low-density separation and (c) manifold assumption.

1.3. Compatibility
Although semi-supervised algorithms have been successfully applied in many

situations, there have been cases where unlabeled data have been shown to have no
effect on the performance of a learning task [73]. Several attempts have been made
in recent years to investigate the value of unlabeled data in the training process
[12], and the capacity of semi-supervised learning approaches to generalize [51].
The bulk of these studies are founded on the notion of compatibility defined by
Balcan & Blum [4], and they strive to exhibit the connection between the marginal
data distribution and the target function to be learned. According to these findings,
unlabeled data will be beneficial for training only if such a relationship exists.

In generative approaches, the marginal distribution is viewed as a mixture of
class conditional distributions, and when compared to the supervised case, semi-
supervised learning has been shown to achieve lower finite-sample error bounds in
some general cases, or a faster rate of error convergence in others [12, 51, 73]. In
this line, Ben-David et al. [7] showed that accessing the marginal distribution on
unlabeled training data would not provide sample size guarantees superior to those
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obtained by supervised learning unless very strong assumptions about conditional
distribution on class labels are made.

For graph-based approaches, Niyogi [56] provided a context in which such
algorithms may be studied and perhaps justified; the key finding of the study is
that unlabeled data can help learning in some situations by explicitly defining the
structure of the data through a manifold.

Finally, discriminant approaches mostly embed a margin maximization method
that searches the decision boundary in low-density regions by pushing it from the
unlabeled data [36]. In this survey we focus on self-training algorithms that follow
this principle by assigning pseudo-labels to high-confidence unlabeled training ex-
amples and include these pseudo-labeled samples in the learning process. While
various surveys have explored semi-supervised learning in recent years [82, 91],
none have specifically emphasized self-training, which has emerged as the pre-
dominant approach in the field, widely applied across various applications.

1.4. Paper structure
The reminder of this paper is organized as follows.
In Section 2, we go over the self-training method in detail. First, we present

the framework and notations used throughout the paper in Section 2.1, then we
describe the general self-training algorithm in Section 2.2, also introduced in Al-
gorithm 1. Then, we describe pseudo-labeling methods and its variants in Section
2.3, and we discuss the self-training with two classifiers in Section 2.4. Those
methods are summed up in Table 1. Finally, we provide some insights into cur-
rent theoretical studies in Section 2.6.

Other related approaches are described in Section 3. First, we detail the trans-
ductive learning context in Section 3.1, and the consistency-based approaches in
Section 3.2. Going beyond traditional semi-supervised learning, we investigate
the extension of self-training in domain adaptation in Section 2.5, delve into self-
supervised learning in Section 3.3, and explore reinforced self-training in Section
3.4.

Section 4 reviews application of self-training methods in different domains,
such as natural language processing in Section 4.1, computer vision in Section 4.2
and more generally in knowledge-driven applications in Section 4.3, with speech
recognition, anomaly detection and genomics and proteomics.

The views and future prospects are discussed in Section 5.
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2. Self-Training

Within this section, we present the fundamental aspects of the self-training ap-
proach. Initially, we introduce the framework and notation, followed by a compre-
hensive exploration of the core concept behind the self-training algorithm, which
is further delineated in Algorithm 1. In Section 2.3 and Section 2.4, we present
significant contributions directly linked to the standard algorithm. We organize
these contributions effectively in Table 1. To conclude, we delve into the theoret-
ical aspects in Section 2.6.

2.1. Semi-supervised framework and notations
We consider classification problems where the input and the output spaces

are respectively X ⊆ Rd and Y = {−1,+1} or Y = {1, . . . , K}. We further
suppose available a set of labeled training examples S = (xi, yi)1⩽i⩽m ∈ (X ×
Y)m generated from a joint probability distribution P(x, y) (denoted as D) and a
set of unlabeled training examples XU = (xi)m+1⩽i⩽m+u ∈ X u supposed to be
drawn from the marginal distribution P(x).

The classic case corresponds to when m≪ u, and the issue is thrown into the
unsupervised learning framework if S is empty. The opposite extreme scenario
is when XU is empty and the problem is reduced to supervised learning. Given a
hypothesis set of functions H mapping X to Y , the learner receives a labeled set
S and an unlabeled set XU and outputs a hypothesis h ∈ H which is assumed to
have a generalization error R(h) = E(x,y)∼D[1h(x) ̸=y] smaller than if just S was
used to find the prediction function, where by 1π we denote the indicator function
equal to 1 if the predicate π is true and 0 otherwise.

In practice, classifiers are defined based on a scoring function f from a class
of functions F = {f : X × Y → R}, and for an example x the corresponding
classification function h outputs the class for which the score of f is the highest:

h(x) = argmaxy∈Yf(x, y).

We define the margin ρf (x, y) of a function f for an example x ∈ X and a
class y ∈ Y as

ρf (x, y) = f(x, y)−max
y′ ̸=y

f(x, y′).

In the binary case, Y = {−1,+1}, we define the unsigned margin of a classifica-
tion function f ∈ F over an example x ∈ X [3] as

mf (x) = |ρf (x,+1)|.
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In the multi-class classification case, Y = {1, . . . , K}, the unsigned margin [24]
is defined as

mf (x) =
∑
y∈Y

f(x, y)ρf (x, y).

The maximization of the unsigned margin tends to find a decision boundary that
passes through low density regions and hence follows the low density separation
assumption.

2.2. Self-training: the idea
Self-training, also known as decision-directed or self-taught learning machine,

is one of the earliest approach in semi-supervised learning [69] that has risen in
popularity in recent years.

To determine the decision boundary on low density regions, the idea behind
self-training algorithms is to consider a pseudo-labeling strategy for assigning
pseudo-labels to the examples of XU . This strategy can be characterized by a
function, called pseudo-labeler [86, 25]:

Φℓ : X × F → X × Y .

We denote ỹ the pseudo-label of an unlabeled x ∈ XU for a score function f ∈ F
assigned by Φℓ and XŪ the set of pseudo-labeled examples.

The self-learning strategy is an iterative wrapper algorithm that starts by learn-
ing a supervised classifier on the labeled training set S. Then, at each iteration,
the current classifier selects a part of the unlabeled data, XŪ , and assigns pseudo-
labels to them using the classifier’s predictions [94].

These pseudo-labeled unlabeled examples are removed from XU and a new
supervised classifier is trained over S ∪XŪ , by considering these pseudo-labeled
unlabeled data as additional labeled examples. To do so, the classifier h ∈ H that
is learned at the current iteration is the one that minimizes a regularized empirical
loss over S and XŪ :

1

m

∑
(x,y)∈S

ℓ(h(x), y) +
γ

|XŪ |
∑

(x,ỹ)∈XŪ

ℓ(h(x), ỹ) + λ∥h∥2

where ℓ : Y × Y → [0, 1] is an instantaneous loss most often chosen to be the
cross-entropy loss, γ is a hyperparameter for controlling the impact of pseudo-
labeled data in learning, and λ is the regularization hyperparameter. This process
of pseudo-labeling and learning a new classifier continues until the unlabeled set
XU is empty or there is no more unlabeled data to pseudo-label. The pseudo-code
of the self-training algorithm is shown in Algorithm 1.
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Algorithm 1. Self-Training

Input : S = (xi, yi)1⩽i⩽m, XU = (xi)m+1⩽i⩽m+u.
k ← 0, XŪ ← ∅.
repeat

Train f (k) on S ∪XŪ
Πk ← {Φℓ(x, f

(k)),x ∈ XU} ▷ Pseudo-labeling
XŪ ← XŪ ∪ Πk

XU ← XU \ {x | (x, ỹ) ∈ Πk}
k ← k + 1

until XU = ∅ ∨ Πk = ∅
Output : f (k), XU , XŪ

2.3. Pseudo-labeling strategies
Pseudo-labeling is a crucial component of self-training methods, where a por-

tion of unlabeled data is selected for pseudo-labeling to avoid overfitting to the
initial classifier. In the following we will review different techniques that have
been proposed to determine the subset of examples to pseudo-label, each with its
strengths and weaknesses.

