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We study the energy stability of pressure-driven laminar magnetohydrodynamic flow in
a rectangular duct with transverse homogeneous magnetic field and electrically insulating
walls. For sufficiently strong fields, the laminar velocity distribution has a uniform core
and convex Hartmann and Shercliff boundary layers on the walls perpendicular and parallel
to the magnetic field. The problem is discretized by a double expansion in Chebyshev
polynomials in the cross-stream coordinates. The linear eigenvalue problem for the critical
Reynolds number depends on the streamwise wavenumber, Hartmann number and the aspect
ratio. We consider the limits of small and large aspect ratios in order to compare with
stability models based on one-dimensional base flows. For large aspect ratios we find good
numerical agreement with results based on the quasi-two-dimensional approximation. The
lift-up mechanism dominates in the limit of zero streamwise wavenumber and provides a
linear dependence between the critical Reynolds and Hartmann number in the duct. The duct
results for small aspect ratio converge to Orr’s original energy stability result for spanwise
uniform perturbations imposed on the plane Poiseuille base flow. We also examine different
possible symmetries of eigenmodes as well as the purely hydrodynamic case in the duct
geometry.

Key words:

1. Introduction
The main goal of hydrodynamic stability theory is to predict the parameters for which a given
laminar flow can lose its stability and, possibly, turn turbulent. It requires monitoring both
the short-time and the long-time fate of infinitesimal disturbances to the so-called base flow
(Schmid & Henningson 2001). The concept of energy stability threshold is a key element
of the associated toolbox. It refers to the largest value of the governing parameter (here the
Reynolds number) below which the kinetic energy of all disturbances decays monotonically
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in time, regardless of their amplitude. For many academical flow cases the value of that
threshold, denoted Re𝐸 , matches exactly the value above which unstable modes are found.
For flows characterised by strong non-normality of the associated linear operator, however,
Re𝐸 lies strictly below the onset of instability. Such flows include most incompressible flows
dominated by shear. Rather than separating stable from unstable regimes, it divides the
real Re-axis into a lower range (Re ⩽ Re𝐸) where all disturbances monotonically decay,
and an upper range (Re > Re𝐸) where energy growth is momentarily possible, possibly
transient, at least for well-chosen initial conditions. Early historical examples of energy
stability calculations include the works of Joseph, Busse and co-authors in simple subcritical
flow configurations such as plane Couette flow, plane Poiseuille flow or pipe flow (Joseph &
Carmi 1969; Joseph 1971; Busse 1969, 1972), which have been revised recently (Falsaperla
et al. 2019; Xiong & Chen 2019; Nagy 2022). The transition to turbulence in such flows
is known to be subcritical in Reynolds number, and to be dominated by linear yet non-
normal effects (Trefethen et al. 1993; Reddy & Henningson 1993). Since the exact transition
thresholds for actual subcritical transition is statistical it is typically difficult to evaluate
(Lemoult et al. 2016; Kashyap et al. 2022). The value of Re𝐸 given by energy stability theory
appears as a much simpler quantity to evaluate in practice, since it is based mostly on linear
mechanisms and is perfectly well-defined mathematically speaking.

Energy stability remains an important robustness indicator also for stable flow regimes,
as it indicates a safe range of Reynolds numbers in which the flow can be operated without
any risk of transition. Additional forces acting on a given flow affect the momentum and
the energy balance, which can have a quantitative repercussion on the value of Re𝐸 . We
focus in this article on flows of liquid metals in channels and ducts in the presence of an
imposed magnetic field. While this configuration is relevant for certain applications such
as liquid metal cooling systems for fusion reactors (Müller & Bühler 2001), it remains a
simplified configuration that is of fundamental interest in magnetohydrodynamic research
since the beginning of the field (Hartmann & Lazarus 1937). For the parameters under
study, the magnetic Reynolds number Re𝑚 is small enough so that the classical low-Re𝑚
approximation (Müller & Bühler 2001) holds, and no induction equation needs be taken into
account. The magnetic field, depending on its orientation, generates Lorentz forces inside
the flow which can modify the net force balance, while the presence of an electrical current
contributes to increased dissipation. In particular, the global stability of the laminar flow
can be enhanced if all velocity perturbations are damped by magnetic effects. This results
in transition being delayed to higher Reynolds numbers, a property easily quantified by
monitoring Re𝐸 (although the value of Re𝐸 underestimates in this case the exact values of
Re where transition occurs).

Specifically, the magnetohydrodynamic (MHD) duct accommodates two different types
of boundary layers, namely the Hartmann and the Shercliff layers (Knaepen & Moreau
2008). These are respectively orthogonal and parallel to the applied magnetic field. For a
unidirectional fluid flow subject to an externally imposed magnetic field, the interaction
between the fluid motion and the magnetic field imposes a difference in electric potential
between the Shercliff walls that drives a transversal electric current density. Assuming that
the walls are electrically insulating, conservation of charge makes this current turn and
reverse through the Hartmann layers such that closed current streamlines are formed. Due to
such a reversal in the flow of charges, the Lorentz force, which is proportional to the current,
tends to impede the fluid motion in the bulk and simultaneously accelerate the flow within
the Hartmann layers (Müller & Bühler 2001). This in turn leads to Hartmann and Shercliff
layers with different thicknesses: for the former it is inversely proportional to the strength of
the magnetic field, while for the latter it is inversely proportional to its square-root.

A large body of literature has already focused on the effects of a steady magnetic field
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imposed on a shear flow near rigid walls. The most dramatic consequence of the magnetic
field is, when it is strong enough, an effective or quasi two-dimensionalisation of the flow
(Moreau 1990; Pothérat et al. 2000) referred to as Q2D. This is expected and observed in
practice outside boundary layers once the interaction parameter, which characterizes the ratio
of Lorentz to inertial forces, becomes large compared to unity. For weaker magnetic fields
turbulent and transitional shear flows typically feature coherent structures such as streamwise
streaks, like their non-magnetohydrodynamic counterpart, but their range of existence in
terms of Re differs. Nevertheless from the point of view of transition to turbulence, they
remain subcritical so that again a mismatch between the energy stability threshold Re𝐸 and
the proper transition values is expected. Moreover as in other shear flows, the underlying non-
normality is strong, which results in strong amplification by transient growth mechanisms
even without any instability of the base flow.

