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Abstract. Normalizing flows (NFs) are invertible and bijective genera-
tive models, capable of performing exact density estimation of complex
data by mapping them from highly nonlinear ambient spaces to simpler
latent ones. These mappings hold many promises for images since cap-
turing their true distribution could greatly enhance the performance of
downstream tasks such as image classification. In this paper, we devise
a novel conditional normalizing flow model that achieves both condi-
tional image generation and classification. The main contribution of our
method consists in learning untangled continuums of gaussian distribu-
tions in the latent space that maximize the discrimination power of the
learned NFs together with the quality, diversity and label reliability of
the underlying generated images. This results into highly effective NF
classifiers as well as convolutional and transformer networks built on top
of the generated images. Extensive experiments conducted on different
challenging datasets, including CIFAR100 and ImageNet show the highly
balanced discrimination and generative properties of our proposed NF
models and their outperformance w.r.t. the closely related work.

Keywords: Generative Modeling · Normalizing Flow · Classification.

1 Introduction

Deep generative models are currently witnessing a major success in computer
vision [44] and several neighboring fields [8,28]. These models allow capturing
data distributions by learning mappings between ambient and latent spaces.
Ambient spaces refer to input data drawn from existing but unknown probability
distributions (possibly sitting on top of complex nonlinear manifolds) whereas
latent spaces correspond to learned representations lying on notoriously more
tractable distributions such as the gaussian. Amongst existing generative models,
normalizing flows (NFs) [12,13,31] have particularly attracted a lot of attention
due to their ability to exactly learn highly intricate distributions. Compared
to alternative generative models [37,20,30,44], NFs are unique in their ability
to learn bijective invertible transformations useful for exact density estimation
and also image generation. Nonetheless, NFs in their standard form coerce the
data, in the latent space, to follow monomodal gaussians, and this makes them
powerless to condition image generation on class-labels. Other variants consider
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instead gaussian mixture models (GMMs) to achieve both image generation and
label conditioning. With these variants, it becomes possible to train not only
generative but also discriminative models (see Fig. 1).

Fig. 1: This figure shows three different configurations of gaussians in the latent space.
In (1), the gaussians preserve the continuum between classes and the generative prop-
erties only. In (2), gaussians are well separated and preserve discriminative properties
only. In (3), both discriminative and generative properties of the gaussians are pre-
served. Image classification (resp. generation) is achieved by mapping data from the
ambient to the latent space (resp. vice versa).

However, a few existing works questioned the effectiveness of training mix-
ture models (MMs) with a plain likelihood loss for label conditioning [18,4,3,40],
and conjectured that the latter, while conceptually attractive, may hinder the
discriminative properties in favor of the generative abilities of the resulting NFs
(see Fig. 1, config-1). On the other hand, directly constraining MM to include
a priori fixed and well separated gaussians [26] is clearly suboptimal, and makes
NFs discontinuous and less expressive (see Fig. 1, config-2). Alternatively, learn-
ing how to separate gaussians in the latent space can give very good discrim-
inative properties and label conditioning (using, for instance, information bot-
tleneck [3,40,52]), but at the expense of a significant degradation in the visual
quality of the generated images, due to strong discontinuities and instabilities
in the learned latent representations. Put differently, data belonging to visually
similar classes could be mapped to distant (fixed or learned) gaussians in the
latent space (and vice versa), and this (i) prevents the resulting NFs from con-
sistently modeling the continuum between data across classes (see again Fig. 1),
and (ii) ultimately leads to unusable generated images when training classifiers.
In contrast to the aforementioned related work, our main contribution, in this
paper, seeks to learn gaussians (hyperparameters) in the latent space while guar-
anteeing their separability and their ability to consistently model the continuum
of data (see Fig. 1, config-3).

In this paper, we devise a novel approach that trains normalizing flows to-
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gether with the hyperparameters of the underlying gaussian distributions. The
proposed approach finds an optimal placement of gaussians (in the latent space)
while balancing the generative and the discriminative properties of the learned
NFs. This is achieved by optimizing an objective function which mixes a like-
lihood term that maximizes the expressivity (i.e., generative capacity) of the
learned NFs, and a Kullback-Leibler divergence (KLD) criterion which enhances
their discrimination power. Learning the hyperparameters consists in finding the
best configuration of means and covariances associated to the gaussians. Whereas
the optimization of gaussian means is straightforward and feasible with a direct
application of gradient descent, the optimization of the covariance matrices re-
quires additional constraints. This is achieved using a suitable reparametrization
that constrains the learned covariance matrices to be symmetric and positive def-
inite; by multiplying the Jacobian of the proposed reparametrization function
with the gradient of the loss, one may guarantee that the learned covariance
matrices are indeed symmetric and positive definite.

