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Conditions for QSR-dissipativity of the interconnection of hybrid systems
with the sum of storage functions

Thiago Alves Lima Marc Jungers, Member, IEEE

Abstract— This note explores the QSR-dissipativity of a class
of hybrid dynamical systems. We first revisit and extend some
existing definitions of dissipativity for hybrid systems. Subse-
quently, we explore some results regarding the relations between
the QSR-dissipativity property of one open hybrid subsystem
and its stability. Next, we shift focus to studying the negative-
feedback interconnection of two hybrid subsystems, deriving
new results about the existence of storage functions guaranteeing
that the interconnection between two individual QSR-dissipative
hybrid subsystems remains QSR-dissipative in the presence
of external input signals. Analyzing such interconnections of
hybrid systems may be intricate due to the possibility of both
synchronous and asynchronous jumps occurring among the
two subsystems, as previously acknowledged by the existing
literature.

I. INTRODUCTION

For an autonomous dynamical system, roughly speaking
isolated from their environment, a Lyapunov function is
an abstract energy that is of crucial importance for its
stability analysis. This energy approach has been extended
to the energy balance of input–state–output systems with
their environment by Willems [1], [2], and also by Hill and
Moylan [3]. These input–state–output systems are also called
open in opposition to autonomous/isolated systems and allow
exchanges of energy with the environment, by following a
vocabulary from Physics. The intuitive idea is that an open
dynamical system interacts with its environment through
its inputs and outputs: a given function of these variables
(the supply rate) represents how a relevant quantity (abstract
energy) flows in and out of the system. The supply is split
into two parts: a part is stored and an other one is dissipated.
The stored amount (storage function) is a function of the
state of the system.

Two of the most important features of dissipativity are
that, under suitable conditions, a dissipative system without
input might be stable (the storage function leading naturally
to a potential candidate Lyapunov function) [3], [4] and
that dissipativity can be much more easily propagated
structurally by connections of subsystems, in contrast to
the stability properties. The study of dissipativity theory and
its fundamental role in analyzing and controlling dynamical
systems is also extremely active. Several interesting and strong
contributions were recently published, whereas a two-part
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special edition of the IEEE Control Systems Magazine (CSM)
was entirely dedicated to the subject in 2022, [5], [6].

A large attention has been dedicated to extend the dis-
sipativity to complex systems such as constrained systems,
impulsive systems, switched systems or hybrid systems, with
a particular focus on passivity, which is a particular case
of dissipativity. Among the large literature, we can cite, as
surveys, [7]–[9] in addition to significant papers related to
hybrid automatas [10], [11], the dissipativity of impulsive
systems from [12]–[14], the passivity of hybrid systems [9],
[15]–[17], the dissipativity of switched systems [18]–[20].
Generally the class of supply rates is chosen to be the class of
quadratic forms with respect to the extended vector gathering
the inputs and the outputs. Such a choice, referred to as
Quadratic Supply Rate (QSR)-dissipativity, allows to obtain
outstanding results dealing with the QSR-dissipativity of the
connection between subsystems.

This note aims to revisit QSR-dissipativity for hybrid
dynamical systems when using the formalism provided in [21].
Generic and new sufficient conditions for the propagation
of the QSR-dissipativity for the negative feedback inter-
connection are provided. The two cases considering QSR-
dissipativity with a prescribed hybrid supply rate or some
hybrid supply rate are investigated. These conditions consist
in the unification, with a coherent formalism, of several results
in the literature for various frameworks and various types of
systems.

The contributions of this paper with respect to the recent
literature are as follows:

• Extension of the result dealing with the passivity in [16],
[17] to the framework of dissipativity;

• Extension of the framework of dissipativity for switched
systems to the framework of hybrid systems [18];

• Consider the results in [10] with the formalism of [21],
in order to cope also with jump-dissipativity and jumps
of the state.

• Consider interconnections of hybrid systems with outputs
and exogenous inputs, as opposed to the setting obtained
as a decomposition of an autonomous system in [4],
where supply rates are neither functions of the outputs
nor of external inputs.

The paper is organized as follows. Section II presents firstly
the framework of hybrid system and (QSR)-dissipativity and
recalls secondly the strong link with stability. Section III
provides the main unification result gathering the conditions
to ensure the QSR-dissipativity of the negative feedback inter-
connection of two hybrid subsystems. Section IV is dedicated
to a collection of comments and corollaries recovering known



results of the literature. Finally Section V concludes the paper
and offers a few perspectives.