Most energy stability calculations have been done for very simple flow geometries. The
earliest calculations were performed in plane channel geometries for planar Couette and
Poiseuille flow (Joseph & Carmi 1969). In the context of MHD flows amenable to the low–
Re𝑚 approximation, the energy stability of the Hartmann layer has been studied by Lingwood
& Alboussière (1999). Idealised geometries such as channel and boundary layer are never
found neither in Nature nor even in industrial contexts. We therefore decided to investigate
the more realistic rectangular duct geometry, when the applied magnetic field is parallel
to one of the sidewalls. This flow has been the subject of several experimental (Hartmann
& Lazarus 1937; Murgatroyd 1953; Moresco & Alboussière 2004) and numerical studies
(Kobayashi 2008; Krasnov et al. 2010, 2012, 2013; Zikanov et al. 2014; Krasnov et al. 2015).
Yet to our knowledge it has never been documented from the point of view of energy stability.

Duct geometries have long been used as research laboratories for the generalisations of
linear/nonlinear concepts first developed in channel geometries. In the context of transitional
flows, instability threshold (Tatsumi & Yoshimura 1990; Tagawa 2019) transient growth
(Krasnov et al. 2010; Cassells et al. 2019), edge states (Biau et al. 2008; Brynjell-Rahkola
et al. 2022), exact coherent states (Wedin et al. 2009; Uhlmann et al. 2010) have been
recently documented in square duct geometries. The goal of the present paper is to estimate
numerically and report values of Re𝐸 for rectangular ducts as functions of both the aspect ratio
and the intensity of the magnetic field. Besides this exhaustive parametric study, this study
also aims at caracterising physically the coherent structures reported for these parameters,
their symmetries and their implication for transition to turbulence at higher Reynolds number.

The paper is structured as follows. The mathematical formulation of the continuous
problem is given in §2, together with the details about the numerical techniques (see also
Appendix A). Results relevant to the channel geometry are given in §3. Duct results are
shown in §4 for the non-MHD case and in §5 for the MHD case. Conclusions and outlooks
are given in §6.

2. Problem formulation
Our aim is to model the flow of liquid metal in a periodic duct geometry with four sidewalls.
The flow is subject to a magnetic field imposed in a direction transverse to the flow and
parallel to one of the walls. For simplicity, we focus on the case where the walls are all
electrically insulating.

2.1. Governing equations
The flow is governed by the incompressible Navier-Stokes equations for the velocity field,
coupled to the Maxwell’s equations for the magnetic part. The quasistatic approximation
holds if the magnetic Reynolds number Re𝑚 is negligible with respect to unity, which will
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be assumed throughout the whole paper. In this low-Re𝑚 approximation (Müller & Bühler
2001) the induced electric field can be represented as the gradient of the electric potential,
determined by Ohm’s law for a moving conductor in combination with Ampère’s law,
which requires the induced current density to be solenoidal. The original coupled system of
equations reads

𝜕𝒖

𝜕𝑡
+ (𝒖·∇)𝒖 = −∇𝑝 + 1

Re
∇2𝒖 + Ha2

Re
( 𝒋 × 𝒆𝐵) , (2.1)

∇ · 𝒖 = 0, (2.2)
𝒋 = −∇𝜙 + 𝒖 × 𝒆𝐵, (2.3)

∇ · 𝒋 = 0 ↔ ∇2𝜙 = ∇ · (𝒖 × 𝒆𝐵). (2.4)

The variables 𝑝 and 𝜙 denote the pressure and electric potential, respectively, whereas 𝒖
denotes the velocity field, 𝒆𝐵 is the direction of the magnetic field and 𝒋 the electric current
density. All quantities are non-dimensionalised using the centerline velocity𝑈𝑐 of the laminar
flow for velocities, the shorter half-width 𝐻 of the duct for lengths, the strength 𝐵0 of the
imposed magnetic field, and the electrical conductivity 𝜎 of the fluid. This leads to a division
by 𝜌𝑈2

𝑐 for the pressure, by 𝑈𝑐𝐵0𝐻 for the electric potential and by 𝜎𝑈𝑐𝐵0 for the electric
current density. The governing non-dimensional control parameters are the Reynolds number

Re ≡ 𝑈𝑐𝐻

𝜈
, (2.5)

and the Hartmann number

Ha ≡ 𝐵0𝐻

√︂
𝜎

𝜌𝜈
, (2.6)

where 𝜌 is the fluid density and 𝜈 is its kinematic viscosity. The walls are electrically
insulating, i.e. the wall-normal component of the electric current density is zero at each wall.
Besides the no-slip condition 𝒖 = 0 is applied at each wall.

For the energy stability analysis, the flow is first decomposed, according to 𝒖 = 𝑼 + 𝒖′,
into the base laminar state with parallel velocity field 𝑼 and a perturbation velocity field
𝒖′. Moreover, a similar decomposition leads to the perturbation current density 𝒋 ′, the
perturbation electric potential 𝜙′ and the perturbation pressure 𝑝′. The equations for the
perturbation fields 𝒖′, 𝜙′ and 𝑝′ are

𝜕𝒖′

𝜕𝑡
+ (𝑼·∇)𝒖′ + (𝒖′·∇)𝑼 + (𝒖′·∇)𝒖′ = −∇𝑝′ + 1

Re
∇2𝒖′ + Ha2

Re
( 𝒋 ′ × 𝒆𝐵) , (2.7)

∇ · 𝒖′ = 0, (2.8)
𝒋 ′ = −∇𝜙′ + 𝒖′ × 𝒆𝐵, (2.9)

∇2𝜙′ = ∇ · (𝒖′ × 𝒆𝐵). (2.10)

where the boundary conditions for 𝒖′ are of Dirichlet type except at the inlet and outlet where
periodicity is imposed. Superscript primes will be dropped from the perturbation quantities
throughout the rest of this paper.