In order to assess our proposed NFs particularly against standard monomodal
ones, we upgrade the latter with an encoding mechanism that conditions im-
age generation with labels. As shown in experiments, the proposed NF model
clearly outperforms standard ones, and other related work, using different met-
rics mainly classification accuracy as well as other proxies including image/label
quality and diversity. These proxies allow us to further analyze the behavior
of the proposed NFs and to understand why a better accuracy is reached. To
the best of our knowledge, this is the first comprehensive study of the impact
of image/label quality as well as diversity — all together — on classification
performances, when using normalizing flows.

Considering all the aforementioned issues, the main contributions of this
paper include

(i) A novel method, in section 4, that learns NFs together with the underly-
ing gaussian placements. Our method seeks to maximize the discrimination
power of our NFs by bringing closer gaussians belonging to visually similar
classes (and vice versa) while also maximizing the generative capacity of our
NF models.

(ii) A novel encoding mechanism, in section 5.2, that allows conditionally gen-
erating data from different NFs (including standard ones). This encoding
allows training NFs not only to generate images but also their labels.

(iii) A comprehensive study and comparison of our NF models in section 5 —
using staple metrics (namely accuracy) as well as proxy ones including im-
age/label quality and diversity — show the competitiveness of the proposed
NF models against the related work.

2 Related Work

Normalizing Flows & Split Priors. One of the earliest normalizing flow mod-
els, namely Glow [31], is based on the multi-scale architecture of RealNVP [13].
It includes several levels built upon invertible neural networks such as actnorms
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[31], invertible 1×1 convolutions [31], and coupling layers [12]. At each level, part
of the dimensions are removed, using split priors [31], which estimate the gaussian
hyperparameters (means and covariances) with a neural network. Many existing
works have implemented conditioning on top of these architectures, including
[31,18,4] which learn a conditional prior at the lowest level using a classification
loss. In particular, [18,31,50] also use split priors to estimate gaussian hyper-
parameters through different mini-batches. However, the resulting gaussians are
very likely to overlap, and this makes label-conditioning challenging. Our alter-
native solution, in this paper, does not rely on split priors but instead on a novel
reparametrization that allows training more suitable gaussian hyperparameters
for a better NF conditioning.
Label-Conditioning with GMMs. Mixture models condition image gener-
ation in NFs [26,32,4,18,3,40,21,54,10,59,60] by assigning a unique component
(gaussian mean and covariance) to each label. Existing variants [4,18] condi-
tion only some dimensions of GMMs, with the idea that only a portion of the
dimensions are discriminative. Other methods [26,32,21,54,10] condition all di-
mensions by breaking the gaussian distribution into multiple ones, and fixing
the underlying means to random values, and covariance matrices to be diago-
nal isotropic; in particular, [26] further recalibrate those matrices on validation
sets. The works in [7,33] consider handcrafted means and learn different NFs
through clusters in the latent space with limited generalization performances
[7]. Alternative solutions [3,40,59,60] learn instead the means but fix the covari-
ance matrices to identity using information bottleneck [3,40], or by adding other
losses including Wasserstein [59,60]. The works in [26,18,3,40] are the most re-
lated to our proposed method with the differences being that (i) gaussian means
are learned using a repulsive pairwise KLD criterion in contrast to [18,26], and
(ii) the covariance matrices are anisotropic, thereby more expressive compared
to [3,40,26,60,59]. Finally, our proposed method does not leverage GMMs but
instead multi-gaussians, and this reduces the number of training parameters,
and makes the joint optimization of NFs and gaussians more tractable.
Label-Conditioning with Encoding. Another category of methods focuses
on directly conditioning images in ambient and latent spaces. Xiao et al. [58]
trains NFs on latent representations of VAEs, and concatenates one hot encod-
ing vectors to the latent samples. Ardizzone et al. [2] use a one hot encoding
for conditioning, but rely on a complex loss that does not scale well to high
dimensional data. The methods in [43,58] directly condition the coupling Layers
by concatenating a higher dimensional embedding conditioned on labels issued
by a neural network. In contrast to these methods, our proposed conditional
encoding is only applied to the ambient space, and neither enforced in the latent
space nor in the NF architecture. Put differently, it acts as a preprocessing step
that encodes labels in images, and allows NFs to learn not only images, but also
label generation. Our proposed encoding is also related to augmented normal-
izing flows [24] that make a model more expressive by embedding data in high
dimensional spaces using noise sampled from a normal distribution. Instead of
noise, we consider a learned class-dependent conditional encoding.
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3 A Glimpse on Normalizing Flows

Let X be a random variable standing for all possible images taken from an
existing but unknown probability distribution PX in an ambient space X ⊆
Rd. Considering Z as a latent representation associated to X drawn from a
known probability distribution PZ in a latent space Z ⊆ Rd; normalizing flows
aim at learning a diffeomorphism f from X to Z together with its inverse g,
where f (resp. g) is used for classification (resp. generation) and is referred to
as normalizing (resp. generative) direction. Given x ∈ X , one may write

