
HAL Id: hal-04796183
https://hal.science/hal-04796183v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DAMP: distribution-aware magnitude pruning for
budget-sensitive graph convolutional networks

Hichem Sahbi

To cite this version:
Hichem Sahbi. DAMP: distribution-aware magnitude pruning for budget-sensitive graph con-
volutional networks. ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea. pp.3070-3074,
�10.1109/ICASSP48485.2024.10448148�. �hal-04796183�

https://hal.science/hal-04796183v1
https://hal.archives-ouvertes.fr


DAMP: DISTRIBUTION-AWARE MAGNITUDE PRUNING FOR BUDGET-SENSITIVE
GRAPH CONVOLUTIONAL NETWORKS

Hichem Sahbi

Sorbonne University, CNRS, LIP6, F-75005, Paris, France

ABSTRACT

Graph convolutional networks (GCNs) are nowadays be-
coming mainstream in solving many image processing tasks
including skeleton-based recognition. Their general recipe
consists in learning convolutional and attention layers that
maximize classification performances. With multi-head at-
tention, GCNs are highly accurate but oversized, and their
deployment on edge devices requires their pruning. Among
existing methods, magnitude pruning (MP) is relatively effec-
tive but its design is clearly suboptimal as network topology
selection and weight retraining are achieved independently.
In this paper, we devise a novel lightweight GCN design
dubbed as Distribution-Aware Magnitude Pruning (DAMP).
The latter is variational and proceeds by aligning the weight
distribution of the learned networks with an a priori dis-
tribution. This allows implementing any targeted pruning
rate while maintaining high generalization of the designed
lightweight GCNs particularly at the highest (most interest-
ing) pruning regimes. Extensive experiments conducted on
the challenging task of skeleton-based recognition show a
substantial gain of our DAMP compared to MP as well as
related methods.

Index Terms— Graph convolutional networks, lightweight
design, magnitude pruning, skeleton-based recognition

1. INTRODUCTION

With the resurgence of deep neural networks [18], many
image processing and pattern recognition tasks [5, 11] have
been successfully revisited during the last decade [19–23,25].
These tasks have been approached with increasingly accurate
but oversized networks, and this makes their deployment on
cheap devices, endowed with limited hardware resources,
highly challenging. Among existing models, graph convolu-
tional networks (GCNs) are known to be effective particularly
on non-euclidean domains including point-clouds and skele-
tons [8, 24, 66]. Two categories of GCNs are known in the
literature; spatial and spectral. Spectral methods [26–33] first
project graph signals from the input to the Fourier domain
in order to achieve convolution [40], and then back-project
the convolved signals in the input domain. Spatial methods
[34–39] proceed differently by aggregating node signals us-

ing message passing and attention mechanisms prior to apply
convolutions on the resulting node aggregates [41]. Spatial
GCNs are deemed more effective compared to spectral ones,
but their main downside resides in the high computational
complexity especially when using multi-head attention.

A major challenge is how to make these attention-based
networks lightweight and frugal while maintaining their high
accuracy [43–46]. In this regard, many existing works tackle
the issue of lightweight network design including tensor de-
composition [61], quantization [57], distillation [47–53] and
pruning [54–56]. In particular, pruning methods are highly
effective. Their principle consists in removing connections
whose impact on the classification performances is the least
noticeable. Two major categories of pruning techniques exist
in the literature; structured [58, 60] and unstructured [56, 57].
The former consists in zeroing-out weights of entire filters or
channels whilst the latter seeks to remove weights individu-
ally and independently. Whereas structured methods produce
computationally more efficient networks, they are less effec-
tive compared to unstructured techniques; indeed, the latter
provide more flexible (and thereby more accurate) networks
which are computationally still efficient.

Magnitude pruning (MP) is one of the mainstream meth-
ods that proceeds by removing the smallest weight connec-
tions in a given heavy network, prior to retrain the resulting
pruned (lightweight) network. While being able to reach any
targeted pruning rate, MP is clearly suboptimal as its design
decouples the training of network topology from weights.
Therefore, any removed connection cannot be recovered
when retraining the pruned network, and this usually leads to
a significant drop in classification performances. In this pa-
per, we investigate a novel alternative for magnitude pruning
referred to as DAMP (Distribution-Aware Magnitude Prun-
ing) that allows coupling end-to-end the training of network
topology and weights by constraining these weights to match
a targeted distribution. This allows, via a band-stop mecha-
nism, to filter out all the connections up to a given targeted
pruning rate. Hence, the advantage of the proposed contri-
bution is twofold; (i) it allows reaching any targeted pruning
rate almost exactly by constraining the learned weights to fit
a targeted distribution and (ii) this also leads to better gener-
alization, compared to MP, particularly at the highest (most
interesting) pruning regimes as reported later in experiments.