2.3.1. Threshold-Based Methods
A classical assumption, that stems from the low density separation hypothesis,

is to suppose that the classifier learned at each step makes the majority of its
mistakes on observations close to the decision boundary.

In the case of binary classification, preliminary research suggested to assign
pseudo-labels only to unlabeled observations for which the current classifier is
the most confident [80]. Hence, considering thresholds θ− and θ+ defined for
respectively the negative and the positive classes, the pseudo-labeler assigns a
pseudo-label ỹ to an instance x ∈ XU such that:

ỹ =

{
+1, if f(x,+1) ⩾ θ+,

−1, if f(x,−1) ⩽ θ−,
(1)

and Φℓ(x, f) = (x, ỹ). An unlabeled example x that does not satisfy the condi-
tions equation 1 is not pseudo-labeled; i.e. Φℓ(x, f) = ∅.

Intuitively, thresholds should be set to high absolute values as pseudo-labeling
examples with low confidence would increase chances of assigning wrong labels.
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However, thresholds of very high value imply excessive trust in the confidence
measure underlying the model, which, in reality, can be biased due to the small la-
beled sample size. Using several iterations makes also the situation more intricate
as at every iteration the optimal threshold might be different.

One way to select the thresholds is to set them equal to the average of respec-
tively positive and negative predictions [80]. In this line, and in the context of
multi-class classification [43] used Neural Networks as the supervised classifier
and chose the most confident class to infer pseudo-labels for unlabeled data using
the current model’ outputs. The pseudo-labeled examples were then added to the
labeled training set and treated similarly as labeled examples.

These methods are simple and intuitive and they are effective in leveraging
high-confidence predictions. However, they present a risk of assigning wrong
labels if thresholds are not set appropriately and excessive trust in the confidence
measure can be biased due to small labeled sample size.

2.3.2. Proportion-Based Methods
Zou et al. [99] adapted the idea of Tür et al. [80] for multi-class classification

by not choosing thresholds but rather fixing a proportion p of the most confi-
dent unlabeled data to be pseudo-labeled and then increasing this proportion at
each iteration of the algorithm until p = 0.5 was reached. Following this idea,
Cascante-Bonilla et al. [11] revisited the concept of pseudo-labeling by discussing
the iterative process of assigning pseudo-labels to unlabeled data and emphasized
the resilience of pseudo-labeling to out-of-distribution samples.

These methods are adaptive to the confidence level of the model and reduce
the risk of overfitting to low-confidence predictions. However, they may include
incorrect labels if the initial proportion is too high and generally require careful
tuning of the proportion parameter.

2.3.3. Curriculum Learning-Based Methods
These methods use curriculum learning to pseudo-label easy-to-learn obser-

vations before moving on to more complex ones. Zhang et al. [94] proposed an
adaptation of curriculum learning to pseudo-labeling, which entails in learning a
model using easy-to-learn observations before moving on to more complex ones.
The principle is that at the step k of the algorithm, the pseudo-labeler selects un-
labeled examples having predictions that are in the (1 − αk)

th percentile of the
distribution of the maximum probability predictions assumed to follow a Pareto
distribution, and where αk ∈ [0, 1] is an hyperparameter that varies from 0 to 1 in
increments of 0.2. Later on, Dai & Yang [21] proposed a method that combines
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CLIP’s text-image alignment and SAM’s mask generation capabilities, along with
a multi-source curriculum learning strategy to address noise and excessive focus
issues, gradually improving semantic alignment and segmentation precision.

These approaches gradually increase the complexity of pseudo-labeled data
and reduce the risk of incorrect labels in early iterations. However they require
careful tuning of the hyperparameter αk and may not be effective if the distribution
of predictions is not well-behaved.

2.3.4. Majority vote classifiers
Considering the distribution of predictions over unlabeled data, and the ma-

jority vote classifiers, such as Random Forest or Adaboost [67], it is possible to
automatically choose a threshold for pseudo-labeling.

Formally, the learning of a majority vote classifier with partially labeled data
can be defined as follows.

After observing the training set S ∪ XŪ , the task of the learner is to choose
a posterior distribution Q over a set of hypothesis H such that the Q-weighted
majority vote classifier BQ defined by:

∀x ∈ X , BQ(x) = argmaxy∈YEh∼Q

[
1h(x)=y

]
,

will have the smallest possible risk on examples of XU . The associated Gibbs
classifier, GQ, is defined as the random choice of a classifier h according to the
distribution Q, and its error over an unlabeled set XU is given by:

R̂u(GQ) =
1

u

∑
x′∈XU

Eh∼Q[1h(x′) ̸=y′ ],

where, for every unlabeled example x′ ∈ XU we refer to y′ as its true unknown
class label. For binary and multi-class classification respectively, Amini et al. [3]
and Feofanov et al. [24] showed that a tight upper-bound on the Gibbs classifier’s
risk that holds with high probability over the random choice of S and XU , guaran-
tees a tight bound on the error of the Bayes classifier over the unlabeled training
set:

R̂u(BQ) =
1

u

∑
x′∈XU

1BQ(x′ )̸=y′ .

This bound is mainly based on the distribution of predictions over unlabeled data
and the derivations can be extended to bound the risk of voted majority classifiers
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having margins greater than a threshold θ, R̂u∧θ(BQ), defined as:

R̂u∧θ(BQ) =
1

u

∑
x′∈XU

1BQ(x′) ̸=y′∧mBQ
(x′)>θ,

with a slight abuse of notation for mBQ
. One of the practical aspects that arises

from this result is the possibility to specify a threshold θ which minimizes an
upper-bound of the conditional risk of a voted majority classifier BQ over the
unlabeled training set, XU , defined as:

R̂u|θ(BQ) =
R̂u∧θ(BQ)

1
u

∑
x∈XU

1mBQ
(x)⩾θ

,

where the denominator is the proportion of the unlabeled examples with the con-
fidence higher than the threshold θ, and the numerator is the joint Bayes risk on
XU . Thus, the criterion can be interpreted as a trade-off between the number of ex-
amples going to be pseudo-labeled and the error they induce. Furthermore, these
bounds are shown to be tight in the case where the majority vote classifier makes
its error mostly on low margin regions [25]. Feofanov et al. [24] demonstrated that
this technique outperforms conventional fixed-threshold pseudo-labeling strate-
gies on different multi-class classification problems.