PX(x) = PZ(f(x))

∣∣∣∣det ∂f(x)∂x

∣∣∣∣ = PZ(f(x))
∣∣detJf(x)∣∣ , (1)

where Jf(x) ∈ Rd×d is the Jacobian of f w.r.t. x and |det(.)| stands for de-
terminant magnitude. In practice, f is a neural network composed of several
smaller invertible flows chosen to make Jf(x) computationally efficient. As de-
fined in [31,12], each flow is usually made of an actnorm layer, an invertible 1×1
convolution, and a coupling layer stacked together. Let x1:d be a d-dimensional
vector, a coupling layer maps x1:d to two subvectors x̃1:d/2 and x̃d/2+1:d being
x̃1:d/2 = x1:d/2 and x̃d/2+1:d = xd/2+1:d⊙ exp(s(x1:d/2))+ b(x1:d/2), s(.), b(.) are
two neural networks, ⊙ the Hadamard product and exp(.) is applied entrywise.
Invertible 1×1 convolutions are generalized permutation layers that enhance ex-
pressivity by allowing permutations between image channels to be learned [31].
An actnorm layer is an invertible equivalent of batch normalization [25] that in-
creases stability and performance. Multi-scale architectures [13] are also used in
NFs and allow better expressivity by progressively removing half of the dimen-
sions through different flows; in other words, a NF (made of L levels) discards
and appends (at the end of each level) half of the dimensions to the output of
the normalizing function f , in order to extract more meaningful intermediate
representations from the remaining half. NFs are usually trained to minimize
the negative log-likelihood of Eq. 1. From transport theory point of view [53],
NFs pushforward a complex ambient distribution into a simpler latent one as
the monomodal normal. Subsequently, we take a step further to make the latent
distribution multimodal while also being able to model the continuum between
different classes, and this balances the generation and the discrimination power
of the resulting NFs as also shown in experiments.

4 Proposed Method

Let D = {(xi,yi)}i ⊂ X × Y denote a collection of labeled images with xi
belonging to an ambient space X and yi its underlying class-label taken from
a discrete set Y = {1, . . . ,K}. Given a pair (x,y) ∈ X × Y, one may write the
conditional form of Eq. 1 as

PX(x|y) = PZ(f(x)|y)
∣∣detJf(x)∣∣ , (2)

here PZ(.|y) is set a priori to a given distribution, viz., gaussian mixture. Our
goal here is to train the parameters of the NF (denoted as Θ) together with the
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hyperparameters of the underlying gaussians (referred to as Ψ = {(µy, Σy)}y∈Y)
while guaranteeing better generation and classification performances of the re-
sulting NF.

4.1 Learning Continuums

By assigning different gaussians across classes, one may train the parameters Θ
together with the hyperparameters Ψ using the log-likelihood loss of Eq. 2

LNF (Θ,Ψ) =
∑

(x,y)∈D

− logN (f(x);µy, Σy)− log
∣∣detJf(x)∣∣ . (3)

Following Jensen’s inequality, Eq. 3 is an upper bound of the loss widely used in
GMM-based NFs [26,18,3] — provided that GMM components (gaussians) are
well separated. This form has several advantages; on the one hand, it is more
flexible compared to monomodal gaussian NFs which are class-oblivious. On the
other hand, while gathering the upsides of GMM based NFs (mainly conditional
image generation), it is more tractable and also convex when only means (or
covariances) are allowed to vary during training. Our proposed loss in Eq. 3
relies on multiple gaussians with a constrained one-to-one mapping between
classes and gaussians. Our goal is to make conditional generation providing (i)
visually plausible images and (ii) accurate labels on the generated images. As
shown subsequently (and also in proposition 1 in the supplementary material),
the optimization of Eq. 3 alone guarantees condition (i), i.e., a smooth placement
of gaussians forming a continuum of gradually similar data in the latent space.
In other words, as we traverse this continuum, images vary smoothly across
classes thereby making images generated with this conditioning visually plausible
(see later experiments). Considering this issue, our introduced proposition (in
the supplementary material) shows that only condition (i) is achieved when
optimizing Eq. 3 at the detriment of condition (ii). This results into highly
confounded gaussians which makes label conditioning error-prone.