2.2. Duct and channel geometries
The main geometry under consideration in this study is a duct aligned with the streamwise
direction 𝒙. The sides of the cross-section are parallel to the transverse directions 𝒚 and
𝒛. By convention, the magnetic field is aligned with the 𝒛 direction, 𝒆𝐵 = 𝒆𝑧 (this renders
the coordinates 𝑦 and 𝑧 equivalent in the absence of magnetic field). The velocity field is

Focus on Fluids articles must not exceed this page length
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Figure 1: Sketch of the geometry of a cross-section of duct flow, as the aspect ratio
𝛾 = 𝐿𝑦/𝐿𝑧 is varied from below to above unity (𝛾 = 1 for square duct). The labels 𝐻 and

𝑆 stand respectively for the Hartmann and the Shercliff layers in the presence of a
magnetic field aligned with the 𝑧-direction also noted 𝒆𝐵. The reference length (used e.g.
in the definition of the Hartmann number) is always one half of the shorter side: for 𝛾 < 1
it is half of the distance between the Shercliff walls and for 𝛾 > 1 it is half of the distance

between the Hartmann walls. The channel case corresponds to the limit 𝛾 → 0.

considered periodic in the streamwise direction with a period 𝐿𝑥 . The distance between the
sidewalls is noted respectively 2𝐿𝑦 (resp. 2𝐿𝑧) in the 𝑦 (resp. 𝑧) direction. The reference
length 𝐻, used to build for instance the Reynolds number and the Hartmann number, is
always taken to be half the shorter side of the cross-section. The pedagogic sketch in figure
1 explains how the geometry of the cross-section changes from 𝛾 < 1 to 𝛾 > 1, with 𝛾 = 1
referring to a square duct.

For the channel geometry, periodicity is assumed both in the streamwise and spanwise
direction, which is called here 𝑦. The reference length becomes the gap between the two
walls, while the reference velocity 𝑈𝑐 is still the laminar centerline velocity.

2.3. Base flow
The base flow is streamwise-independent and only the streamwise velocity component is non-
zero. The induced current density is therefore two-dimensional and can be represented by
the induced streamwise magnetic field through Ampère’s law, 𝑱 = ∇× (𝐵𝒆𝑥). The governing
equations in dimensional form are

𝜚𝜈∇2𝑈 + 𝐵0
𝜇0

𝜕𝐵

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
, (2.11)

𝜆𝑚∇2𝐵 + 𝐵0
𝜕𝑈

𝜕𝑧
= 0, (2.12)

where 𝜇0 is the magnetic permeability of free space and 𝜆𝑚 = 1/(𝜇0𝜎) is the magnetic
diffusivity. The gradient operators have to be understood as two-dimensional gradients
defined with respect to the cross-flow variables 𝑦 and 𝑧 only. By choosing the shorter
edge as lengthscale and appropriate units for 𝑈 and 𝐵, one can make the prefactors of the
terms multiplying the 𝑧-derivatives on the left hand sides equal and the pressure gradient
equal to unity. The non-dimensional equations for the base flow then read

∇2𝑈 + Ha
𝜕𝐵

𝜕𝑧
= 1, (2.13)

∇2𝐵 + Ha
𝜕𝑈

𝜕𝑧
= 0. (2.14)
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(a) (b)

(c) (d)

Figure 2: Base flow for Ha=0 (left) and Ha=20 (right) for an aspect ratio 𝛾 =1 (top) and
𝛾 = 2 (bottom). Isosurface of the streamwise velocity 𝑈 (𝑦, 𝑧).

These equations can be decoupled by adding and subtracting them. One obtains the two
equations (

∇2 ± Ha
𝜕

𝜕𝑧

)
(𝑈 ± 𝐵) = 1, (2.15)

for the Shercliff variables 𝑈 ± 𝐵 with homogeneous Dirichlet conditions.
An analytical solution to eq. (2.15) in the form of a Fourier series was originally derived by

Shercliff (1953) and later elaborated upon in (Müller & Bühler 2001). However, in this work
(2.15) is discretised as described in §2.6 and solved directly. Upon resolution, the desired base
velocity distribution is obtained from the sum of the appropriately scaled Shercliff variables.
This solution is shown in figure 2 and 3 for different duct aspect ratio 𝛾 and Hartmann
numbers. The Hartmann and Shercliff layers on the walls 𝑧 = ±1 and 𝑦 = ±𝛾 are clearly
apparent by comparison between the cases Ha = 0 and Ha = 20.

2.4. Energy stability as a minimisation problem
Energy stability analysis is concerned with the behavior of the total perturbation kinetic
energy, defined as

𝐸 =

∫
𝑉

𝑢2
𝑖

2
𝑑𝑉,
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Figure 3: Profiles of the base flow in the midplanes for different Hartmann numbers and
𝛾 = 1. (a) 𝑧-profile of the streamwise velocity, (b) 𝑦-profile of the streamwise velocity, (c)

𝑧-profile of the streamwise magnetic flux density.

using tensor notation. The evolution equation for 𝐸 is obtained by multiplying the momentum
equation (2.7) by 𝒖 and integrating over the volume of the duct. Using integration by parts,
this leads to

𝜕𝐸

𝜕𝑡
= −

∫
𝑉

𝑢𝑖𝑢𝑙
𝜕𝑈𝑖

𝜕𝑥𝑙
𝑑𝑉 − 1

Re

∫
𝑉

𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉 − Ha2

Re

∫
𝑉

𝑗𝑖 𝑗𝑖 𝑑𝑉. (2.16)

This equation is equivalent to the Reynolds-Orr equation (Reddy & Henningson 1993) in
wall-bounded shear flows, save for the additional contribution of the Lorentz force. The
slowest possible temporal decay of 𝐸 occurs for the perturbation that provides the minimum
of the functional (Doering & Gibbon 1995)

1
𝐸

(∫
𝑉

𝑢𝑖𝑢𝑙
𝜕𝑈𝑖

𝜕𝑥𝑙
𝑑𝑉 + 1

Re

∫
𝑉

𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉 + Ha2

Re

∫
𝑉

𝑗𝑖 𝑗𝑖 𝑑𝑉

)
. (2.17)

This functional is subject to the constraint (2.8), and the current density is represented by
(2.9) and (2.10). We use Lagrange multipliers 𝑞 and 𝜆 to add the mass conservation and
energy normalization constraints to the functional, i.e. we seek the extrema of the scalar
functional 𝐹, defined by