2.3.5. Adaptive Thresholding Methods
Chen et al. [15] highlighted two major issues with self-training: the snow-

ball effects of cascading pseudo-labeling mistakes and random sampling of tiny
samples (called data bias). The authors suggest two-phase solutions to address
these problems for image classification using deep learning. First, they proposed
a classification head to separate the creation and use of pseudo labels in order to
reduce training errors. An additional head is utilized to receive the pseudo-labels
and carry out training on unlabeled data while the default head is used for classi-
fication and pseudo-labeling.

To address the limitations of confidence thresholding in self-training, Wang
et al. [86] proposed an approach by analyzing the relationship between the ideal
threshold and the model’s learning status. This approach adapts the confidence
threshold self-adaptively based on the model’s progress. Additionally, it includes
a self-adaptive class fairness regularization penalty to encourage diverse predic-
tions during early training stages. In this line, Chen et al. [16] proposed a method
to address the quantity-quality trade-off in pseudo-labeling. This approach aims
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to maintain both the quantity and quality of pseudo-labels during training, thereby
effectively utilizing unlabeled data. This approach employs a truncated Gaussian
function to weight samples based on their confidence, serving as a softer alterna-
tive to the confidence threshold. Furthermore, the authors introduced a uniform
alignment approach to improve the utilization of weakly-learned classes.

Dynamic adjustment of thresholds reduces the risk of incorrect labels, and
encourages diverse predictions during early training stages. However, it requires
additional computational overhead to adapt thresholds and may introduce com-
plexity in the training process.

2.4. Self-training with two classifiers
In the wake of works utilizing only a single classifier in self-training algo-

rithms, new studies have been proposed with the use of two classifiers, where
each model learns on the output of the other [89, 17, 39]. Most of these tech-
niques are based on the idea of consensus in predictions between two classifiers
and were inspired by the seminal work of Blum & Mitchell [9] who proposed the
co-training algorithm.

In co-training, examples are defined by two modalities that are comparable
but not entirely correlated. Each view of an example is expected to contain com-
plementary information about the data and if there are enough labeled training
data, each of them is supposed to be sufficient for learning. The main principle is
to learn a classifier on each view, taking initially the available labeled examples
as the training set. Then, one of the classifiers assigns pseudo-labels to unla-
beled data, and the other one uses them to retrain the model by including them
into its training set. At each iteration, the classifiers alternately switch their roles,
thereby co-training each other. As for self-training algorithms with a single clas-
sifier, this procedure continues until there are no more unlabeled instances to be
pseudo-labeled. In practice, several studies artificially generated the two modal-
ities for classification problems where examples are mono-viewed and described
by a vector representation. These approaches create the two modalities out of one
by selecting at random the set of features that should correspond to each modal-
ity from the initial set of features; and their efficiency was empirically proved on
various applications [78].

Co-training and self-training share several fundamental principles. Both meth-
ods involve iteratively assigning pseudo-labels to unlabeled data and using these
pseudo-labeled examples to improve the model. In self-training, a single model
assigns pseudo-labels based on its confidence. In co-training, two or more models
collaborate to assign pseudo-labels, with each model providing pseudo-labels for
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the data on which it is most confident. Furthermore, both approaches leverage
unlabeled data to enhance the performance of the model(s) involved in training.
In self-training, the model uses its own predictions to generate pseudo-labels for
unlabeled data. In co-training, multiple models use their complementary strengths
to generate pseudo-labels for unlabeled data, thereby improving the overall model
performance by relying on confidence measures to select which unlabeled exam-
ples to pseudo-label. In self-training, the model’s confidence in its predictions
determines which examples are pseudo-labeled. In co-training, each model’s con-
fidence in its predictions determines which examples it will pseudo-label for the
other model(s). Finally, both approaches involve iterative improvement of the
model(s) through the incorporation of pseudo-labeled data. In self-training, the
model is retrained with the augmented dataset that includes pseudo-labeled ex-
amples. In co-training, the models are retrained with the augmented dataset that
includes pseudo-labeled examples provided by the other model(s).

Without splitting the input feature set, Chen et al. [17] proposed Cross Pseudo
Supervision for semantic segmentation in images. This method employs two neu-
ral networks as supervised classifiers having the same images as inputs. Each
neural-network is learned at every mini-batch by considering the pseudo-labels
generated by the other network for unlabeled instances as ground-truths. In multi-
task learning, [30] proposed to independently train specialized teachers using la-
beled datasets. These teachers then label an unlabeled dataset, creating a multitask
pseudo-labeled dataset. Subsequently, a student model is trained using the pseudo-
labeled dataset, employing multi-task learning to learn from various datasets and
tasks simultaneously. Finally, the feature representations of the student model are
evaluated across six vision tasks, including image recognition, to assess its perWe
ance and generalization capabilities.

The learnability of co-training was studied under the PAC framework [81],
which also accounts for noise in the class labels of unlabeled examples caused by
pseudo-labeling. The injection of noisy labels in the pseudo-labeling step is in fact
inherent to any self-training algorithm. Taking into account noisy labels in train-
ing a model was first considered in supervised learning, following the paradigm of
learning with an imperfect supervisor in which training data contains an unknown
portion of imperfect labels [33]. Most of these studies tackle this problem from
an algorithmic point of view, employing regularization or estimating mislabeling
errors by modeling the transition probability between noisy and true labels [59].

Table 1 summarizes the main self-training approaches presented so far by em-
phasizing their key aspects.
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Base classifier Classification Threshold Noise
Single Double Binary Multi-class Fixed Optimized Account

Scudder [1965] ✓ − ✓ − ✓ − −
Joachims. [1999] ✓ − ✓ − ✓ − −
Amini et al. [2008] ✓ − ✓ − − ✓ −
Hadjadj et al. [2023] ✓ − ✓ − − ✓ ✓
Tur et al. [2005] ✓ − − ✓ ✓ − −
Cascante et al. [2021] ✓ − − ✓ ✓ − −
Chen et al. [2022] ✓ − − ✓ ✓ − ✓
Feofanov et al. [2019] ✓ − − ✓ − ✓ −
Zhang et al. [2021] ✓ − − ✓ − ✓ −
Chen et al. [2023] ✓ − − ✓ − ✓ −
Wang et al. [2023] ✓ − − ✓ − ✓ −
Blum et al. [1998] − ✓ ✓ − ✓ − ✓
Tarvainen and Valpola [2017] − ✓ − ✓ ✓ − −
Xie et al. [2020] − ✓ − ✓ ✓ − −
Karamanolakis et al. [2021] − ✓ − ✓ ✓ − −
Chen et al. [2021] − ✓ − ✓ ✓ − −
Ghiasi et al. [2021] − ✓ − ✓ ✓ − −
Du et al. [2022] − ✓ − ✓ ✓ − −

Table 1: A summary of principal self-training algorithms, based on pseudo-labeling with one or two
classifiers, introduced in Section 2.3 and 2.4.

2.5. Self-training under Domain Shift
Recently, self-training has expanded its scope beyond semi-supervised learn-

ing and has found extensive application to the learning problems where available
data is subject to a distribution shift. In unsupervised domain adaptation, where
the objective is to transfer knowledge from a labeled source domain to an unla-
beled target one, self-training become a popular alternative to discrepancy mini-
mization methods [28]. In this case, self-training aims to progressively correct the
domain shift by including more and more pseudo-labeled target examples to the
source training set. This is particularly relevant for gradual domain adaptation,
where unlabeled instances from intermediate domains are available [71].