4.2 Learning Untangled Continuums

In order to mitigate the aforementioned issue (ii), we also consider a Kullback-
Leibler Divergence (KLD) term as a repulsion criterion between different gaus-
sians that aims at pushing them apart from each others. This term equates

LKLD(Ψ) = −
∑

y,y′∈Y:y ̸=y′

KLD(Ny || Ny′). (4)

With the above term, we define our global loss as

L(Θ,Ψ) = LNF (Θ,Ψ) + λLKLD(Ψ), (5)

where λ ≥ 0 controls the impact of KLD. On the one hand, large λ makes gaus-
sians well separated, and thereby label conditioning more accurate, however, the
continuum between visually similar classes will not be correctly modeled result-
ing into abrupt changes between these classes. On the other hand, small λ makes
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transition between classes smoother, and image visually plausible, but label con-
ditioning becomes erroneous. Hence, the setting of λ is critical and should be
carefully achieved in order to balance image quality and label accuracy. In prac-
tice, λ (rewritten as λt) is annealed through iterations t ∈ {0, . . . ,maxepoch};
initially, λ0 is overestimated to favor the discrimination power of the trained
NF, and then λt is gradually decreased to put more emphasis on its generation
properties, which also improves training stability.

Following proposition 1 in the supplementary material, and as shown in Fig. 2
and later in ablation, the two losses LNF and LKLD in equation 5 are comple-
mentary and show different behaviors. LNF naturally places the means of similar
classes close one to another, and it also expands the covariance matrices in or-
der to capture partial overlaps between classes sharing similar visual aspects.
Fig. 2a shows an illustration of the partial overlap of 2D gaussians using LNF
only. When LKLD is added, and when optimizing only the means, the distance
between gaussians is increasing particularly between visually different classes
(see Fig. 2b); this separability cannot be obtained when using LNF only. On
another hand, optimizing only the covariance matrices shrinks the gaussians at
intersecting areas which makes them separated without moving the means (see
Fig. 2c). Finally, when optimizing both the means and the covariances, the model
reaches a more optimal design allowing both the means and the covariances to
change, and yielding a continuum between gaussians without overlapping (see
Fig. 2d). In sum, the whole model balances two antagonist behaviors, associated
to the NF and the KLD losses, that respectively attract and repulse the trained
gaussians.

(a) LNF loss
only

(b) LµNF +
LµKLD loss

(c) LΣNF +
LΣKLD loss

(d) LNF +
LKLD loss

Fig. 2: Influence of the losses LNF and LKLD on the trained gaussians.

4.3 Optimization

Training NF parameters together with gaussian hyperparameters, using Eq. 5,
is achieved by backpropagation and gradient descent of Θ and Ψ . In practice,
the covariance matrices are taken as diagonal anisotropic. Whereas this setting
makes the gaussians relatively flexible (compared to isotropic ones) and their
training more tractable (w.r.t. fully dense gaussians), optimizing Ψ still requires
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additional constraints to guarantee that the resulting {Σy}y are positive defi-
nite. In order to implement these constraints, we consider a reparametrization
in Eq. 5 — particularly the covariance matrices — as Σy = ψ(Σ̂y) for some
Σ̂y ∈ Rd×d with ψ applied entrywise, and this allows free settings of {Σ̂y}y
during optimization while guaranteeing the positive definiteness of Σy. During
backpropagation, the gradient of the loss L (now w.r.t. Σ̂y) is updated using the
chain rule as

∂L
∂vec(Σ̂y)

= Jψ.
∂L

∂vec(Σy)
, (6)

here vec(Σy) is a columnwise vectorization of Σy and Jψ is a diagonal Jaco-
bian whose ith diagonal element equates ψ′([Σ̂y]ii). In practice, ψ(.) = a(1 +
exp{−β(.)})−1 + c with a, b and c being positive values that respectively con-
trol the amplitude (scale) and the slope (smoothness) as well as the shift of
the reparametrization ψ. Besides, a+c

c controls the conditioning of the trained
covariance matrices and thereby the shape of the underlying gaussians in the
latent space (see Fig. 3-top).

Algorithm 1: GLEM
Input: Images with labels in

D = Dnf ∪ Dg.
Output: NF parameters Θ and gaussian

hyperparameters Ψ .
Initialization: Set {µy}y, {Σ̂y} entries
to zeros ; // Equivalently, each Σy is
set to Id · ( a

2 + c); this corresponds to
(overlapping) standard monomodal and
isotropic gaussian initializations which
become well separated and anisotropic
as training evolves.
for t := 1 to MaxIterations do

Fix Ψ and train NF parameters Θ
on Dnf ; // E-step

Fix Θ and train gaussian
hyperparameters Ψ on Dg ;
// M-step

Compute the gradients{(
∂L
∂µy

, ∂L
∂vec(Σy)

)}
y∈Y ;

For each y ∈ Y
µy ← µy − δt ∂L

∂µy
;

Σ̂y ← Σ̂y − δtvec−1

(
∂L

∂vec(Σ̂y)

)
as shown in Eq. 6;
Update Σy ← ψ(Σ̂y);

Update the learning rate δt and λt.

With optimized Ψ∗, retrain the NF
parameters Θ on Dnf ∪ Dg.