2. GRAPH CONVNETS AT A GLANCE

Let S = {Gi = (Vi, Ei)}i denote a collection of graphs with
Vi, Ei being respectively the nodes and the edges of Gi. Each
graph Gi (denoted for short as G = (V, E)) is endowed with
a signal {φ(u) ∈ Rs : u ∈ V} and associated with an ad-
jacency matrix A. GCNs aim at learning a set of C filters
F that define convolution on n nodes of G (with n = |V|)
as (G ? F)V = f

(
A U> W

)
, here > stands for transpose,

U ∈ Rs×n is the graph signal, W ∈ Rs×C is the matrix of
convolutional parameters corresponding to the C filters and
f(.) is a nonlinear activation applied entry-wise. In (G ?F)V ,
the input signal U is projected using A and this provides for
each node u, the aggregate set of its neighbors. Entries of
A could be handcrafted or learned so (G ? F)V makes it
possible to implement a convolutional block with two lay-
ers; the first one aggregates signals in N (V) (sets of node
neighbors) by multiplying U with A while the second layer
achieves convolution by multiplying the resulting aggregates
with the C filters in W. Learning multiple adjacency (also
referred to as attention) matrices (denoted as {Ak}Kk=1) al-
lows us to capture different contexts and graph topologies
when achieving aggregation and convolution. With multiple
matrices {Ak}k (and associated convolutional filter parame-
ters {Wk}k), (G ? F)V is updated as f

(∑K
k=1 A

kU>Wk
)
.

Stacking aggregation and convolutional layers, with multi-
ple matrices {Ak}k, makes GCNs accurate but heavy. We
propose, in what follows, a method that makes our networks
lightweight and still effective.

3. LIGHTWEIGHT GCN DESIGN

In the remainder of this paper, we subsume a given GCN
as a multi-layered neural network gθ whose weights are
defined as θ =

{
W1, . . . ,WL

}
, with L being its depth,

W` ∈ Rd`−1×d` its `th layer weight tensor, and d` the di-
mension of `. The output of a given layer ` is defined as
φ` = f`(W

`> φ`−1), ` ∈ {2, . . . , L}, being f` an activation
function; without a loss of generality, we omit the bias in the
definition of φ`.
Pruning consists in zeroing-out a subset of weights in θ by
multiplying W` with a binary mask M` ∈ {0, 1}d`−1×d` .
The binary entries of M` are set depending on whether
the underlying layer connections are kept or removed, so
φ` = f`((M

` �W`)> φ`−1), here � stands for the element-
wise matrix product. In this definition, entries of the tensor
{M`}` are set depending on the prominence of the underly-
ing connections in gθ. However, such pruning suffers from
several drawbacks. On the one hand, optimizing the discrete
set of variables {M`}` is known to be highly combinatorial
and intractable especially on large networks. On the other
hand, the total number of parameters {M`}`, {W`}` is twice
the number of connections in gθ and this increases training
complexity and may also lead to overfitting.

3.1. Band-stop Weight Parametrization

In order to circumvent the above issues, we consider an al-
ternative parametrization, related to magnitude pruning, that
allows finding both the topology of the pruned networks to-
gether with their weights, without doubling the size of the
training parameters, while making learning still effective.
This parametrization corresponds to the Hadamard product
involving a weight tensor and a function applied entry-wise
to the same tensor as W` = Ŵ` � ψ(Ŵ`), here Ŵ` is a
latent tensor and ψ(Ŵ`) is a continuous relaxation of M`