𝐹 =

∫
𝑉

𝑢𝑖𝑢𝑙
𝜕𝑈𝑖

𝜕𝑥𝑙
𝑑𝑉 + 1

Re

∫
𝑉

𝜕𝑢𝑖

𝜕𝑥𝑙

𝜕𝑢𝑖

𝜕𝑥𝑙
𝑑𝑉 + Ha2

Re

∫
𝑉

𝑗𝑖 𝑗𝑖 𝑑𝑉

−
∫
𝑉

𝑞 ∇ · 𝒖 𝑑𝑉 − 𝜆 (𝐸 − 1) , (2.18)

where the minimisation is carried over all admissible divergence-free velocity fields satisfying
the boundary conditions. The current density 𝒋 depends directly on 𝒖 and is given by equation
(2.9) with 𝜙 satisfying equation (2.10). One stationarity condition is obtained via variation
of the velocity field, i.e. from

0 =
𝛿𝐹

𝛿𝒖
=

𝑑

𝑑𝜀
𝐹 [𝒖 + 𝜀𝛿𝒖] |𝜀=0 .

It leads to the Euler-Lagrange equation

𝜆𝒖 = −∇𝑞 + 2�̂� · 𝒖 − 2
Re

∇2𝒖 − 2Ha2

Re
𝒋 × 𝒆𝐵, (2.19)

where �̂� is the symmetric part of the velocity gradient of the base flow and the current
density is defined through equations (2.9)-(2.10). Variation of 𝐹 with respect to 𝑞 gives the
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constraint (2.8). The multiplier 𝜆 is the growth rate of the perturbation satisfying equations
(2.19), (2.8), (2.9) and (2.10) for given values Re and Ha. We are interested in the lowest
value of Re where non-decaying solutions exist, i.e. 𝜆 = 0. The minimizing velocity field
is such that equation (2.19) reduces to the following eigenvalue problem for Re (Doering &
Gibbon 1995):

Re �̂� · 𝒖 = −∇𝑞
2

+ ∇2𝒖 + Ha2 𝒋 × 𝒆𝐵. (2.20)

The lowest eigenvalue Re defines the energy stability Reynolds number Re𝐸 . The corre-
sponding eigenvector represents a flow field whose kinetic energy does, for Re = Re𝐸 ,
neither experiences initial growth nor initial decay. The spectral problem (2.20) admits
other eigenvalues beyond the lowest one. They correspond to larger values of Re for which
the problem admits neutral modes, i.e. non-monotonically decaying energy variations. By
convention, each eigenvector indexed by 𝑖 = 1, 2, ... corresponds to the neutral flow field
expressed at the value of Re = Re(𝑖=1,2,...) at which it is neutral.

2.5. Detailed formulation
The incompressiblity condition leads to difficulties for the numerical solution of the energy
stability equations. We therefore adopt the approach used by Priede et al. (2010) and represent
the velocity field by a vector stream function 𝝍, i.e.

𝒖 = ∇ × 𝝍. (2.21)

By that, ∇ · 𝒖 = 0 is always satisfied. The vector streamfunction is defined only up to an
additive gradient field. In order to fix this gradient field, we impose the gauge condition

∇ · 𝝍 = 0, (2.22)

whereby 𝝍 is defined up to the gradient of a harmonic function. The condition (2.22) also
simplifies the relation between 𝝍 and the vorticity field to 𝝎 = −∇2𝝍.

By taking the curl of equation (2.20), we obtain equations for 𝜔𝑦 and 𝜔𝑧 and eliminate the
field 𝑞. They read

∇2𝜔𝑦 − Ha2 𝜕

𝜕𝑧

(
𝜕𝜙

𝜕𝑦
+ 𝑢𝑥

)
= Re 𝒆𝑦 · ∇ × �̂� · 𝒖, (2.23)

∇2𝜔𝑧 − Ha2 𝜕
2𝜙

𝜕𝑧2 = Re 𝒆𝑧 · ∇ × �̂� · 𝒖, (2.24)

∇2𝜓𝑦 + 𝜔𝑦 = 0, (2.25)
∇2𝜓𝑧 + 𝜔𝑧 = 0, (2.26)
∇2𝜙 − 𝜔𝑧 = 0. (2.27)

2.5.1. Streamwise-dependent perturbations
Since the streamwise direction is homogeneous, the eigenfunctions of the energy stability
eigenvalue problem are Fourier modes with streamwise wavenumber 𝛼. We therefore write

{𝝍,𝝎, 𝜙} (𝑥, 𝑦, 𝑧) =
{
�̂�(𝑦, 𝑧), �̂�(𝑦, 𝑧), 𝜙(𝑦, 𝑧)

}
𝑒𝑖𝛼𝑥 . (2.28)

Equations (2.25)-(2.27) turn into three two-dimensional Helmholtz equations for each Fourier
mode of the components 𝜓𝑦 , 𝜓𝑧 and the electric potential 𝜙 with the vorticity components
as right hand sides. Each of them is supplemented with a homogeneous boundary condition.
Upon discretization, these equations become linear invertible mappings between the discrete
representations of 𝜓𝑦 , 𝜓𝑧 and 𝜙 and the discrete representations of 𝜔𝑦 , 𝜔𝑧 augmented by
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a set of zero boundary data. The actual eigenvalue problem consists of equations (2.23)-
(2.24) with 𝜔𝑦 and 𝜔𝑧 as independent variables. With this representation, the streamwise
components 𝜓𝑥 and 𝜔𝑥 are directly obtained from the other two components 𝜓𝑦 , 𝜓𝑧 and
𝜔𝑦 , 𝜔𝑧 via equation (2.22) and ∇ · 𝝎 = 0.