Fig. 3: (Top) Visualization of the
reparametrization for varying values of
b ∈ {0.05, 0.1, 0.2, 0.5, 1.0}, with a = 2
and c = 0. (Bottom) Class conditional
encoding concatenated with images.

In order to optimize the loss in Eq. 5, we consider an EM-like procedure. Two
steps are alternately applied: in the E-step, we fix the hyperparameters Ψ , and
we train our NF while in the M-step we fix the NF parameters Θ and we train
only Ψ using gradient descent. These two steps are run using two disjoint subsets
Dnf and Dg (taken from D) in order to mitigate the co-adaptation between Θ
and Ψ . In practice, |Dg| = 0.1×|D| and |Dnf| = 0.9×|D|. Algorithm 1, dubbed as
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GLEM (Gaussians Learned using Expectation Maximization), shows the whole
optimization procedure.

5 Experiments

In this section, we study the impact of GLEM on image classification when used
separately and jointly with ConvNets and Transformers. First, we introduce
different monomodal and multimodal NF baselines. Then, we extend the former
using a novel mechanism that conditions image generation. We also study the
impact of KLD weighting and sampling temperature on GLEM. Finally, we show
an ablation study and comparison against closely related works.

5.1 Datasets and Evaluation Metrics

Experiments have been conducted using three standard datasets: CIFAR10 [34],
CIFAR100 [34] and later ImageNet [11]. CIFAR10-100 include 50k images for
training, and 10k images for testing, whereas ImageNet includes 1281k for train-
ing and 50k for testing. The NF backbone used in our experiments is taken
from the Generative Matrix Exponential [57] which is a generalization of affine
coupling layers built on top of Glow, while for image classification, we use
ResNet18[22] and a vision transformer [15,51] from the timm library. Classifica-
tion performances are measured using accuracy as the percentage of correctly
classified images. However, to further understand the behavior of our model, we
use three other proxy metrics namely FID [23], Coverage [41], and Label Reli-
ability which respectively assess the visual quality of images, their diversity (as
an improved variant of the recall [45,35] used in generative modeling) and the
accuracy of their labels measured by a simulated oracle. The latter corresponds
to a highly accurate ResNet18 trained on CIFAR100. We also use this oracle —
precisely its penultimate layer — in order to assess the FID and the Coverage
(more details are available in the supplementary material).

5.2 Baselines & Model Analysis

Baseline 1 (Monomodal NFs with CE). We upgrade standard monomodal
NFs [57] with a conditional encoding (CE) mechanism that allows, not only,
sampling images but also predicting their class-labels. Our CE is achieved as
a part of NF training; each image x (used to train the NF) is padded with a
class-dependent code (subimage) along its vertical axis, so the height of x in-
creases by 2L (where L is the number of NF-levels) while its width and depth
remain identical (see Fig. 3-bottom). Ground-truth codes assigned to training
images are obtained by first designing class-dependent prototypes whose place-
ments are obtained by minimizing a regularized mean squared error, and then by
perturbing these prototypes with a uniformly generated noise whose amplitude
is smaller compared to the designed prototypes.
Baseline 2 (Multimodal NFs). This setting corresponds to GLEM (without
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CE) whose conditioning is based on gaussians trained with λ = 0.
Baseline 3 (CEGLEM). This setting combines both CE and GLEM, and
consists in learning NFs and gaussians on images endowed with class-dependent
codes. This variant allows a double conditioning mechanism; in practice, we
found that both — CE and gaussian conditioning — provide identical class-
labels during image generation.
Ours (GLEM). This setting corresponds to GLEM with multi-gaussians trained
by optimizing both the likelihood and the KLD losses (i.e., λ > 0).

Implementation Details. The optimizer used to train the NFs is Adamax [29]
with a learning rate of 10−2 linearly warmed up for the first 1000 iterations,
and divided by a factor 2 at several intervals — until it reaches a minimum of
2.5 ·10−3 where stochastic weight averaging is also used [27]. The augmentations
used are the same as in [3], i.e., horizontal flip, padding, cropping, rotation, and
color jitter. For ResNet18, the optimizer used is SGD with a learning rate of
10−3, a momentum of 0.9, a weight decay of 5 · 10−4, and a one cycle scheduler
[47] with a maximum learning rate of 0.1. The augmentations used are cropping
and horizontal flip. For the transformers, a cosine scheduler [38] with an Adam
optimizer is used; we use standard augmentations for small scale transformers
(see [19] for extra details). More implementation details can be found in the
supplementary material. Table

Table 1: Table Accuracy of different
models on CIFAR100. NF-A is the clas-
sification accuracy of NFs, and CNN-A
is the accuracy of Resnet18 trained on
the generated images.