Notation. The sets R, R≥0, Rn and Rn×m denote the
set of real numbers, the set of real non-negative numbers,
the n-dimensional Euclidean space and the set of all real
n × m matrices, respectively. For a matrix Y , Y ⊤ means
its transpose. Sn stands for the set of symmetric matrices of
dimension n. For matrices W,Z ∈ Sn, W ≻ Z (W ⪰ Z)
means that W − Z is positive (semi-)definite, and W ≺
Z means that W − Z is negative definite. In and 0n×m

denote identity matrix of dimension n×n and null matrix of
dimension n×m, with 0n = 0n×n. The ⋆ in the expression
of a matrix denotes symmetric blocks. For square matrices W
and Z, diag(W,Z) corresponds to the block-diagonal matrix.
For x ∈ Rn, |x| denotes its Euclidean norm and given a
closed set A ⊂ Rn, |x|A = minz∈A |x − z| denotes the
distance from x to the set A. A function α : R≥0 → R≥0

is of class-K if it is continuous, zero at zero and strictly
increasing. A function α : R≥0 → R≥0 is of class-K∞, if
it is of class-K and if limt→+∞ α(t) = +∞. For a set S, S
denotes its closure.

II. PRELIMINARIES

This section introduces the studied setting and recalls the
necessary definitions and tools.

A. Preliminaries on dissipativity of hybrid systems

An open (or input-state-output) hybrid dynamical system
may be defined, as in [21], by

H̃ :


ẋ ∈ F̃ (x, uc), (x, uc) ∈ C̃,

x+ ∈ G̃(x, ud), (x, ud) ∈ D̃,

yc = h̃c(x),

yd = h̃d(x).

(1)

In H̃, depicted on Fig. 1, x ∈ Rn is the state, uc ∈ Rmc and
ud ∈ Rmd are the controlled inputs for the flows and jumps,
which may be gathered in a concatenated input vector u =[
u⊤
c u⊤

d

]⊤ ∈ Rmc+md , while yc ∈ Rpc and yd ∈ Rpd

are the outputs, which may be gathered in a concatenated
output y =

[
y⊤c y⊤d

]⊤ ∈ Rpc+pd and are functions of
the state thanks respectively to functions h̃c : Rn → Rpc

and h̃d : Rn → Rpd . The set C̃ ⊂ Rn × Rmc is the flow
set and the set-valued mapping F̃ : Rn × Rmc ⇒ Rn is the
flow map. The set D̃ ⊂ Rn × Rmd is the jump set and the
set-valued mapping G̃ : Rn × Rmd ⇒ Rn is the jump map.
In the sequel, we assume the hybrid basic conditions [21,
Section 6.2] that ensure the nominal well-posedness.

H̃
uc

ud

yc
yd

Fig. 1. An open hybrid system H̃.

Dissipativity basically means that the variation of the
energy stored in the system is no more than the supplied

energy from outside the system. Besides this intuitive idea,
there exists a large variety of points of view for dissipativity
leading to several types of formalism and definitions. In his
seminal paper [1], Willems presented two main approaches:
the definition of dissipativity with a storage function and
the related dissipation inequality and also the definition of
dissipativity free of a storage function by a fixed lower bound
for the integral of supply rate. Under suitable conditions, such
as controllability, Dynamics Programming establishes bridges
between the two definitions (see [1], [7], [22]). Here we will
consider the local dissipation inequalities point of view.

First of all, let us define a candidate storage function related
to a compact set.

Definition 1. [9, Definition 9.3] Let A ⊂ Rn be a compact
set. The function V : domV → R≥0 is a candidate storage
function with respect to A associated to the hybrid system (1)
if the following conditions hold:

• Πc(C̃)∪Πd(D̃)∪ G̃(D̃) ⊂ domV , where for a set Sc ⊂
Rn × Rmc , Πc(Sc) := {x ∈ Rn,∃uc ∈ Rmc , (x, uc) ∈
Sc} and for a set Sd ⊂ Rn × Rmd , Πd(Sd) := {x ∈
Rn,∃ud ∈ Rmd , (x, ud) ∈ Sd};

• V is continuously differentiable1 on an open set con-
taining Πc(C̃);

• there exists a K-function α1 such that α1(|x|A) ≤ V (x),
for all x ∈ Πc(C̃) ∪ Πd(D̃) ∪ G̃(D̃) and V (A) = 0.
Roughly speaking2, V is positive definite with respect
to A on Πc(C̃) ∪Πd(D̃) ∪ G̃(D̃).