The boundary conditions for the Fourier modes of 𝜓𝑦 , 𝜓𝑧 or 𝜔𝑦 , 𝜔𝑧 have to be formulated
such that the no-slip condition is satisfied. Following Priede et al. (2010), we first impose that
the tangential vector streamfunction component 𝜓𝑡 in the (𝑦, 𝑧) plane vanishes on each wall.
This is admissible since it is equivalent to a Dirichlet condition for the arbitrary harmonic
function (whose gradient can be added to 𝝍). The other conditions are 𝑢𝑥 = 0 and 𝑢𝑛 = 0,
where subscript 𝑛 denotes the normal component. We note that 𝑢𝑛 = 0 is equivalent to
𝜕𝜓𝑛/𝜕𝑛 = 0 when 𝜓𝑡 = 0 and that 𝑢𝑥 = 0 implies 𝜕𝜓𝑧/𝜕𝑦 − 𝜕𝜓𝑦/𝜕𝑧 = 0. The third
condition 𝑢𝑡 = 0 in the (𝑦, 𝑧) plane is equivalent to 𝜔𝑛 = 0. For equations (2.25) for 𝜓𝑦 and
(2.26) for 𝜓𝑧 , one of the conditions 𝜓𝑡 = 0 and 𝜕𝜓𝑛/𝜕𝑛 = 0 is selected on each segment of
the boundary. Equation (2.27) for 𝜙 requires homogeneous Neumann conditions. Equations
(2.23)-(2.24) are complemented with the conditions 𝜕𝜓𝑧/𝜕𝑦 − 𝜕𝜓𝑦/𝜕𝑧 = 0 or 𝜔𝑛 = 0.

2.5.2. Streamwise-independent perturbations
The case of zero streamwise wavenumber must be treated separately since the representation
of the streamwise velocity 𝑢𝑥 by the other components fails when 𝛼 = 0. One can then use
the classical scalar stream function representation

𝑢𝑦 =
𝜕𝜓𝑥

𝜕𝑧
, 𝑢𝑧 = −𝜕𝜓𝑥

𝜕𝑦
. (2.29a,b)

for the in-plane components of the velocity. Likewise, the in-plane components of the electric
current density are

𝑗𝑦 =
𝜕𝜒

𝜕𝑧
, 𝑗𝑧 = −𝜕𝜒

𝜕𝑦
, (2.30a,b)

where the stream function 𝜒 for the current density is proportional to the streamwise
component of the induced magnetic field. The streamwise current density is 𝑗𝑥 = 𝑢𝑦 . It
stems from Ohm’s law with the assumption that a mean streamwise current is excluded.
Using Ohm’s law one can also show that

∇2𝜒 = −𝜕𝑢𝑥

𝜕𝑧
. (2.31)

Equations for 𝜓𝑥 , 𝜔𝑥 , 𝑢𝑥 and 𝜒 are obtained from the streamwise component of the equation
(2.20) and the streamwise component of its curl. These equations are

∇2𝑢𝑥 + Ha2 𝜕𝜒

𝜕𝑧
=

Re
2

(
𝜕𝑈

𝜕𝑦

𝜕𝜓𝑥

𝜕𝑧
− 𝜕𝑈

𝜕𝑧

𝜕𝜓𝑥

𝜕𝑦

)
, (2.32)

∇2𝜔𝑥 − Ha2 𝜕
2𝜓𝑥

𝜕𝑧2 =
Re
2

(
𝜕𝑈

𝜕𝑦

𝜕𝑢𝑥

𝜕𝑧
− 𝜕𝑈

𝜕𝑧

𝜕𝑢𝑥

𝜕𝑦

)
, (2.33)

∇2𝜓𝑥 − 𝜔𝑥 = 0, (2.34)

∇2𝜒 + 𝜕𝑢𝑥

𝜕𝑧
= 0. (2.35)

The boundary conditions for equation (2.34) and (2.35) are 𝜓𝑥 = 0 and 𝜒 = 0. For the other
two equations the no-slip conditions 𝑢𝑥 = 0 and 𝑢𝑡 = 0 are required. The latter is equivalent
to 𝜕𝜓𝑥/𝜕𝑛 = 0. As discussed earlier for the case 𝛼 > 0, the quantities 𝜒 and 𝜓𝑥 are obtained
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via one-to-one maps from 𝜔𝑥 and 𝑢𝑥 . The actual eigenvalue problem consists of equations
(2.32) and (2.33).

2.6. Spatial discretisation for the duct and channel geometry
We use a spectral collocation method based on the Chebyshev polynomials 𝑇0, 𝑇1, ... defined
over [−1, 1] by 𝑇𝑛 (𝑥) = cos(𝑛 arccos 𝑥), 𝑛 ⩾ 0 (Canuto et al. 2007).

For the duct flow, both cross-stream vorticity components are expanded as a finite double
sum, i.e.

𝑓 (𝑦, 𝑧) =
𝑁𝑦∑︁
𝑘=0

𝑁𝑧∑︁
𝑙=0

𝑓𝑘,𝑙 𝑇𝑘 (𝑦/𝐿𝑦) 𝑇𝑙 (𝑧/𝐿𝑧), (2.36)

where 𝑓 denotes either 𝜔𝑦 or 𝜔𝑧 . Equations (2.23)-(2.24) and the corresponding boundary
conditions for𝜔𝑦 ,𝜔𝑧 are enforced pointwise at the (𝑁𝑦+1) (𝑁𝑧+1) Gauss-Lobatto collocation
points 𝑦𝑘 and 𝑧𝑙 defined by

𝑦𝑘 = 𝐿𝑦 cos
(
𝑘𝜋/𝑁𝑦

)
, 𝑧𝑙 = 𝐿𝑧 cos (𝑙𝜋/𝑁𝑧) . (2.37)

Each collocation point provides one scalar equation for the expansion coefficients of 𝜔𝑦

and 𝜔𝑧 (Canuto et al. 2007). The corners of the rectangular domain may require special
consideration when derivatives are specified along the boundaries. In these cases it may be
appropriate to impose the differential equation itself at a corner.