Model CIFAR10 CIFAR100
NF-A CNN-A NF-A CNN-A

Baseline 1 (CE) ✗ 75.54 ✗ 37.40
Baseline 2 (GLEM, λ = 0) 57.83 60.17 19.12 26.7
Baseline 3 (CEGLEM) 12.82 76.03 2.04 38.85
Our (GLEM) 92.02 77.39 67.67 45.22

Table 2: Comparison of different meth-
ods on CIFAR100 with the selected metrics.
According to these results, GLEM overtakes
the baselines.

Method
Metric NF-A ↑ CNN-A ↑ FID ↓ Cov ↑ L-R ↑

Baseline 1 (CE) ✗ 37.40 37.62 17.70 12.58
Baseline 2 (GLEM, λ = 0) 19.12 26.7 25.68 19.77 9.65
Baseline 3.1 (CEGLEM λ0 = 3) 2.23 39.40 27.34 17.83 16.38
Baseline 3.2 (CEGLEM λ0 = 10) 2.04 38.85 26.38 17.97 16.25
Our (GLEM λ0 = 3) 63.40 45.95 19.96 25.93 38.36
Our (GLEM λ0 = 10) 67.67 45.22 26.33 19.15 32.51

Performances. According to Table 1, GLEM outperforms the three aforemen-
tioned baselines, as the gaussians are well separated, and this provides better
image quality (see also Table 2) and more accurate labels; this is challenging
to achieve with baseline 1 as classes are totally intricate in the latent space.
Note that CEGLEM cannot be used alone (without CNNs [36]) for classifica-
tion, as test images should be appended with class-dependent codes which are
unknown on test data; furthermore, appending irrelevant (e.g., random) code
values creates a domain shift between training and test data which significantly
degrades classification performances (as displayed in Table 1). According to these
results, GLEM clearly outperforms all other baselines, which is corroborated
by the proxy metrics in Table 2. Subsequently, we study the behavior of our
GLEM model in the remaining experiments, mostly on the challenging dataset
CIFAR100.
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KLD Weighting. Table 3 shows the increasingly positive impact of GLEM
when λ takes sufficiently (but not very) large values. For small λ values, gaussians
are still intricate and this results into low classification performances. Conversely,
when λ is large, gaussians are highly separated but classification performances
decrease due to discontinuities in the learned gaussians (as shown through FID
scores). The proxy metrics show low visual quality (high FID), low coverage
(diversity), and also low label reliability when λ takes extreme values. By taking
into account those observations, gaussians that are closer to each other (but
“separated enough”) produce images of higher quality (for image classification)
than highly separated gaussians.

Table 3: Behavior of GLEM for differ-
ent mixing coefficients λ0 of LKLD on
CIFAR100. BPD is a metric that stands
for bits per dimension, and is commonly
used to see how well an NF has learned.

Method KLD for different λ0 values
1 3 5 10 15 20

NF-A ↑ 26.45 63.40 66.53 67.67 68.23 67.39
CNN-A ↑ 30.95 45.95 47.21 45.22 43.51 42.85
FID ↓ 21.54 19.96 23.71 26.33 31.36 35.83
Cov ↑ 23.86 25.93 22.0 19.14 16.17 14.35
L-R ↑ 21.04 38.36 35.39 32.52 30.10 24.66
BPD (5bits) ↓ 1.64 1.74 1.87 2.07 2.19 2.25

Table 4: Accuracy of CNN (ResNet18)
w.r.t. the number of NF generated train-
ing images (see extra details in the sup-
plementary material).
Sizes 1× 2× 5× 10× 20× 50× 100×
CIFAR10 81.02 82.48 84.25 84.45 85.77 86.59 87.14
CIFAR100 55.21 57.66 59.47 61.11 61.84 63.42 63.52

Table 5: Metrics obtained at different
sampling temperatures and RFCM (Rees-
timated Full Covariance Matrix) on CI-
FAR100. RFCM is obtained by projecting
training data belonging to a given class y
and reestimating its mean µy and its full
covariance matrix Σy. Note that RFCM
is achieved at the end of the EM training
procedure shown in Algorithm 1. RFCM
clearly makes covariance matrices more ex-
pressive and thereby yields globally better
accuracy and proxy metric performances.
The reparametrization factors used are a =
0.5, b = 0.2 and c = 0.05.

τ 1.2 1.1 1.0 0.9 0.8 0.7 RFCM

CNN-A ↑ 42.99 43.63 44.64 45.22 44.99 44.17 49.74
FID ↓ 30.15 28.17 26.90 26.33 26.45 27.21 25.55
Cov ↑ 16.13 17.21 18.47 19.15 19.33 19.19 22.47
L-R ↑ 26.82 28.92 30.86 32.51 33.67 34.69 33.56

Sampling. Gaussians in the latent space are sampled within a range τ w.r.t.
their centroids; this range τ is dubbed as temperature. This is obtained by rescal-
ing the covariance matrices by τ prior to sampling (as introduced in [31] for
NFs). Large values of τ imply diverse samples but visually less plausible, and
vice versa. Table 5 shows the impact of τ on the classification accuracy as well as
the other proxy metrics. As τ gets sufficiently (but not very) small, classification
performances improve, however, smaller values of τ degrade classification per-
formances since the quality and the diversity of the generated samples degrades
too (see FID and Coverage); this clearly shows that the actual distribution of
plausible and diverse samples do not lie near the gaussian centers, but instead
in a mid-distance between the centers and the extent of the gaussian (i.e., tem-
perature). Nonetheless, label reliability continues to improve since samples close
to the gaussian centroids have the least uncertain labels.