which enforces the prior that smallest weights should be re-
moved from the network. In order to achieve this goal, ψ
must be (i) bounded in [0, 1], (ii) differentiable, (iii) sym-
metric, and (iv) ψ(ω)  1 when |ω| is sufficiently large
and ψ(ω)  0 otherwise. The first and the fourth prop-
erties ensure that the parametrization is neither acting as a
scaling factor greater than one nor changing the sign of the
latent weight, and also acts as the identity for sufficiently
large weights, and as a contraction factor for small ones.
The second property is necessary to ensure that ψ has com-
putable gradient while the third condition guarantees that
only the magnitudes of the latent weights matter. A possible
choice, used in practice, that satisfies these four conditions is
ψa,σ(ŵ) = (1 + σ exp(a2 − ŵ2))−1 with σ being a scaling
factor and a threshold. As shown in Fig. 1, (σ, a) control
the smoothness of ψa,σ around the support Ω ⊆ R of the
latent weights. A linear increase of σ (w.r.t. training epochs)
allows implementing an annealed (soft-to-hard) thresholding
function that cuts-off all the connections in smooth and differ-
entiable manner as training of the latent parameters evolves.
Put differently, the asymptotic behavior of ψa,σ — that al-
lows selecting the topology of the pruned subnetworks — is
obtained as training reaches the latest epochs.
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Fig. 1: This figure shows a Band-stop function ψa,σ and its application to a given
(gaussian) weight distribution. Depending on the setting of a, only large magnitude
weights are kept and correspond to the targeted pruning rate. (Better to zoom the file).

3.2. Distribution-Aware Magnitude Pruning

The aforementioned parametrization — while being effective
(see later experiments) — it does not allow implementing any
targeted pruning rate as the dynamic of learned latent weights
{Ŵ`}` is not known a priori. Hence, pruning rates could
only be observed a posteriori or implemented after training
using a two stage process (e.g., magnitude pruning + retrain-
ing). In order to implement any a priori targeted pruning
rate as a part of a single training process, we constrain the



distribution of latent weights to fit an arbitrary probability
distribution, so one may fix a in ψa,σ and thereby achieve the
targeted pruning rate. Let Ŵ ∈ Ω denote a random variable
standing for the latent weights in the pruned network gθ;
Ŵ is assumed drawn from a given distribution P (uniform,
gaussian, laplace, etc) possibly the closest to the distribution
of unpruned network (see Fig. 2). Fixing appropriately P not
only allows implementing any targeted pruning rate, but has
also a regularization effect which controls the dynamic of the
learned weights and thereby the generalization properties of
the pruned network (by making its weight distribution close
to the unpruned network) as shown later in table 3.

Fitting a targeted distribution. Considering Q as the ob-
served distribution of the latent weights {Ŵ`}`, and P the
targeted one, our goal is to reduce the discrepancy between P
and Q using a Kullback-Leibler Divergence (KLD) loss

DKL(P ||Q) =

∫
Ω

P (Ŵ )(logP (Ŵ )− logQ(Ŵ )) dŴ . (1)

Note that the analytic form of the above equation is known on
the widely used probability density functions (PDFs), whilst
for general (arbitrary) probability distributions, the exact form
is not always known and requires sampling. Hence, we con-
sider instead a discrete variant of this loss w.r.t. P and Q;
examples of targeted distributions P are given in Fig. 2 while
the observed (and also differentiable) one Q is based on a re-
laxed variant of histogram estimation. Let {q1, . . . , qK} de-
note a K-bin quantization of Ω (in practice K = 100), the
k-th entry of Q is defined as

Q(Ŵ = qk) ∝
L−1∑
`=1

n∑̀
i=1

n`+1∑
j=1

exp

{
− (Ŵ`

i,j − qk)2/β2
k

}
, (2)

here βk is a scaling factor that controls the smoothness of
the exponential function; larger values of βk result into over-
smoothed histogram estimation while a sufficiently (not very)
small βk leads to a surrogate histogram estimation close to
the actual discrete distribution of Q. In practice, βk is set
to (qk+1 − qk)/2; with this setting, one may replace ∝ (in
Eq. 2) with an equality as the partition function of Q — i.e.,∑K
k=1Q(Ŵ = qk) — reaches almost one in practice.

Budget-aware pruning. Let FŴ (a) = P (Ŵ ≤ a) be the
cumulative distribution function (CDF) of P (Ŵ ). For any
given pruning rate r, one may find the threshold a of the
parametrization ψa,σ as a = F−1

Ŵ
(r). This function, known

as the quantile, defines the pruning threshold a on the tar-
geted distribution P (and equivalently on the observed one Q
thanks to the KLD loss) which guarantees that only a fraction
(1 − r) of the total weights are kept (i.e, nonzero) when ap-
plying the band-stop reparametrization in section 3.1. Note
that the quantile at any given pruning rate r, can either be
empirically evaluated on discrete random variables or can be

analytically derived on the widely used PDFs (see table. 1).
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Fig. 2: The first 3 figures correspond to targeted (uniform, gaussian and laplace)
distributions. The 4th figure shows the actual weight distribution of the heavy/unpruned
GCN which resembles to gaussian/laplacian. This may explain the best performances
when these targets are used including at the highest pruning regimes (see table 3).