As a result, one obtains a generalized linear eigenvalue problem of the type

A𝒀 = Re B𝒀 , (2.38)

where the vector 𝒀 contains the unknown expansion coefficients of 𝜔𝑦 and 𝜔𝑧 . The stream-
function components and the electric potential in equations (2.23)-(2.24) are represented as
linear functions of 𝜔𝑦 or 𝜔𝑧 since they are given by equations (2.25)-(2.27). The discrete
representation of these quantities is also obtained through spectral collocation. However,
this requires more collocation points because 𝜓𝑦 , 𝜓𝑧 and 𝜙 do not only depend on the
inhomogeneity but also on the boundary data. We therefore use (𝑁𝑦 + 3) (𝑁𝑧 + 3) expansion
coefficients for 𝜓𝑦 , 𝜓𝑧 and 𝜙 in the ansatz (2.36) and in eq. (2.37). By that, we obtain an
invertible linear system between the expansion coefficients of either 𝜔𝑦 or 𝜔𝑧 augmented by
the zero boundary data and the expansion coefficients of 𝜓𝑦 , 𝜓𝑧 or 𝜙. These three inverse
matrices are computed and stored before the matrices of problem (2.38) are assembled. The
computation of these matrices as well as of matrices A, B is described in the Appendix.

Problem (2.38) was solved with MATLAB’s eig routine to find all eigenvalues and
eigenvectors. The routine also works with a matrix B whose rank is smaller than the rank of
A (as it is the case for (2.38)). It associates the spurious solutions that stem from equations
not containing the eigenvalue Re with infinite eigenvalues. The numerical approach for the
special case 𝛼 = 0 is analogous with 𝜔𝑥 and 𝑢𝑥 taking the role of 𝜔𝑦 and 𝜔𝑧 as primary
unknowns.

In contrast to the duct geometry, the base flow in the infinitely wide channel depends only
on the 𝑧-coordinate. Owing to this homogeneity, the solution to the eigenvalue problem can
be represented by Fourier modes with respect to 𝑥 and 𝑦 with arbitrary wavenumbers 𝛼 and
𝛽. The ansatz for a velocity or vorticity component then becomes

𝑓 (𝑥, 𝑦, 𝑧) =
𝑁𝑧∑︁
𝑘=0

𝑓𝑘 𝑇𝑘 (𝑧/𝐿𝑧) 𝑒𝑖 (𝛼𝑥+𝛽𝑦) . (2.39)

The velocity field is represented through the vertical velocity and vorticity components.

Rapids articles must not exceed this page length
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Ha 𝛾 𝑁1 𝑁2 Re𝐸 ΔRe𝐸/Re𝐸
0 1 25 30 77.828 5 × 10−8

10 1 30 35 174.92 2 × 10−7

20 1 35 40 300.59 1 × 10−8

40 1 45 53 546.84 6 × 10−8

60 1.2 60 70 792.80 4 × 10−8

Table 1: Resolution tests for MHD duct flow with 𝛼 = 2. Energy stability eigenvalues Re𝐸
were computed with maximum orders 𝑁1 and 𝑁2 of Chebyshev polynomials in both 𝑦 and

𝑧 resulting in a difference ΔRe𝐸 .

Equations for these quantities are obtained by taking the vertical components of the curl and
the double curl of the stability eigenvalue problem (2.20). These equations are complemented
by the equation (2.10) for the electric potential. The number of unknowns corresponds to the
expansion coefficients of vertical velocity, vorticity and potential, i.e. approximately 3𝑁𝑧 .
The discretized form is obtained by enforcing the equations pointwise at collocation points
𝑧𝑘 , and the resulting generalized linear eigenvalue problem, also of the form (2.38), is solved
with MATLAB’s eig routine. The energy stability of the Q2D model was formulated in a
similar way with the spanwise velocity component as the sole dependent variable.

2.7. Code verification and numerical resolution
The code has previously been used in the context of magnetoconvection (Bhattacharya et al.
2024). Its accuracy for the duct geometry was verified with linear stability results from the
hydrodynamic literature. For the streamwise-independent perturbations we computed the
eigenvalues of the Stokes operator for 𝛾 = 1 and compared them with Leriche & Labrosse
(2004). The 10 leading eigenvalues in table 2 of Leriche & Labrosse (2004) were reproduced
to at least 8 significant digits with a resolution of 𝑁𝑦 = 𝑁𝑧 = 25. For the perturbations with
𝛼 > 0 we took a case from Priede et al. (2010) (their table 2, left column) with a simplified
base flow (1 − 𝑦2) (1 − 𝑧2) in a square duct. For Re = 104, 𝛼 = 1 we reproduced the complex
relative phase velocity of the leading eigenmode to six significant digits with a resolution of
𝑁𝑦 = 𝑁𝑧 = 60 modes.

A direct comparison for energy stability was only possible without magnetic field for
𝛾 = 1 (see §4.1). The additional electromagnetic terms in the equations could not be checked
directly. However, the MHD channel results should provide appropriate limits to the duct
results for either large Ha or small/large 𝛾. This will also become apparent in the following
sections.

The numerical resolution for the duct flow has to be increased with Ha in order to resolve
the electromagnetic boundary layers. The requirements were systematically tested for 𝛾 ≈ 1
and different Ha by comparing two different resolutions. Table 1 indicates that the results
are sufficiently accurate for the lower order 𝑁1 of Chebyshev polynomials. However, the
accuracy also depends on 𝛼. It becomes poorer as 𝛼 is decreased. This can be expected since
𝛼 → 0 is a singular limit for the formulation based on 𝜔𝑦 and 𝜔𝑧 .

When the aspect ratio 𝛾 is not close to unity, the number of polynomials must be increased
along the longer edge of the duct to maintain adequate resolution. We decided to keep the
maximum spacing of the collocation points constant on the longer edge. Since this spacing
scales as 1/𝑁 (where 𝑁 is the polynomial order), the appropriate choice is to multiply 𝑁𝑦

by 𝛾 or to divide 𝑁𝑧 by 𝛾 (for 𝛾 > 1 and 𝛾 < 1, respectively). This is done relative to the
reference case 𝛾 = 1. Depending on the lowest 𝛼 of interest, the base resolution may have
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to be increased to ensure valid results. This can also be detected from the magnitude of the
imaginary part of Re𝐸 , which should ideally be zero. Eigenvalues with significant imaginary
parts are discarded in the computations.

The numerical resolution is mainly limited by the computing time, which approximately
scales with the third power of the number of unknowns. For 𝑁𝑦 = 𝑁𝑧 = 60, the assembly of
the matrices and eigenvalue computation took about 2.5 hours for fixed 𝛼 and 𝛾 on an Intel
Xeon E5 processor.