Cardinality. All classes are equally sampled to construct artificial datasets
whose sizes are multiples of the size of the original set. As shown in Table 4, the
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accuracy of the CNNs — trained on top of the generated samples — improve
significantly as more images are sampled from the NFs.

Table 6: This table shows an ablation
study on CIFAR100, where different cri-
teria (KLD term, Rep: reparametrization,
and RFCM) are gradually added. From
these results, we observe a high impact of
KLD in config #2 (better gaussian separa-
bility). When adding the reparametrization
(configs #3 and #4), we observe a lower
FID (better visual quality), higher cover-
age/Cov (better diversity) and higher L-R
(better Label Reliability) particularly when
λ is sufficiently (but not very) large (i.e.,
λ = 3) suggesting that a better continuum
and discrimination power are reached when
λ is appropriately set.

Setting NF-A ↑ CNN-A ↑ FID ↓ Cov. ↑ L-R ↑

#1: w/o KLD/Rep/RFCM 19.12 26.7 25.68 19.78 9.66
#2: w KLDλ0

= 10 38.21 27.87 22.96 21.96 24.59
#3: w KLDλ0

= 10 + Rep 67.67 45.22 26.33 19.15 32.51
#4: w KLDλ0

= 3 + Rep 63.40 45.95 19.96 25.93 38.36
#5: w KLDλ0

= 10

+ Rep + RFCM
67.50 49.74 25.55 22.47 33.56

Table 7: Ablation study on CIFAR100
w.r.t. the learned gaussian hyperparam-
eters. Bold and red scores respectively
show the best and the second best values
in the table. The best (overall) accuracy
scores are reached when learning both
µ and Σ. If only Σ is learned, the NF
reaches a higher accuracy, but both the
continuum between classes (proxy met-
rics) and CNN accuracy are degraded.
In these experiments, a, b and c of the
reparametrization are respectively set to
5.0, 0.2, 0.05 which leads to a better ob-
served trade-off on all the used metrics.
More details can be found in the supple-
mentary material.

Setting NF-A ↑ CNN-A ↑ FID ↓ Cov. ↑ L-R ↑

Only µ (λ0 = 10) 64.31 45.29 20.29 25.74 35.70
Only Σ (λ0 = 10) 66.91 41.16 36.02 15.76 30.18
Both µ and Σ (λ0 = 10) 66.49 46.12 21.43 24.39 36.38

Random Initialization
of µ and Σ

59.9 43.34 25.0 18.6 25.32

5.3 Ablation

Table 6 shows an ablation study and impact of different criteria used in GLEM.
From these results, we observe that KLD improves accuracy of NFs (and the
underlying CNNs) with a clear margin. We observe a similar behavior on the
proxy metrics (FID and Coverage as well as Label Reliability). Reparametriza-
tion brings an extra substantial gain to accuracy and label reliability, but not
to FID and Coverage when λ is overestimated; this is mainly due to high gaus-
sian separability which breaks the continuum (and thereby visual quality and
diversity) between the underlying classes. In contrast, a reasonably large λ value
(equal to 3) maintains comparable accuracy while improving significantly all the
proxy metrics. Note that without reparametrization, negative covariance matrix
entries are rounded — after each gradient descent step — to a lower bound
10 times smaller than the initial positive values of these entries (to avoid bad
conditioning). Table 6 also shows the impact of RFCM which globally makes
GLEM more effective. Finally, Table 7 shows an ablation study when µ and Σ
are separately and jointly learned. We observe that the best trade-off between
NF/CNN accuracy and the proxy metrics is reached when both µ and Σ are
jointly learned.
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5.4 Extra Comparison

We compare the results of GLEM with other generative models used for classifi-
cation (see Table 8). The proposed method is better than equivalent NFs using
GMMs in the latent space (blue rows). Furthermore, it can train classifiers reach-
ing higher accuracy (using artificial images) beside producing more meaningful
interpolations in the latent space (see Figure 4). It also matches the accuracy of
Invertible ResNets [6,9,39] that constrain ResNet architectures to be invertible
classifiers, or other generative models that do not preserve bijection (JEM++,
SHOT-VAE). To the best of our knowledge, our proposed method is also the
first to study the quality of both labels and images generated with conditional
NFs, using the three proxy metrics, together with the accuracy of the underlying
classifiers. The classifiers trained using artificial images (see lower part of Ta-
ble 8) are as good as GANs, and unlike the latter, NFs can sample more images
while continuously increasing those scores, as they do not suffer from a lack of
diversity.