When intermediate domains are not given, it is important to ensure that pseudo-
labeled target examples are reliable and are not biased towards the source data.
While Zou et al. [99] approached this issue by carefully choosing a pseudo-
labeling policy, Saito et al. [66] learn a representation via a tri-training scheme,
in which the student is trained on target data pseudo-labeled by agreement of two
teachers. Liu et al. [48] alternate between two gradient steps: (1) to train a source
classification head that generates pseudo-labels, (2) to train a target classification
head using pseudo-labeled data under the constraint that it predicts well on source
data.
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As the discrepancy between the source and the target can be large, the predic-
tion confidence may exhibit a strong bias failing to distinguish between correct
and wrong pseudo-labels. Therefore, several works focus specifically on model
calibration and uncertainty estimation including the Monte-Carlo dropout [54],
and prediction agreement of diversified linear heads [57].

2.6. Theoretical studies
Several studies have recently looked into the theoretical properties of self-

training algorithms.
In this line, Wei et al. [87] suggest a new concept of expansion defined as the

quantity of data dispersion in an example’s neighbor, where the term neighbor
refers to adding adversarial perturbations [52] or augmentations [76] to the ex-
ample. The study establishes distributional guarantees of self-training when the
label distribution meets such expansion properties and classes are suitably sepa-
rated according to neighbors. The study generates finite sample bounds for Deep
Neural Networks (DNNs) by combining generalization bounds with DNN gener-
alization bounds. Experiments with a Generative Adversarial Network (GAN) are
also used to verify the expansion assumption.

Frei et al. [26] examine a self-training algorithm with linear models for the
binary classification using gradient-based optimization of the cross-entropy loss
after supervised learning with a small number of samples. The classifier is a
mixture model with concentration and anti-concentration properties. The authors
show that utilizing O(d/ϵ2) unlabeled observations in the self learning algorithm,
with d the number of input variables, suffices to achieve the classification error of
the Bayes-optimal classifier up to an ϵ error if the initial pseudo-labeling strategy
has a classification error smaller than an absolute constant Cerr. Furthermore,
the authors demonstrate that a constant number of labeled examples is sufficient
for optimal performance in a self-training algorithm by demonstrating that using
only O(d) labeled examples, the standard gradient descent algorithm can learn a
pseudo-labeling strategy with a classification error no more than Cerr.

Zhang et al. [95] study the generalization ability of self-training in the case
where the base classifier is a two-layer neural network with the second layer
weights all fixed to one, and assuming that the ground truth is realizable, the
labels are observed without noise, and the labeled and unlabeled instances are
drawn from two isotropic Gaussian distributions. The authors show that, given
some plausible assumptions about the initial point and the amount of unlabeled
training examples, the algorithm converges to the ground truth with fewer obser-
vations than needed when no unlabeled data is provided. The reader can refer to
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Zhong et al. [97] for a broader context. Zhang et al. [95] extend their main result
to a more general setting, where it is shown that the model still converges towards
a given convex combination of the ground truth and the initial point, and is guar-
anteed to outperform the initial supervised model, without fixing any requirement
on the number of labeled training examples.

Hadjadj et al. [32] propose a first bound over the misclassification error of a
self-training method which utilizes half-spaces as the base classifier in the case
where class labels of examples are supposed to be corrupted by a Massart noise
model. Under this assumption, it is shown that the use of unlabeled data in the
proposed self-training algorithm does not degrade the performance of the first
half-space trained over the labeled training data.

[77] study the identifiability of self-training approaches. In addressing the bias
in the conventional risk estimator, the proposed method, named Inverse Propensity
Weighting, involves assigning weights to examples based on the inverse of their
propensity scores-representing the probability of a class label being observed. The
study introduces two estimators for the missing data mechanism, one of which
is derived through the maximization of the observed likelihood. Furthermore,
a likelihood ratio test is suggested to evaluate the informativeness of the labels,
determining whether they exhibit non-random missing patterns.

Some other works studied self-training from a theoretical perspective when a
distribution shift takes place. Chen et al. [18] proves that self-training can help
to avoid spurious features, while Kumar et al. [41] derived an upper-bound on the
error of self-training in the case of gradual shifts.

3. Related and unrelated approaches

In semi-supervised learning, there are two main other areas of research that
are related to self-training. The first, known as transductive learning, is based on
the low density separation assumption and tends to give class labels for only the
set of unlabeled training samples. The second method, referred to as consistency
learning, uses classifier predictions over unlabeled data as a confidence indicator
and constrains model outputs to be comparable for similar unlabeled examples
without assigning pseudo-labels.

In this section, we also go a bit further, and introduce different context where
self-training has been used and extended. First, we present self-supervised learn-
ing, which, despite its similar name with self-training, is an entirely separate tech-
nique that employs unlabeled data to train or pre-train a model. Finally, we in-
troduce reinforced self-training, that merges elements of reinforcement learning
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with self-training principles by integrating a scoring function based on a learned
reward model and employing offline reinforcement learning objectives for model
fine-tuning.

3.1. Transductive learning
The goal of transductive learning, as previously stated, is to assign pseudola-

bels to samples from an unlabeled training set, XU . As this set is finite, the con-
sidered function class F , for finding the transductive prediction function, is also
finite. F can be defined using a nested structure according to the structural risk
minimization principle, F1 ⊆ F2 ⊆ . . . ⊆ F [83]. Transductive techniques often
employ the distribution of unsigned margins of unlabeled examples to guide the
search for a prediction function, limiting it to following the low density separation
assumption in order to find the best function class among the current ones.

Transductive approaches also assume that the function class’s structure should
reflect prior knowledge of the learning problem at hand, and that it should be built
in such a way that the correct prediction of class labels of labeled and unlabeled
training examples is contained in a function class Fj of small size with a high
probability. In particular, the Transductive Support Vector Machines (TSVM)
[36] developed for the binary case is based on this paradigm. The approach looks
for the optimal hyperplane in a feature space that separates the best labeled exam-
ples while avoiding high density areas. TSVM does this by building a structure
on a function class F and sorting the outputs of unlabeled samples by their mar-
gins. The solutions to the associated optimization problem are the pseudo-labels
of unlabeled examples for which the resulting hyperplane separates the examples
of both labeled and unlabeled training sets with the largest margin.

Shi et al. [72] extended this idea to the multi-class classification case with Neu-
ral Networks. Similar to TSVM, class labels of unlabeled examples are treated as
variables, and the algorithm tries to determine their optimal values, along with the
optimal NNs parameter set get by minimizing a cross-entropy loss estimated over
both labeled and unlabeled training sets through an iterative training process. The
authors employ the MinMax Feature regularization to constrain the neural net-
work to learn features of same-class images to be close, and features of different
classes to be separated by a preset margin, in order to overcome incorrect label
estimations on outliers and noisy samples.