3. Channel geometry
3.1. Energy stability for Ha = 0

We begin by considering the purely hydrodynamic channel case with only two parallel
walls, when Ha = 0. This configuration is one of the earliest cases treated in the literature.
For a recent comparative review we refer for instance to Falsaperla et al. (2019). Orr has
initially sought neutral modes under the hypothesis that their spanwise wavenumber 𝛽 is
zero and found analytically a value of Re𝐸 ≈ 87 (Orr 1907). A more accurate value is
Re𝐸 = 87.6 at 𝛼 = 2.09 (Falsaperla et al. 2019). Later Joseph & Carmi (1969); Busse (1969),
by seeking neutral perturbations with zero streamwise wavenumber 𝛼, reported a lower value
of Re𝐸 = 49.6 at 𝛽 = 2.04. In the present computation, both 𝛼 and 𝛽 can be freely varied.
The two values of Re𝐸 put forward by Orr and by Busse (1969) are confirmed in figure 4
by focusing on the axes 𝛼 = 0 or 𝛽 = 0. Whereas the value for 𝛼 = 0 corresponds to a local
minimum of Re𝐸 in the (𝛼, 𝛽) plane, the minimiser for 𝛽 = 0 appears as a saddle in the
unfolded (𝛼, 𝛽) plane.

3.2. Influence of increasing Ha
The local minima of the Re𝐸 in the (𝛼, 𝛽) plane evolve as Ha departs from zero. Maps of
Re𝐸 can be seen in figure 4 for Ha = 5, 10 and 20. For Ha ⩾ 10 the global minimiser for Re𝐸
corresponds to a mode with 𝛽 = 0 in strong contrast with the case Ha = 0. This minimiser
is actually independent of Ha since there is no Lorentz force for 𝛽 = 0. It represents the
solution found by Orr. For the intermediate value Ha = 5 the minimser is neither along the
axis 𝛼 = 0 nor along the axis 𝛽 = 0. Instead it corresponds to an oblique wave vector with
both 𝛼 and 𝛽 non-zero.

4. Rectangular Duct geometry
We move now to the rectangular duct case with four walls and a transverse magnetic field
parallel to one of the walls. The minimisation problem leading to the value of Re𝐸 is governed
by two main parameters, notably the aspect ratio 𝛾 = 𝐿𝑦/𝐿𝑧 , and the Hartmann number Ha
based on the shorter edge.

4.1. Energy stability for Ha = 0
Figure 5 shows color maps of the values of Re𝐸 in an (𝛼, 𝛾) plane, where 𝛼 is the streamwise
wavenumber and 𝛾 is represented in (base 10) logarithmic scale. Values of Ha = 0, 5, 10 and
20 are shown. The numerical resolutions for these computations are given in table 2.

We focus first on figure 5a which has Ha = 0. As far as we know no exhaustive energy
stability study has been performed in rectangular duct flow even in the absence of MHD
effects. This configuration, where Ha = 0, is characterised by an additional degree of
symmetry compared to the MHD case: all sidewalls are equivalent and the notion of Shercliff
and Hartmann walls is irrelevant. Mathematically this results in the equivalence between an
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Figure 4: Cartography of Re𝐸 in the (𝛼, 𝛽) plane, where 𝛼 and 𝛽 are respectively the
streamwise and spanwise wavenumber. Channel geometry, from (a) to (d)

Ha = 0, 5, 10, 20.

Ha 𝛾 𝑁𝑦 𝑁𝑧

0 ⩾ 1 [27𝛾] − 2 25
5 ⩾ 1 [31𝛾] − 2 33

10 ⩾ 1 [32𝛾] − 2 36
20 ⩾ 1 [42𝛾] − 2 45
5 < 1 28 [38/𝛾] − 2

10 < 1 30 [38/𝛾] − 2
20 < 1 40 [47/𝛾] − 2

Table 2: Resolutions for the computations of figure 5 indicated by maximum order of
Chebyshev polynomials. The square brackets denote the integer part.

aspect ratios 𝛾 = 𝐿𝑦/𝐿𝑧 > 0 and its inverse 1/𝛾 = 𝐿𝑧/𝐿𝑦 . We thus expect the symmetric
relation Re𝐸 (𝛾) = Re𝐸 (1/𝛾) to be valid. This should manifest itself graphically in a flip
symmetry with respect to the zero axis when plots are made according to the variable log 𝛾.
As expected, the symmetry property Re𝐸 (𝛾) = Re𝐸 (1/𝛾) is clearly visible in the figure.

The location of the wavenumber 𝛼 = 𝛼𝑚 associated with the optimal value Re𝐸 has
been represented in Figure 5 for each value of 𝛾, by using a plain white line. For the case
Ha = 0, non-zero values of 𝛼𝑚 appear to be restricted to an interval where | log10(𝛾) | ≲ 0.2,
i.e. 0.6 ≲ 𝛾 ≲ 1.6. The largest value of 𝛼𝑚 (i.e. the shortest wavelength) is found on the
symmetry axis for 𝐿𝑦 = 𝐿𝑧 and corresponds to the cusp in the figure. Outside this interval
the wavenumber minimising Re𝐸 is everywhere zero.
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Figure 5: Cartography of Re𝐸 in the (𝛼, log10 (𝛾)) plane. Duct geometry, from (a) to (d)
Ha = 0, 5, 10, 20.

The variation of Re𝐸 (at optimum wavenumber) with 𝛾 is shown in figure 6a. As one would
expect, the values for Ha = 0 approach the channel limit with Re = 49.6 for decreasing as
well as for increasing 𝛾. One can also notice two discontinuities in the slope of the curve
Re𝐸 (𝛾) on either side of 𝛾 = 1. For 𝛾 > 1, these occur at 𝛾 ≈ 1.8 and 𝛾 ≈ 2.8. They
correspond to a qualitative change in the structure of the mode providing Re𝐸 , which will be
shown in §5.