Considering the above budget implementation, pruning is
achieved using a global loss as a combination of a cross-
entropy term Le, and the KLD loss DKL (which controls
weight distribution and hence implicitly guarantees the tar-
geted pruning rate/budget depending on the setting of the
quantile a in ψa,σ) resulting into

min
{Ŵ`}`

Le

(
{Ŵ` � ψ(Ŵ`)}`

)
+ λ DKL(P ||Q), (3)

here λ is sufficiently large (overestimated to λ = 10 in prac-
tice), so Eq. 3 focuses on implementing the budget and also
constraining the pruning rate to reach r. As training evolves,
DKL reaches its minimum and stabilizes while the gradient
of the global loss becomes dominated by the gradient of Le,
and this maximizes further the classification performances.

Distributions PDF P (Ŵ ) Quantile a = F−1
Ŵ

(r)

Uniform 1
T a = r

T

Gaussian 1
σ
√
2π

exp
{
− 1

2

(
Ŵ−µ
σ

)2}
a = µ+ σ

√
2erf−1(2r − 1)

Laplace 1
2b exp

{
− |Ŵ−b|b

}
a =

 µ+ b log(2r) if r ≤ 1
2

µ− b log(2− 2r) otherwise

Table 1: Different standard PDFs and the underlying quantile functions.

Note that the impact of DKL(P ||Q) in Eq. 3 has some sim-
ilarities and differences w.r.t. the usual regularizers particu-
larly `0, `1 and `2. Whilst these three regularizers favor re-
spectively uniform, laplace and gaussian distributions in Q,
there is no guarantee that these regularizers allow implement-
ing any targeted pruning rate and require adding explicit (and
difficult to solve) budget criteria or overtrying many λ values
in Eq. 3. In our method, in contrast, as Q is constrained in
DKL(P ||Q), the Band-pass mechanism in section 3.1 makes
reaching any targeted pruning rate easily feasible.

4. EXPERIMENTS

We benchmark our GCNs on the task of action recognition us-
ing the First-Person Hand Action (FPHA) dataset [2] which
includes 1175 skeletons belonging to 45 action categories.
Each sequence of skeletons (video) is initially described with
a graph G = (V, E) with each node vj ∈ V corresponding to
the j-th hand-joint trajectory (denoted as {p̂tj}t) and an edge



(vj , vi) ∈ E exists iff the j-th and the i-th trajectories are
spatially connected. Each trajectory in G is processed using
temporal chunking [59]: first, the total duration of a sequence
is split into M evenly-sized temporal chunks (M = 32 in
practice), then the trajectory coordinates {p̂tj}t are assigned
to the M chunks (depending on their time stamps) prior to
concatenate the averages of these chunks. This produces the
raw description (signal) of vj .

Implementation details and baseline GCN. We trained the
GCNs end-to-end using the Adam optimizer [1] for 2,700
epochs with a batch size equal to 600, a momentum of 0.9
and a global learning rate (denoted as ν(t)) inversely propor-
tional to the speed of change of our global loss used to train
our networks. When this speed increases (resp. decreases),
ν(t) decreases as ν(t)← ν(t− 1)× 0.99 (resp. increases as
ν(t)← ν(t−1)/0.99). We use in our experiments a GeForce
GTX 1070 GPU (with 8 GB memory) and we evaluate the
performances using the protocol proposed in [2] with 600
action sequences for training and 575 for testing, and we
report the average accuracy over all the classes of actions.
The architecture of our baseline GCN (taken from [59]; see
also section 2) includes stacked 8-head attentions applied to
skeleton graphs whose nodes are encoded with 16-channels,
followed by convolutions of 32 filters, and a dense fully con-
nected layer as well as a final classification layer. In total, this
initial network is relatively heavy (for a GCN). Nevertheless,
this GCN is accurate compared to the related work on the
challenging FPHA benchmark as shown in Table. 2. Consid-
ering this GCN baseline, our goal is to make it lightweight
while maintaining its high accuracy.