By following [8, Chapters 3 and 12] and [4], [16], we have
the next definitions.

Definition 2. Consider two functions rc : Rmc × Rpc → R
and rd : Rmd×Rpd → R. A hybrid system H̃ described by (1)
is said to be dissipative with respect to a couple of supply rates
(rc, rd) (rc and rd are then respectively called continuous
and discrete supply rates, or flow and jump supply rates),
if there exists a candidate storage function V : Rn → R≥0,
that satisfies:{
⟨∇V (x); ξ⟩≤ rc(uc, yc),∀(x, uc)∈ C̃,∀ξ∈ F̃ (x, uc),

V (η)− V (x)≤ rd(ud, yd),∀(x, ud)∈D̃,∀η∈G̃(x, ud).
(2)

V is thus called a storage function for H̃. Furthermore,
it is said to be “flow-dissipative” (respectively, “jump-
dissipative”) if it is dissipative with rd ≡ 0 (respectively,
rc ≡ 0). Finally, the hybrid system H̃ is called strictly
dissipative if it is dissipative and there exist two positive
definite functions with respect to A, ρc, ρd : Rn → R≥0 such
that the storage function satisfies

⟨∇V (x); ξ⟩+ ρc(x) ≤ rc(uc, yc),

∀(x, uc) ∈ C̃,∀ξ ∈ F̃ (x, uc),

V (η)− V (x) + ρd(x) ≤ rd(ud, yd),

∀(x, ud) ∈ D̃,∀η ∈ G̃(x, ud).

(3)

1This assumption may be relaxed to V continuous and local Lipschitz,
see [9, Definition 9.3]

2See [9, Definition A.26]. Given two nonempty sets A ⊂ S, a function
V : S → R≥0 is said to be positive definite with respect to A on S, if
V (x) > 0 for all x ∈ S/A and V (A) = 0.



An important special case of dissipativity is passivity.
Indeed, passivity has played a crucial role in the field of
control systems theory thanks to its structural properties:
strong link to the stability of a system; system’s performance
improved by a feedback control (see for instance [23] for
passivity-based control (PBC) techniques). In the case of
hybrid systems, the following definition takes place for
passivity [17].

Definition 3. A hybrid system H̃, with mc = pc and md = pd,
is called passive if it is dissipative with respect to a couple
of supply rates (rc, rd) defined by rc(uc, yc) = u⊤

c yc and
rd(ud, yd) = u⊤

d yd. Furthermore, it is called flow-passive
(respectively, jump-passive) if it is passive with rd ≡ 0
(respectively, rc ≡ 0).

Remark 1. Passivity is motivated by a large class of practical
systems, for which the supply rates correspond to the physical
power, as a product of kinetic and potential values (as for
instance electrical current and voltage) generally gathered
as outputs and inputs of the system. Their dimensions are
constrained to mc = pc and md = pd.

Dissipativity with quadratic supply rates (QSR) offers a less
restrictive analysis of dynamical systems as it encompasses
passivity and other well-studied characteristics of dynamical
systems such as l2-gain analysis.

Definition 4. A hybrid system H̃ is called QSR-dissipative
if it is dissipative with respect to a couple of supply rates
(rc, rd), called hybrid supply rate, given by

rc(uc, yc) = y⊤c Qcyc + 2y⊤c Scuc + u⊤
c Rcuc,

rd(ud, yd) = y⊤d Qdyd + 2y⊤d Sdud + u⊤
d Rdud,

for matrices Qj ∈ Spj
, Sj ∈ Rpj×mj , Rj ∈ Smj

, j ∈ {c, d}.
Furthermore, it is called QSR-flow-dissipative (respectively,
QSR-jump-dissipative) if it is QSR-dissipative with rd ≡ 0
(respectively, rc ≡ 0).

Note that, by definition, passive systems are also QSR-
dissipative, but the converse is false. Besides allowing to study
systems with different numbers of inputs and outputs, QSR-
dissipativity also allows analyzing systems with unstable
internal dynamics3, which is not possible in the passivity
setting when the storage function is positive definite.