Transductive learning is particularly useful in the context of proprietary and
closed APIs in natural language processing, including few-shot classification.
Colombo et al. [20] proposed a scenario where pre-trained model embeddings
are served through a gated API with compute-cost and data-privacy constraints,
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and introduces transductive inference as a solution. The authors present a new
parameter-free transductive regularizer based on the Fisher-Rao loss, which fully
utilizes unlabeled data without sharing labels with the API provider, and demon-
strate its superiority through extensive experiments. More recently, Montasser
et al. [53] studied the problem of adversarially robust learning in the transduc-
tive setting. For classes with bounded VC dimension, the authors propose a sim-
ple transductive learner that correctly labels adversarially perturbed test examples
with a robust error rate linear in the VC dimension, providing an exponential
improvement over the best-known inductive setting bounds, albeit with a more
restrictive notion of optimal robust error.

3.2. Consistency-based approaches
Early studies in this line, see for example Zhu et al. [98] for binary classifi-

cation, were proposed to learn a single classifier defined from a scoring function
f : X × Y → R penalized for quick changes in its predictions. The similarity
matrix W = [Wij]1⩽i⩽u

1⩽j⩽u
, constructed over the unlabeled training data, is used to

measure the similarity between instances. The penalization is mostly expressed as
a regularization term in the learning objective. As an example, adapting the work
of Zhu et al. [98] to multi-class classification, the penalization term can be written
as:

ΩW(XU) =
u∑

i,j=1

Wij∥f(xm+i, .)− f(xm+j, .)∥2

where for a given example x, f(x, .) = (f(x, k))k∈Y is the vector class predictions
of f . In terms of learning, ΩW can be seen as a regularization term, constraining
the model to have the same predictions on similar unlabeled instances.

Other types of penalization have been studied in the literature. Maximov et al.
[51] suggested an approach that partitions partially labeled data and then uses la-
beled training samples to identify dense clusters having predominant classes with
a fraction of non-predominant classes below a given threshold extending earlier
results on supervised classification [37]. In this situation, the proposed penaliza-
tion term measures the learner’s inability to predict the predominant classes of the
identified clusters which in turn constrains the supervised classifier to be consis-
tent with the structure of the dense clusters.

In this line, Rangwani et al. [64] consider non-decomposable metrics with
consistency regularization by giving a cost-sensitive framework that consists of
minimizing a cost-sensitive error on pseudo labels and consistency regularization.
They demonstrate theoretically that they can build classifiers that can maximize
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the required non-decomposable measure more effectively than the original model
used to produce pseudo-labels under comparable data distribution assumptions.

Without explicitly stating a penalization term, consistency learning was ex-
tended to cases with two classifiers. The Mean-Teacher approach [78] is perhaps
one of the earliest popular techniques that have been proposed in this context.
This method employs Neural Networks (NNs) as supervised classifiers, and it is
based on the assumption that two close models with the same input should make
the same prediction. One of the models is called the teacher, while the other is
referred to as the student. These two NN models are structurally identical, and
their weights are related in that the teacher’s weights are an exponential moving
average [42] of the student’ weights. In this scenario, the student model is the only
one that is trained over the labeled training set, and the consistency loss is com-
puted between the teacher’s probability distribution prediction and the student’s
one using the mean square error or the Kullback-Leibler divergence.

More recently, Du et al. [22] provide a two-stage method to reduce label prop-
agation errors; where in the first phase, the gradients of the student loss are com-
puted and utilized to update the teacher. In the second stage, the teacher assigns
pseudo-labels which are then utilized to train the current student.

Also, Fu et al. [27] proposed a new contrastive semi-supervised learning ap-
proach for data-efficient language modeling. The method uses hard prompts for
sentence representation and integrates prompt-based pseudo labeling with a mask
language model through a contrast loss, which pulls together similar samples and
pushes apart dissimilar ones. Additionally, mask consistency training is employed
to align word predictions from weak and strong augmentations. This approach im-
proves model generalization and leverages unlabeled data for few-shot text clas-
sification,

3.3. Self-supervised Learning
Although similar in names, self-training is a completely different approach

than self-supervised learning which has demonstrated encouraging results and has
become an active area of research [58].

In self-supervised learning, a model acquires the ability to make predictions
regarding various facets of its input data, all without the necessity of explicit la-
beled training data. Rather than depending on labeled data, self-supervised learn-
ing harnesses the inherent structure present in the input data and autonomously
generates guidance to train the model. This procedure involves the formulation
of a pretext task, also referred to as a proxy task, wherein the model is trained
to make predictions concerning a specific relationship inherent in the data. For

18



instance, in the domain of computer vision, a pretext task might involve rotat-
ing images within a predefined range of angles, followed by training a supervised
model to predict these angles.

Once the model has undergone training on the pretext task, the knowledge
it has gained in this process can be applied to downstream tasks that do require
labeled data. Consequently, by learning from extensive amounts of unlabeled data,
self-supervised learning empowers the acquisition of robust data representations,
capitalizing on the abundant, freely available unlabeled data resources.

Common approaches in self-supervised learning include predicting the order
of shuffled image patches or their orientation [90], reconstructing corrupted im-
ages [23], filling in missing words in a sentence [8], or predicting future frames
in a video sequence [68]. These pretext tasks encourage the model to capture
meaningful representations of the input data, which can then be used for vari-
ous downstream tasks, such as image classification, object detection, or natural
language processing.

3.4. Reinforced self-training
A recent innovative approach, called Reinforced self-training (ReST) has emerged,

particularly notable for its application in conditional language modeling [31, 74].
This approach operates through two distinct loops: the inner loop, called “Im-
prove”, which concentrates on refining the policy using a fixed dataset, and the
outer loop, called “Grow”, which involves expanding the dataset by sampling
from the most recent policy.

In the domain of conditional language modeling, ReST follows a systematic
sequence of steps. Initially, during the Grow phase, the language model policy,
originally a supervised policy, generates multiple output predictions for each con-
text, thereby enriching the training dataset. Subsequently, in the Improve stage,
the expanded dataset undergoes ranking and filtering using a scoring function.
The language model then undergoes fine-tuning on the refined dataset using an
offline reinforcement learning objective, with the potential for repeating this pro-
cess with an increasing filtering threshold. The resultant policy from this iterative
process is subsequently employed in the following Grow phase.

ReST may find niche suitability in specific applications or scenarios where
reinforcement learning principles enhance model performance through learned
reward signals. In contrast, classical self-training techniques possess a broader
applicability and have been employed across a wide spectrum of semi-supervised
learning tasks without necessitating reinforcement learning frameworks.

19



4. Applications

In this section, we will concentrate on the most popular applications where
self-training was employed, although this technique may be extended and used to
a variety of additional machine learning tasks. The goal of our presentation here
is not to be thorough, but rather to focus on the main features of self-training that
were used in the literature among the selected applications.

4.1. Natural Language Processing
Co-training is perhaps one of the preliminary self-training techniques which

was applied to web pages classification [9]. In the paper, the content of a web
page has been divided into two sets of words: those that appear on the page and
those that appear in hyperlinks pointing to the page. The main hypothesis here is
that each of the set of words contain sufficient information for the classification
task and that there are enough labeled data to efficiently learn two supervised clas-
sifiers. Both theoretical and empirical studies of co-training show that if examples
have two redundant but not entirely correlated views, then unlabeled data may be
used to augment the original labeled training data to find more robust classifiers.
However, the drawback of this strategy is that in general, text data is mono-view.
For bag-of-word representation of texts, a solution was to split the set of words in
two random sets, considered as two distinct views of a text [55], as mentioned in
Section 2.4. However, this idea cannot be generalized to sequential models that
could be used as base classifiers in co-training.