Lightweight GCNs (Comparison & Ablation). Table 3
shows the performances of our baseline and lightweight
GCNs. From these results, we observe the positive impact
for different PDFs and for increasing pruning rates r; for
mid r values (i.e., 55%), DAMP (gaussian) overtakes all
the other settings while for very high pruning regimes (i.e.,
≥ 98%), DAMP (laplace) is the most performant. Note
that lightweight GCNs with mid r overtake the baseline; in-
deed, mid r values produce subnetworks with already enough
(a large number of) connections and having some of them
removed from the baseline GCNs produces a well known reg-
ularization effect [42]. We also note that the targeted and the
observed pruning rates are very similar; the quantile functions
of the gaussian and laplace PDFs allow implementing fine-
grained targeted pruning rates particularly when r is large.
In contrast, the quantile functions of the gaussian and laplace
PDFs are coarse around mid r values (i.e., 55%). Extra com-
parison against MP coupled with other regularizers (in Eq.
3 instead of KLD, namely `0 [62], `1 [63], entropy [64] and
`2-based cost [65]) shows the substantial gain of DAMP at
the highest pruning rate (namely 98%). Note that when alter-
native regularizers are used, multiple trials of the underlying

hyperparameter λ (in Eq. 3) are considered prior to reach the
targeted pruning rate, and this makes the whole training and
pruning process overwhelming compared to DAMP.

Method Color Depth Pose Accuracy (%)
Two stream-color [3] 3 7 7 61.56
Two stream-flow [3] 3 7 7 69.91
Two stream-all [3] 3 7 7 75.30
HOG2-depth [4] 7 3 7 59.83

HOG2-depth+pose [4] 7 3 3 66.78
HON4D [6] 7 3 7 70.61

Novel View [7] 7 3 7 69.21
1-layer LSTM [8] 7 7 3 78.73
2-layer LSTM [8] 7 7 3 80.14
Moving Pose [9] 7 7 3 56.34
Lie Group [10] 7 7 3 82.69
HBRNN [12] 7 7 3 77.40

Gram Matrix [13] 7 7 3 85.39
TF [14] 7 7 3 80.69

JOULE-color [15] 3 7 7 66.78
JOULE-depth [15] 7 3 7 60.17
JOULE-pose [15] 7 7 3 74.60
JOULE-all [15] 3 3 3 78.78

Huang et al. [16] 7 7 3 84.35
Huang et al. [17] 7 7 3 77.57

Our GCN baseline 7 7 3 86.43

Table 2: Comparison of our baseline GCN against related work on FPHA.

Targeted PR Observed PR Target PDFs. Accuracy (%) Observation
none 0.00 7 86.43 Baseline GCN

55%

55.00 7 87.82 MP
55.10 3 87.82 DAMP (Uniform)
55.31 3 88.52 DAMP (Gaussian)
57.83 3 87.65 DAMP (Laplace)

80%

80.00 7 86.78 MP
77.74 3 85.91 DAMP (Uniform)
80.71 3 87.47 DAMP (Gaussian)
80.11 3 86.95 DAMP (Laplace)

98%

98.00 7 60.34 MP
97.98 3 70.26 DAMP (Uniform)
97.97 3 70.60 DAMP (Gaussian)
97.90 3 70.80 DAMP (Laplace)

Comparative (reg-based) pruning on the highest (most interesting) pruning regime

98%

98.00 7 64.69 MP (+`0 reg)
98.00 7 70.78 MP (+`1 reg)
98.00 7 67.47 MP (+Entropy reg)
98.00 7 69.91 MP (+Cost-Aware reg)

Table 3: Detailed performances and ablation, for different targeted and observed
pruning rates, and for different targeted probability distributions. Here “PR” stands for
pruning rate and “reg” for regularization. For comparative methods, exact PRs are im-
plemented after an overwhelming tuning ofλ and retraining with the underlying regular-
izers (instead ofDKL) in Eq. 3; hence these methods are shown for the most interesting
PR of 98%, and DAMP obtains the highest accuracy without overwhelming λ tuning.

5. CONCLUSION

We introduce in this paper a novel lightweight GCN design
based on Distribution-Aware Magnitude Pruning (DAMP).
The strength of DAMP resides in its ability to constrain the
probability distribution of the learned GCNs to match an a
priori distribution and this allows implementing any given
targeted pruning rate while also enhancing the generalization
performances of the resulting GCNs. Extensive experiments
conducted on the challenging task of skeleton-based recog-
nition shows a significant gain of DAMP against magnitude
pruning as well as other regularization-based methods.
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