It should be underlined that the notion of dissipativity for
hybrid systems is not intuitive. As an illustration, consider the
particular case of the passivity of switched systems: Switching
between passive systems may render the switched system
not passive [24]. Conversely, by switching adequately, it is
possible to render passive a switched system with non-passive
modes [20]. See also [15], [18] and [25].

B. Implication of QSR-dissipativity about stability

As mentionned in the work of Willems [1] and also Hill and
Moylan [3], the dissipativity is useful for the stability analysis
via Lyapunov method. First of all, the candidate storage

3i.e., the dynamics of the zero-input system uc ≡ 0, ud ≡ 0.

function with respect to a compact set A is a natural choice for
a candidate Lyapunov function. Nevertheless, the conditions
in Definition 1 are not enough. We need to strengthen these
assumptions (see [21, Definition 7.21]) by assuming that there
exist K∞-functions α1 and α2 such that the candidate storage
function is bounded by:

α1(|x|A) ≤ V (x) ≤ α2(|x|A). (4)

We can summarize the following results.

Proposition 1. Suppose that the hybrid system H̃ is strictly
QSR-dissipative, with respect to a compact set A, and that the
storage function satisfies (4), with Qc ⪯ 0 and Qd ⪯ 0, then
its zero-input dynamics (uc ≡ 0, ud ≡ 0) is asymptotically
stable, with respect to A.

Proof. The proof is obtained by rewriting Conditions (3) and
by following [21].

The strict QSR-dissipativity can be relaxed thanks to a zero-
state detectability argument as provided in [3] and extended
for hybrid system framework in [4].

Proposition 2. Suppose that the hybrid system H̃ is QSR-
dissipative, that the storage function satisfied (4), and finally
that H̃ is zero-state detectable. Then its zero-input dynamics
(uc ≡ 0, ud ≡ 0) is asymptotically stable if Qc ≺ 0 and
Qd ≺ 0 and stable if Qc ⪯ 0 and Qd ⪯ 0.

Remark 2. Passivity may be a restrictive property. By
definition, it imposes mc = pc and md = pd. Furthermore,
with Qc = 0 and Qd = 0, it establishes a strong link with
stable systems thanks to the previous propositions. See [17]
for detailed results.

Remark 3. It is noteworthy that generally the dissipativity is
referred to as w.r.t a compact A, see for instance [17] and [9,
Chapter 9]. This is mainly related to the candidate storage
function (Definition 1) and stability analysis purposes but the
dissipation inequalities do not involve explicitly A.

In addition to the consequences of dissipativity in terms of
stability, one other fundamental property of dissipativity is
its potential and conditional propagation by interconnecting
systems, in contrast to the notion of stability. This statement
is more challenging for the interconnection of hybrid systems,
mainly due to the fact that they may jump asynchronously.
The following section investigates the QSR-dissipativity of
the negative feedback interconnection of hybrid systems.

III. NEGATIVE FEEDBACK INTERCONNECTION OF HYBRID
SYSTEMS

Among the most significant interconnections in control
theory, it is natural to consider the negative feedback-
interconnection of two open-hybrid systems Hi of states
xi, i ∈ {1, 2}, each of them described by (1). In order to
allow the connections graphically represented in Fig. 2, we
impose mj,1 = pj,2, mj,2 = pj,1, for all j ∈ {c, d}4. Roughly

4Note that, differently from passivity, QSR-dissipativity allows for mj,1 ̸=
pj,1 and mj,2 ̸= pj,2, for j ∈ {c, d}, that is, for different number of inputs
and outputs in each subsystem.



speaking, we have the connections{
uj,1 = ũj,1 − yj,2,
uj,2 = ũj,2 + yj,1,

∀j ∈ {c, d}, (5)

where ũj,1 and ũj,2 are additional external inputs.

H1 •

H2•

•

•+
-

+
-

+
+

+
+

ũc,1

ũd,1

uc,1

ud,1

yc,1
yd,1

yc,2
yd,2

ũc,2

ũd,2

uc,2

ud,2

Fig. 2. Negative feedback interconnection H12 of two hybrid systems H1

and H2.