Other current self-training techniques in NLP are mostly built on the concept
of co-training and employ two base classifiers that are learned over each other’s
predictions. In this line, Wu et al. [88] proposed a Named Entity Recognition
(NER) strategy that consists in automatically detecting and classifying named en-
tities, with a first NER model trained on labeled training data serving as a teacher
to predict the probability distribution of entity labels for each token in the unla-
beled set. The pseudo-labeled data with such soft labels are then used to train a
student NER model for the unlabeled set and the process of pseudo-labeling and
training is repeated until convergence as in co-training. For the task of Relation
Extraction (RE) which consists in obtaining a predefined semantic relation be-
tween two entities in a given sentence, Yu et al. [92] proposed an approach which
classifies the pseudo-labeled instances generated from a teacher into confident,
ambiguous and hard sets. In the training of the student model, the confident and
ambiguous instances are subsequently interpreted as positive and set-negatives
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observations, respectively. Based on these ideas, Luo [49] proposed several self-
training methods for NLP, demonstrating that neural language models can be en-
hanced through synthetic data generation strategies such as pseudo-labeling, pro-
totypical label embeddings, and synthetic text generation. These methods were
shown to significantly improve performance in tasks like dialog response retrieval,
dialog policy learning, and question answering, achieving state-of-the-art results
and reducing dependence on human annotation.

Lately Zhang et al. [96] proposed a self-training approach that reduces the an-
notation cost for structured label spaces using active learning. The method lever-
ages partial annotation by selecting only the most informative substructures for
annotation and incorporates the model’s automatic predictions as pseudo-labels
for unannotated sub-structures. By employing an error estimator to adaptively
decide the partial selection ratio, the approach effectively combines partial anno-
tation with self-training, reducing annotation cost across four structured prediction
tasks compared to strong full annotation baselines.

4.2. Computer Vision
As in NLP, the two variants of self-training with one or two classifiers, mainly

referred to as student and teacher in the literature, are mainly considered for image
classification. Most recent approaches use neural networks as base classifiers and
rely on these models’ ability to learn efficient representations of images, proposing
various strategies to either improve the representation or reduce the effect of noise
injection during the pseudo-labeling phase of self-training.

The most common strategy with student and teacher base classifiers is ar-
guably the one proposed by Xie et al. [89], in which an EfficientNet model trained
on labeled ImageNet images is used as a teacher to create pseudo labels on unla-
beled ones. A larger EfficientNet is subsequently employed as a student model,
being trained on a mix of labeled and pseudo-labeled images. This training in-
volves altering the input images using various techniques like dropout, stochastic
depth, and data augmentation. The objective is for the model to learn a represen-
tation of images that remains consistent despite these alterations. This procedure
is repeated by reversing the roles of the student and the teacher. The input of the
teacher model is not altered throughout the training process. The main motivation
advanced is to ensure that the pseudo labels be as accurate as possible. Empiri-
cal evidence from various image collections demonstrates the effectiveness of this
strategy.

Sohn et al. [76] proposed a self-training approach called FixMatch that com-
bines consistency regularization with a confidence-based mechanism to select
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high-confidence pseudo-labeled examples for training. The algorithm applies to
the same image two different data augmentations procedures, called weak (flip-
and-shift) and strong (more heavy distortions) augmentations.

As in the previous case, these perturbations helps to increase diversity and
improve the model’s robustness on the unlabeled images. The authors intro-
duce a consistency loss term that encourages the consistency between the model’s
hard output of the weakly-augmented version and the model’s soft output of the
strongly-augmented version of the same unlabeled image. They demonstrate that
the model learns to provide more trustworthy and accurate results by minimizing
the discrepancy between these predictions. In order to decrease the influence of
possibly inaccurate pseudo-labels on the learning process, the loss is evaluated
only on those unlabeled data from the batch that have the confidence higher than
a fixed threshold.

This idea has then been adapted to various correlated tasks, including object
detection, image segmentation [19], remote sensing [35] and video anomaly de-
tection [50], among others. Chen et al. [15] proposed an improvement of Fix-
Match by introducing two novel features. First of all, they introduce a separate
classification head that is used to assign pseudo-labels and trained using labeled
data only in order to avoid possible label noise from wrong pseudo-labels. Sec-
ondly, they improve the feature learning by introducing an adversarial classifica-
tion head whose goal is to approximate the worst possible error on unlabeled data.
All these approaches employ a constant predefined threshold across all classes to
choose unlabeled data for training, disregarding varying learning conditions and
complexities among different classes.

To tackle this concern, Zhang et al. [94] introduced a curriculum learning
technique to utilize unlabeled data based on the model’s learning progress. The
essence of this strategy involves dynamically adapting thresholds for distinct classes
during each time step, enabling the inclusion of insightful unlabeled data and
their corresponding pseudo-labels. This approach has been successfully applied
to many domains, including object detection [45], medical image classification
[61], human action recognition [84] and facial expression identification [70].

4.3. Knowledge-driven applications
Through the incorporation of domain expertise, recent studies have developed

more sophisticated self-training systems that reduce label noise in the pseudo-
labeling phase across diverse applications. In the subsequent sections, we will
consider advances made in this context in the domains of speech recognition,
anomaly detection, genomics and proteomics.
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4.3.1. Speech Recognition
Newly developed methods have introduced filtering mechanisms that are con-

gruent with domain knowledge for end-to-end speech recognition. These mech-
anisms establish rules that assess pseudo-labels using criteria specific to the do-
main. For example by using filters to verify if certain phonetic patterns that are
common in the domain, are present in the pseudo-labels [29]. Similar techniques
incorporate phonetic information relevant to the domain to validate pseudo-labels.
In these approaches, incorrectly labeled examples that violate phonetic constraints
are discarded from training the model [47].

Other approaches integrate domain-specific language models in the the pseudo-
label generation process in order to ensure that the generated labels adhere to
the linguistic nuances and terminologies of the domain. In this line, Kahn et al.
[38] introduced a self-training approach, with one base classifier combined with a
language model for pseudo-labeling. Their approach involves implementing tai-
lored filtering methods designed to address common errors arising from sequence-
to-sequence models, alongside an inventive ensemble technique for enhancing
the breadth of pseudo-label variations. Furthermore Singh et al. [75] presents a
self-training approach for automatic speech recognition in low-resource settings,
specifically focusing on the Punjabi language. The proposed method generates
highly accurate pseudo-labels for unlabeled Punjabi speech, resulting in a signifi-
cant improvement in word error rate compared to state-of-the-art approaches.

As in image classification, alternative methods for speech recognition apply
data-augmentation techniques, tailored to the unique aspects of the domain, to
enhance the robustness of the model’s predictions and consequently the quality of
pseudo-labels. In this sense, Bartelds et al. [5] employed a text-to-speech system
to generate audio training data from text-only sources.