We further investigate the use of GLEM for image augmentation and classi-
fication , by finetuning very large transformers models on ImageNet [11] dataset,
reaching enhanced generalization performances. To do so, we enrich training data
by mapping the underlying images from the ambient to the latent spaces, and by
disrupting the latent coordinates along principal modes using mixup operations.
Afterwards, the resulting disrupted latent representations are mapped back to
the ambient space using the NF generation function. This process implements
linear (resp. nonlinear) data augmentation in the latent (resp. ambient) space.
Table 9 shows classification results when finetuning pretrained transformers from
timm [55] library. We selected the most performant transformer with less than
100M parameters (an EVA02 [16,15]) that was originally ranked number 9 on
top 1 accuracy, and fine-tuned it on the NF-based augmented images. Figure 5
shows some interpolations, and Figure 6 shows some augmented images; addi-
tional details and experiments can be found in the supplementary material.

Fig. 4: Interpolations obtained using
GLEM (top) and IB-INN [3] (bot-
tom, taken from the paper) respec-
tively reaching a NF-A of 91.88% and
91.28% on CIFAR10.

Fig. 5: Pairwise interpolation using GLEM on ImageNet dataset.
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Table 8: Comparison of GLEM against
closely related works. Blue rows show all
the NF methods that classify using a
GMM in the latent space (bold scores
show the best results among them). NF
+ MLP are normalizing flows that clas-
sify with an MLP using a classification
loss in the last layer. Red scores show
the overall best results in the table. The
lower part of the table shows the accuracy
of CNNs trained on artificial images, for
different generative models including IB-
INN* (retrained following the setting in
[3]).GLEM100× corresponds to the result
from table 4, trained with 100 times more
data. NA stands for not available.

Accuracy
Method

CIFAR10 CIFAR100
Model

GLEM (ours) 92.63 70.11 NF + GMM
IB-INN [3] 91.28 66.22 NF + GMM

IB-INN + KLJ [48] 88.6 NF + GMM
FLOWGMM [26] 88.44 NF + GMM

ULCGM [18] 84.0
NA

NF + GMM
Monotone Flow [1] 93.4

NA
NF + MLP

i-DenseNets [42] 92.40 NF + MLP
Residual NF [9] 91.78 NF + MLP

Invertible ResNets [6] 93.22 75.42 NF + MLP
Implicit NF [39] 92.71 70.94 NF + MLP

JEM++ [61] 94.1 74.5 EBM + GMM
SHOT-VAE [17] 93.89 74.70 VAE

GLEM (ours)+CNN 80.03 53.07 NF + CNN
GLEM100× (ours)+CNN 87.14 63.52 NF + CNN

IB-INN*+CNN 42.87 19.20 NF + CNN
SNGAN [46] 82.2 45.0 GAN + CNN

Table 9: Comparison of NF based aug-
mentations with the best models from
timm. It can be noted the GLEM based
augmentation (blue) achieves the highest
rank, in term of top1 accuracy, and the
second highest in term of top5 accuracy. It
also outperforms much larger transformers
with 1B parameters. IS stands for image
size in pixels. Besides timm, OmniVec [49]
and ViT-G/14 soup [56] achieve higher re-
sults of 92.4% and 91.78%.

model name top1-acc top5-acc params in M IS
EVA02 base [15,51]

GLEM augmentations (ours) 91.229 98.854 87.12 4482

EVA02 LARGE [15,51] 91.129 98.713 305.08 4482

EVA GIANT [16] 90.969 98.672 1,014.45 5602

EVA02 base [15,51] 90.896 98.802 87.12 4482

CAFormer [62] 90.781 98.860 98.75 3842

Beit [14,5] 90.687 98.753 305.67 5122

VOLO [63] 90.614 98.698 296.09 5122

Fig. 6: 3 augmented images using GLEM
(right), compared with the original image
from ImageNet (left).

6 Conclusion

In this paper, we propose a new method that conditions NFs on multimodal
gaussians with learned hyperparameters and controllable latent distributions.
Our method achieves state of the art results, and outperforms closely related
work both in classification accuracy as well as proxy metrics (including image
diversity and label reliability). The strength of our method also resides in its
ability to learn continuums of untangled gaussians using a loss that mixes a
maximum likelihood criterion and a KLD term. As shown through the paper,
the former enhances the generative properties of the resulting NFs while the
latter improves their discrimination power. Extensive experiments — including
model analysis, ablation study and comparisons — show the positive impact of
our model both on classification accuracy and other proxy metrics.
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