That results in a new augmented open hybrid system H12

described by (1) by setting, ∀j ∈ {c, d}:

x =

[
x1

x2

]
, uj =

[
uj,1

uj,2

]
, ũj =

[
ũj,1

ũj,2

]
, yj =

[
yj,1
yj,2

]
F (x, ũc) =

[
F̃1(x1, ũc,1 − yc,2)

F̃2(x2, ũc,2 + yc,1)

]
,

G(x, ũd) defined by (11) and flow and jump sets C and
D defined, respectively, by (12) and (13). Note that the
expression of the jump map G(x, ũd) is more intricate due
to the fact that the jumps of the two hybrid subsystems H1

and H2 may occur simultaneously or asynchronously.
Such interconnection between open hybrid systems plays

a crucial role in the study of networks of systems. It may be
also viewed as the fundamental negative closed loop between
a hybrid system and a controller that is also a hybrid system.
Such interconnection should be considered with care, see [26]
for a detailed discussion. For instance, we may have the
following issues:

• The interconnection between hybrid systems may have
(new) Zeno solutions, that do not belong to the set of
solutions to every subsystem; and in this case reduce
the hybrid time-domain of the solutions;

• The time domain of the solutions of the interconnection
and the time domain of the individual subsystems may
be of different nature due to possible empty individual
jump- or flow-sets.

Several particular frameworks of QSR-dissipative (pas-
sivity [17] or small-gain theorems [26]–[28]) have been
well studied. Nevertheless, the generic QSR-dissipativity of
interconnected hybrid systems is under-examined and needs
additional clarifications. We can only cite [10], [11] which
consider a specific finite and hybrid automata.

Physically, it is natural to think that the energy of the
interconnected system is the sum of the energies of the
subsystems composing the interconnection. Here because
the storage function is an abstract energy, it is natural to
look for weighted sums of the storage functions of the
subsystems for the storage function of the interconnection,

that is V (x) = α1V1(x1) + α2V2(x2), with α1 > 0 and
α2 > 0. This class of storage functions may be normalized
by setting α1 = 1 and α2 = α > 0.

The following theorem provides results about the QSR-
dissipativity of the negative feedback interconnection in Fig. 2
and defined by (5)-(13). Corollaries concerning QSR-flow-
dissipativity and QSR-jump-dissipativity will follow in the
next section.

Theorem 1. Assume that, for each i ∈ {1, 2}, Hi is QSR-
dissipative with C1-storage function Vi : Rni → R≥0, with
respect to a compact set Ai and associated to the continuous
supply rate rc,i, defined by matrices Qc,i ∈ Spc,i

, Sc,i ∈
Rpc,i×mc,i and Rc,i ∈ Smc,i

, and to the discrete supply rate
rd,i, defined by matrices Qd,i ∈ Spd,i

, Sd,i ∈ Rpd,i×md,i

and Rd,i ∈ Smd,i
. Denote ζd and ζc the extended vectors

ζj =
[
y⊤j ũ⊤

j

]⊤ ∈ Rpj,1+pj,2+mj,1+mj,2 , ∀j ∈ {c, d}. Then
the interconnected hybrid system H12, depicted by Fig. 2, is
also QSR-dissipative with storage function V : Rn1+n2 →
R≥0, x 7→ V1(x1) + αV2(x2), with respect to the compact
set A12 = A1 ×A2, α > 0, related to the continuous supply
rate

rc,12(ũc, yc) = ζ⊤c Mcζc, Mc =

[
Qc,12 Sc,12

⋆ Rc,12

]
, (6)

with

Qc,12 =

[
Qc,1 + αRc,2 −Sc,1 + αS⊤

c,2

⋆ Rc,1 + αQc,2

]
,

Sc,12 =

[
Sc,1 αRc,2

−Rc,1 αSc,2

]
,

Rc,12 = diag(Rc,1, αRc,2),

and to the discrete supply rate

rd,12(ũd, yd) = ζ⊤d Mdζd, Md =

[
Qd,12 Sd,12

⋆ Rd,12

]
, (7)

where Qd,12 ∈ Spd,1+pd,2
, Sd,12 ∈ R(pd,1+pd,2)×(md,1+md,2),

and Rd,12 ∈ Smd,1+md,2
are matrices fulfilling the three

following conditions:

i)
ζ⊤d (M1 −Md)ζd ≤ 0, (8)

∀(x, ũd) ∈ Rn1+n2 ×Rmd,1+md,2 such that (x1, ũd,1 −
h̃d,2(x2)) ∈ D̃1 and (x2, ũd,2 + hd,1(x1)) ̸∈ D̃2;

ii)
ζ⊤d (αM2 −Md)ζd ≤ 0, (9)