4.3.2. Anomaly Detection
Leveraging domain knowledge to mitigate label noise in pseudo-labels within

self-training approaches has also been considered in anomaly detection. In this
case, the understanding of the anomaly patterns and characteristics specific to the
domain are incorporated in the model. In this regard, Qu et al. [63] identified com-
mon anomaly types, their features and potential sources of noise and performed
time domain analysis. Also, Thakare et al. [79] proposed a method for video
anomaly detection that employs an unsupervised approach using isolation trees
and deep features. The method generates initial anomaly and dynamicity scores,
which are refined using a cross-branch feed-forward network based on the I3D
architecture. It then incorporates a self-training strategy to iteratively improve the
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model’s performance by pseudolabeling and retraining on the most confident sam-
ples, achieving competitive accuracy on popular datasets like UCF-Crime, CCTV-
Fights, and UBI-Fights. This approach combines appearance and motion informa-
tion to enhance the quality of anomaly evidence, making it more practical for real-
world applications where annotation is burdensome. Alternate strategies focus on
simulating anomalies within the unlabeled dataset using domain knowledge. This
aids the model in learning from a broad spectrum of anomalies, mitigating the
potential of becoming overly specialized in a particular anomaly type [62]. Li
et al. [46] also proposed a weakly supervised Video Anomaly Detection approach
using Multi-Sequence Learning (MSL) and a hinge-based MSL ranking loss to re-
duce selection errors by optimizing sequences of snippets. The method employs a
Transformer-based MSL network to learn video-level and snippet-level anomaly
scores, refining them through a self-training strategy that gradually reduces se-
quence length. This approach achieves significant improvements on datasets like
ShanghaiTech, UCF-Crime, and XD-Violence.

4.3.3. Genomics and proteomics
Furthermore, datasets in the field of genomics and proteomics encompass a va-

riety of characteristics including gene expression levels, epigenetic markers, and
genetic variants. These characteristics have been shown to increase the effective-
ness of features used in self-training approaches, together with the selection of
important features and their physiologically coherent transformation.

Brubaker et al. [10] incorporated biological context into feature engineering
that integrate unsupervised modeling of datasets relating to human disease with
the supervised component that concentrated on training with mouse data. In this
context, Ravinder [65] amalgamated expression data from three distinct human-
ized mouse models that were subjected to live attenuated yellow fever vaccine
challenges in self-training with different base classifiers. The results of this study
show that self-training coupled with NRG-HIS/Fluc mice exhibited the most fa-
vorable outcomes across the tested human cohorts.

Li et al. [44] proposed a self-training subspace clustering algorithm based on
adaptive confidence for gene expression data. The proposed algorithm enhances
the discriminative property of gene expression data using low-rank representation
with distance penalty and introduces a semi-supervised clustering objective func-
tion with label confidence. To mitigate the negative impact of mislabeled data, an
adaptive adjustment strategy based on the gravitational search algorithm is em-
ployed.
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Huang et al. [34] applied domain-specific quality control steps to clean and
pre-process the data. This included filtering out low-quality samples, normalizing
data to account for technical biases, and addressing batch effects that can intro-
duce noise. By doing so, they ensured that the unlabeled data that is feed into the
self-training pipeline is as accurate as possible. Chan et al. [13] utilized reference
databases and annotation resources related to genomics. These resources provide
information about genes, functional elements, pathways, and biological processes.
Incorporating this information into the pseudo-labeling process has been shown to
lead to more accurate predictions by aligning them with known biological knowl-
edge. Yu et al. [93] applied network analysis techniques to identify interactions
between genes and proteins. The authors demonstrated that Pathway enrichment
analysis can help identify genes that are functionally related and likely to be co-
regulated. This information has been shown to guide the self-training process to
produce more coherent and biologically plausible pseudo-labels.

General observations. The key observations made in these applications reveal
that, in pseudo-labeling, employing fixed thresholds often yields suboptimal out-
comes, underscoring the importance of dynamic thresholding for optimal results.
Furthermore, enhancing pseudo-label noise improves both generalization and class
differentiation. In Appendix Appendix A, we will show the impact of dynamic
thresholding on pseudo-labeling across general benchmarks and examine the noise
considerations in two image classification collections studied in [15].

5. Conclusion, Limitations and Perspectives

In this survey, we provided an overview of self-training approaches for semi-
supervised learning that have received increasing attention in recent years.

First, we discussed the various strategies for selecting unlabeled samples for
pseudo-labeling that have been proposed. We emphasized the significance of con-
sidering margin distributions across unlabeled data as a pivotal factor in the devel-
opment of these strategies. Next, we provided an overview of the diverse variants
of self-training explored in the literature, along with relevant approaches. Further-
more, we examined recent theoretical advancements in this research domain and
outlined the principal characteristics of self-training employed in several widely
recognized applications. Lastly, we explored the impact of fundamental aspects
of self-training on a range of benchmark datasets.

Limitations. Despite the promising results and widespread adoption of self-training,
several limitations remain. One significant challenge is the sensitivity of self-
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training methods to the quality of pseudo-labels. Incorrect or noisy pseudo-labels
can propagate errors through the training process, leading to suboptimal perfor-
mance. Additionally, the effectiveness of self-training can be highly dependent on
the initial labeled dataset. If the initial dataset is not representative or is too small,
the self-training process may not yield significant improvements.

Another limitation is the computational cost associated with iterative pseudo-
labeling and retraining. Self-training methods often require multiple iterations,
which can be time-consuming and resource-intensive, especially for large-scale
datasets. Furthermore, the selection of appropriate thresholds for pseudo-labeling
remains a critical and often challenging task, as it requires a delicate balance be-
tween the quantity and quality of pseudo-labels.

Future Work. To address these limitations, future research should focus on devel-
oping more robust and efficient self-training algorithms. This could involve ex-
ploring adaptive thresholding techniques that dynamically adjust the confidence
thresholds based on the model’s learning status. Additionally, incorporating un-
certainty quantification methods to estimate the reliability of pseudo-labels could
help mitigate the impact of noisy labels.

Another promising direction is the integration of self-training with other semi-
supervised learning techniques, such as consistency regularization and multi-view
training, to leverage their complementary strengths. Furthermore, extending self-
training to new domains, such as medical imaging and industrial time-series data,
could open up new avenues for practical applications.

While the self-training approach is currently in widespread use, there are ex-
tensive opportunities for future research. Presently, the majority of studies have
concentrated on perturbation-based deep learning, particularly in the domains of
visual, text, and audio applications. However, there exist numerous other do-
mains, such as industrial time-series or medical data, where the application of
self-training could prove highly beneficial.

Also, recent research emphasizes the potential of exploring self-training meth-
ods from a theoretical standpoint, particularly in addressing the challenge of train-
ing a final classifier on data with noisy labels [32]. It has also been demonstrated
that accurately estimating the confidence of pseudo-labels is crucial for effective
self-training [57]. Therefore, theoretically establishing the correlation between
performance and the level of uncertainty in pseudo-labeling could be a valuable
direction for future research, especially in analyzing self-training within the con-
text of learning problems affected by domain shifts.
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Appendix A. Empirical Study

In this section, we will evaluate the effectiveness and performance of the self-
training algorithm. This assessment will focus on two key features discussed in
the preceding sections: the handling of noise in the pseudo-labeling phase and the
impact of threshold selection. Our primary focus will be on scenarios with suffi-
cient labeled training data, allowing for the development of an initial supervised
complex model, and scenarios with severely limited labeled training data, where
using complex baseline classifiers like deep learning models is not feasible.