∀(x, ũd) ∈ Rn1+n2 ×Rmd,1+md,2 such that (x1, ũd,1 −
h̃d,2(x2)) ̸∈ D̃1 and (x2, ũd,2 + hd,1(x1)) ∈ D̃2;

iii)
ζ⊤d (M1 + αM2 −Md)ζd ≤ 0, (10)

∀(x, ũd) ∈ Rn1+n2 ×Rmd,1+md,2 such that (x1, ũd,1 −
h̃d,2(x2)) ∈ D̃1 and (x2, ũd,2 + hd,1(x1)) ∈ D̃2,

where M1 and M2 are defined as



G(x, ũd) =



{[
η1

x2

]
, ∀η1 ∈ G̃1(x1, ũd,1 − h̃d,2(x2))

}
if (x1, ũd,1 − h̃d,2(x2)) ∈ D̃1 and (x2, ũd,2 + hd,1(x1)) ̸∈ D̃2;{[

x1

η2

]
, ∀η2 ∈ G̃2(x2, ũd,2 + hd,1(x1))

}
if (x1, ũd,1 − h̃d,2(x2)) ̸∈ D̃1 and (x2, ũd,2 + hd,1(x1)) ∈ D̃2;{[

η1

η2

]
, ∀(η1, η2) ∈ G̃1(x1, ũd,1 − h̃d,2(x2))× G̃2(x2, ũd,2 + h̃d,1(x1))

}
if (x1, ũd,1 − h̃d,2(x2)) ∈ D̃1 and (x2, ũd,2 + h̃d,1(x1)) ∈ D̃2;

(11)

C = {(x, ũc) ∈ Rn1+n2 × Rmc,1+mc,2 : (x1, ũc,1 − h̃c,2(x2)) ∈ C̃1, (x2, ũc,2 + h̃c,1(x1)) ∈ C̃2}; (12)

D = {(x, ũd) ∈ Rn1+n2 × Rmd,1+md,2 : (x1, ũd,1 − h̃d,2(x2)) ∈ D̃1}
∪ {(x, ud) ∈ Rn1+n2+md,1+md,2 : (x2, ũd,2 + h̃d,1(x1)) ∈ D̃2}. (13)

M1 =


Qd,1 −Sd,1 Sd,1 0p1×m2

⋆ Rd,1 −Rd,1 0p2×m2

⋆ ⋆ Rd,1 0m1×m2

⋆ ⋆ ⋆ 0m2

 , (14)

M2 =


Rd,2 Sd,2 0p1×m1

Rd,2

⋆ Qd,2 0p2×m1 Sd,2

⋆ ⋆ 0m1
0m1×m2

⋆ ⋆ ⋆ Rd,2

 . (15)

There are two ways to read Theorem 1:
• If Md is given, Conditions (8)–(10) are a test to check

the prescribed supply rate induced by Md;
• If Md is free, such a matrix can always be found so

that H12 is QSR-dissipative with respect to some hybrid
supply rate. This is ensured by the feasibility of the linear
matrix inequalities M1 −Md ≺ 0, αM2 −Md ≺ 0 and
M1 + αM2 − Md ≺ 0 with respect to the symmetric
variable Md, and by consequence the feasibility of
conditions (8)–(10).

Proof. The proof consists in two parts. The first one is
dedicated to the flow behaviour and the second part to the
jump one.

Flow behaviour: For all (x, ũc) ∈ C, for all ξ =[
ξ⊤1 ξ⊤2

]⊤ ∈ F (x, ũc), it yields:

⟨∇V (x); ξ⟩ = ⟨∇V1(x1); ξ1⟩+ α⟨∇V2(x2); ξ2⟩
≤ rc,1(ũc,1 − yc,2, yc,1) + αrc,2(ũc,2 + yc,1, yc,2)

= rc,12(ũc, yc),

with rc,12 defined in Equation (6).
Jump behaviour: Thanks to the relation of the intercon-

nection we can reformulate:

rd,1(ũd,1 − yd,2, yd,1) = ζ⊤d M1ζd; (16)
rd,2(ũd,2 + yd,1, yd,2) = ζ⊤d M2ζd. (17)

For all (x, ũd) ∈ D, for all η =
[
η⊤1 η⊤2

]⊤ ∈ G(x, ũd),
we have:

V (η)−V (x) = V1(η1)−V1(x1)+α(V2(η2)−V2(x2)). (18)

In order to upper the latter, let us consider η =[
η⊤1 η⊤2

]⊤ ∈ G(x, ũd) and the three cases covering
(x, ũd) ∈ D:

i) For all (x, ũd) such that (x1, ũd,1− h̃d,2(x2)) ∈ D̃1 and
(x2, ũd,2 + hd,1(x1)) ̸∈ D̃2: we have that η2 = x2 and
it yields, thanks to Condition (8):

V (η)− V (x) = V1(η1)− V1(x1),

≤ rd,1(ũd,1 − yd,2, yd,1),

≤ rd,12(ũd, yd). (19)

ii) For all (x, ũd) such that (x1, ũd,1− h̃d,2(x2)) ̸∈ D̃1 and
(x2, ũd,2 + hd,1(x1)) ∈ D̃2: we have that η1 = x1 and
it yields, thanks to Condition (9):

V (η)− V (x) = α(V2(η2)− V2(x2)),

≤ αrd,2(ũd,2 + yd,1, yd,2),

≤ rd,12(ũd, yd). (20)

iii) For all (x, ũd) such that (x1, ũd,1 − h̃d,2(x2)) ∈ D̃1

and (x2, ũd,2 + hd,1(x1)) ∈ D̃2: it yields, thanks to
Condition (10):

V (η)− V (x) = V1(η1)− V1(x1) + α(V2(η2)− V2(x2)),

≤ rd,1(ũd,1 − yd,2, yd,1)

+αrd,2(ũd,2 + yd,1, yd,2),

≤ rd,12(ũd, yd). (21)

In all the cases, V (η) − V (x) ≤ rd,12(ũd, yd), which
concludes the proof.

Theorem 1 calls a large set of comments and several
comparisons and discussions, gathered in the next section.



IV. DISCUSSIONS AND COMPARISONS

Derivations of Theorem 1 in particular cases lead to the
following corollaries, recalling contributions in the literature.

Corollary 1. The interconnection of flow- (respectively jump)
QSR-dissipative hybrid systems is flow- (respectively jump)
QSR-dissipative.

Proof. In the flow context, Theorem 1 applies with M1 =
M2 = Md = 0 and Conditions (8)–(10) are trivially satisfied.
In the jump context, Theorem 1 applies with Mc = 0.

Corollary 2. The interconnection of flow-passive hybrid
systems is flow-passive.

Proof. Theorem 1 applies by imposing α = 1 and Qc,i =
Rc,i = 0 Sc,i = 1/2I for i ∈ {1, 2}.

Corollary 3. The interconnection of jump-passive hybrid
systems is jump-passive if the two following conditions hold:

a) −y⊤d,2(yd,1 + ũd,2) ≤ 0, ∀(x, ũd) ∈ Rn1+n2 ×
Rmd,1+md,2 such that (x1, ũd,1 − h̃d,2(x2)) ∈ D̃1 and
(x2, ũd,2 + hd,1(x1)) ̸∈ D̃2;

b) y⊤d,1(yd,2− ũd,1) ≤ 0, ∀(x, ũd) ∈ Rn1+n2 ×Rmd,1+md,2

such that (x1, ũd,1 − h̃d,2(x2)) ̸∈ D̃1 and (x2, ũd,2 +
hd,1(x1)) ∈ D̃2.

Proof. In the jump-passive context, selecting α = 1, Md =[
0 I
I 0

]
in Theorem 1 vanishes condition (10). In addition,

in conditions (8)–(9), inequalities ζ⊤d (M1 −Md)ζd ≤ 0 and
ζ⊤d (M2−Md)ζd ≤ 0 respectively read −y⊤d,2(yd,1+ũd,2) ≤ 0

and y⊤d,1(yd,2 − ũd,1) ≤ 0.

Corollaries 2 and 3 recover respectively [17, Theorem 1]
and [17, Theorem 2].

V. CONCLUSIONS

In this work, we provided new unifying results regarding the
negative-feedback interconnection of hybrid QSR-dissipative
systems. Theorem 1 can either be used to test whereas
the weighted sum of storages is a storage guaranteeing the
QSR-dissipativity property of the interconnection for a pre-
described supply rate function or to derive simple (and always
feasible) LMI tests assuring that the interconnection is QSR-
dissipative concerning a new supply rate function to be found.
Future work will regard the extension to possibly more general
interconnections, as in the setting of [29], and the exploration
of relations between QSR-dissipativity and the stabilizability
of hybrid subsystems, as recently studied for both nonlinear
continuous [30] and discrete-time systems [31].
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