Appendix A.1. Noise Account
We first consider the case where the initial labeled training set allows to train

deep neural networks and examine the effects of taking into account noise in
the pseudo-labeling process along with the dynamic selection of the threshold
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on CIFAR-10 and CIFAR-100 [85]. Both datasets contain 32x32 pixel RGB im-
ages belonging to respectively 10 and 100 classes; 50000 examples are used for
training and 10000 samples for test.

We consider the debiased self-training approach (DST) [15] to address the
presence of noise in pseudo-labeling, in conjunction with the FlexMatch method
[94] for the dynamic threshold determination in pseudo-labeling. As outlined in
Section 2.3, DST involves training a dedicated head on pseudo-labeled examples,
allowing the model to implicitly capture and account for noise inherent in the
pseudo-labels.

For FlexMatch, we followed the same experimental protocol than Zhang et al.
[94]. In this case, Wide ResNet (WRN) was used as the base classifier in self-
training. Parameter learning was accomplished using stochastic gradient descent
(SGD) with a momentum coefficient of 0.9. The initial rate was set to η0 = 0.03
with a cosine learning rate decay schedule as η = η0 cos(7πt/16T ), where t de-
notes the current training step and T is the total training step set at 220. Addition-
ally, exponential moving averaging with a momentum of 0.999 was implemented
and the batch size for labeled data was fixed to 64. For DST, we used the code
made available by the authors1.

We compared FlexMatch with and without the DST approach denoted respec-
tively by FM and FM+DST. We also compared self-training with WRN trained in fully
supervised manner. Each experiment was repeated 5 times by changing the seed
at each time. Figure A.2 presents the average accuracy of different models on the
test set for the same number of initial labeled training samples per class within
the set {4, 10, 20, 50} for both datasets. In both datasets, considering label noise
within pseudo-labels leads to improved performance, with the improvement being
more pronounced in the case of CIFAR-100.

In CIFAR-100, classes are structured into 20 superclasses, each comprising
5 related classes, addressing noise in this more complex task aids in class differ-
entiation and enhances the model’s ability to generalize. It is worth noting that
with a greater number of initial labeled training examples, the gap between the FM
and FM+DST approaches narrows, as the model becomes more proficient with the
increased labeled data and makes fewer errors in pseudo-labeling.

1https://github.com/thuml/Debiased-Self-Training

38



40 100 200 500
90

92

94

96

98

100

# of labeled training data, m

A
cc

ur
ac

y
(%

)
CIFAR-10

Supervised
FM+DST
FM

400 1,000 2,000 5,000

50

60

70

80

# of labeled training data, m

A
cc

ur
ac

y
(%

)

CIFAR-100

Supervised
FM+DST
FM

Figure A.2: Comparisons in terms of Accuracy on CIFAR-10 and CIFAR-100 for a vary-
ing number of labeled training data. “Supervised” refers to the fully supervised learning
(m = 50000, u = 0).

Appendix A.2. The impact of threshold selection
We now study the effect of selecting automatically the threshold for pseudo-

labeling on 9 publicly available data sets proposed for semi-supervised learning2.
The characteristics of these datasets are presented in Table A.2. It is worth noting
that certain datasets contain only a limited number of labeled training examples,
comprising just a few hundred instances and accounting for less than 1% of the
total training examples. This condition underscores the suitability of employing
complex base classifiers.

Data set
# of labeled examples # of unlabeled examples Dimension # of classes

m u d K

Vowel 99 891 10 11
Protein 129 951 77 8
PageBlocks 1094 4379 10 5
Isolet 389 7408 617 26
HAR 102 10197 561 6
Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10

Table A.2: Characteristics of data sets used in our experiments, d and K correspond to
respectively the dimension of the input space and the number of classes.

2https://archive.ics.uci.edu/ml/index.php
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In the experimentation, Random Forest was employed instead using the scikit-
learn implementation [60] with 200 trees of maximum depth while leaving other
parameters at their default values. The primary objective was to assess and con-
trast the classifier’s performance in two scenarios: the supervised scenario (de-
noted by RF) and the self-training scenario where pseudo-labeling is automatically
conducted following the approach introduced by Feofanov et al. [24]3 (denoted
by PL∗). Additionally, we investigated the impact of setting the pseudo-labeling
threshold at predefined values from the set θ ∈ {0.5, 0.7, 0.9} (denoted by PLθ).

The automatic pseudo-labeling strategy selects the threshold which minimizes
the bound of the error of the Random Forest classifier over the unlabeled training
samples.

Results are resumed in Table A.3. Experiments are repeated 20 times by
choosing randomly the labeled training examples, and ↓ indicates that perfor-
mance is statistically worse than the best result, shown in bold, according to the
Wilcoxon rank-sum test.

Data set RF PL θ=0.5 PL θ=0.7 PL θ=0.9 PL⋆

Vowel .586 ± .028 .489↓± .016 .531↓± .034 .576↓± .028 .586 ± .026

Protein .764↓± .032 .653↓± .024 .687↓ ± .036 .724↓ ± .018 .781 ± .034

PageBlocks .965 ± .003 .931↓± .003 .964 ± .004 .965 ± .002 .966 ± .002

Isolet .854↓ ± .016 .648↓ ± .018 .7↓ ± .04 .861↓ ± .08 .875 ± .014

HAR .851 ±.024 .76↓± .04 .81↓± .041 .823↓± .035 .854 ± .026

Pendigits .863↓± .022 .825↓± .022 .839↓± .036 .845↓± .024 .884 ± .022

Letter .711 ± .011 .062↓± .011 .651↓± .015 .673 ↓± .015 .717 ± .013

Fashion .718 ± .022 .625↓± .014 .64↓± .04 .68↓± .014 .723 ± .023

MNIST .798↓± .015 .665↓± .012 .705↓± .055 .823↓± .045 .857 ± .013

Table A.3: Classification performance using the accuracy score on 9 publicly available
data set. Best results are shown in bold and the sign ↓ shows if the performance is statis-
tically worse than the best result on the level 0.01 of significance.

These results suggest that the effectiveness of self-training heavily relies on
the method used to determine the pseudo-labeling threshold. When the threshold
is automatically determined, self-training (i.e. PL∗ ) can perform competitively,

3https://github.com/vfeofanov/trans-bounds-maj-vote
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indicating that this approach has the potential to improve results compared to the
supervised RF.

However, when a fixed threshold is applied, self-training tends to yield infe-
rior results compared to the supervised learning approach. This suggests that an
arbitrarily chosen threshold might not effectively capture the underlying patterns
in the data for the pseudo-labeling process, leading to suboptimal performance.

Moreover, when the threshold is too low as for θ ∈ {0.5, 0.7}, pseudo-labeling
is likely to produce label noise and degrade the performance of self-training with
respect to the supervised RF classifier in all cases. When the threshold it is too
high (i.e. θ = 0.9), self-training becomes competitive compared to RF on Isolet
and MNIST, but the quantity of pseudo-labeled unlabeled examples seems not to
be sufficient to learn efficiently.

In summary, the findings emphasize the importance of a dynamic and adaptive
threshold selection mechanism when implementing self-training.
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