We focus now on the square case, i.e. 𝛾 = 1. In the literature, to our knowledge only a
numerical value of Re𝐸 = 79.44 (based on the centerline velocity) has been reported by Biau
et al. (2008) in the absence of MHD effects, associated with a zero streamwise wavenumber.
This is at odds with our result 𝛼 = 1.3 corresponding to a smaller value Re𝐸 = 74.1. For 𝛼 = 0
we obtain Re𝐸 = 78.5 in reasonable agreement with Biau et al. (2008), where a different
numerical method was used. We note for comparison that the companion circular geometry
of Hagen-Poiseuille flow also features a non-zero axial optimal wavenumber 𝛼 = 1.07 found
for Re𝐸 = 81.5 (Joseph & Carmi 1969).

4.2. Influence of increasing Ha
As Ha increases above zero, the flip symmetry in figure 5a is immediately lost. This
corresponds to an increasing dissymmetry between the two different pairs of boundary
layers along the side wall: the Hartmann and the Shercliff boundary layers are now two
distinct boundary layers with different scalings. The minimal value of Re𝐸 in figure 5 is
always achieved, unlike for Ha = 0, for a finite wavenumber 𝛼𝑚. This minimum is always
found at the lowest computed 𝛾 values. This corresponds to the configuration where the
longer edge is parallel to the magnetic field: the laminar base flow is then dominated by
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Figure 6: Re𝐸 and 𝛼𝑚 vs. 𝛾 in the duct geometry.

wider Shercliff layers and the two thinner Hartmann layers are well separated. The minimal
value of Re𝐸 itself increases with Ha. For Ha = 0, 5, 10, 20, it is respectively 52.2, 88.1,
102.2 and 127.3.

The global trend for the value of Re𝐸 is an increase with Ha, which is also seen in figure
6a. It appears that Re𝐸 and the corresponding wavenumber 𝛼 shown in figure 6b approach
Orr’s value represented by a black square on the left axis 𝛾 = 0.25 for all Ha ⩾ 5. This is
consistent with the channel flow with spanwise magnetic field because the base flow in the
duct approaches the Poiseuille profile as 𝛾 tends to zero (with exception of the Hartmann
layers).

Figures 6a and 6b also show that a plateau emerges for both Re𝐸 and 𝛼𝑚 at large 𝛾. The
higher the value of Ha, the earlier the plateau is reached as 𝛾 is increased. For Ha ⩾ 5,
𝛼𝑚 stays away from zero for all aspect ratios 𝛾 shown. The range of values of 𝛼𝑚 found
by varying 𝛾 shifts upwards as Ha is increased. This corresponds, as Ha gets larger, to
increasingly shorter wavelengths found at criticality. For Ha = 10 and beyond, the shorter
wavelengths are found for 𝛾 > 1.

4.3. Connection with the Quasi Two-dimensional theory
We investigate now the other limiting configuration 𝛾 → ∞ where the shorter edge is parallel
to the magnetic field. This is associated visually with the right of each subplot in figure 5,
in which the same values of Ha = 0, 5, 10 and 20 are displayed. In this configuration, the
laminar flow consists of two narrow Shercliff layers and two laterally extended Hartmann
layers. From figure 5 it is clear that, at least for Ha ≠ 0, Re𝐸 achieves for asymptotically
large 𝛾 a minimum value associated with non-zero values of 𝛼𝑚. The corresponding values
of Re𝐸 and 𝛼𝑚 are reported in figure 7, respectively a and b. The additional values of Re𝐸
and 𝛼𝑚 for Ha > 20 were typically computed at two distinct values of 𝛾 > 1. This was done
in order to ensure that the plateau is reached without going to the computationally expensive
case 𝛾 = 4.

Both Re𝐸 and 𝛼𝑚 increase monotonically with increasing Ha. This is interpreted, for this
large 𝛾 limit, as a delay of the transition by the magnetic field, associated with smaller axial
wavelengths at criticality.

The present results can be compared with earlier work (Pothérat 2007) carried out in the
framework of the quasi two-dimensional (Q2D) approximation (Sommeria & Moreau 1982;
Pothérat et al. 2000). In the Q2D model, the flow is represented by a two-dimensional velocity
field that corresponds to the actual flow averaged along the direction of the magnetic field.
The averaged flow satisfies the two-dimensional Navier-Stokes equations with an additional
linear damping term −Ha𝑄2𝐷𝒖. This term accounts for the friction on the Hartmann walls.
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Figure 7: (a) Re𝐸 vs. Ha, (b) 𝛼𝑚 vs. Ha in the duct geometry (in the large 𝛾 limit), with
comparison with equation (4.1) from Q2D theory.
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Figure 8: Re𝐸 vs. 𝛼, with all quantities rescaled by their value at the minimum Re𝐸 . (a)
Rescaled results from the Q2D model for several Ha𝑄2𝐷 . (b) Comparison of duct results

(in the limit 𝛾 ≫ 1) with results from the Q2D model.

The Q2D Reynolds number is defined with the lateral dimension 𝐿𝑦/2, i.e. Re𝑄2𝐷 = 𝛾Re.
Correspondingly, 𝛼𝑄2𝐷 = 𝛼/𝛾. The relation between Ha𝑄2𝐷 and Ha is Ha𝑄2𝐷 = 𝛾2Ha/2.
The basic flow in the Q2D model is equivalent to the Hartmann flow profile but with a
side layer thickness ∼ Ha−1/2

𝑄2𝐷 . For Ha𝑄2𝐷 ≫ 1, the Q2D energy stability analysis shows a
universal, self-similar dependence between Reynolds and wavenumber illustrated in figure
8a. This agreement between different Ha𝑄2𝐷 demonstrates that the (averaged) Shercliff layers
on the opposite walls become decoupled, i.e. outer length scale (width of the duct) does not
affect the result. In particular, the minimum 𝛼𝑄2𝐷 and the corresponding Re𝑄2𝐷 therefore
scale as Ha1/2

𝑄2𝐷 . The numerical values of the coefficients in the scaling relations are given in
Pothérat (2007). Transformed to our definitions, they read

Re = 65.3
√

Ha, 𝛼 = 0.863
√

Ha. (4.1a,b)

The qualitative as well as quantitative match between the present computations and the Q2D
results in figure 7 is good, despite a slight drift observed for the largest values of Ha (computed
here up to 𝐻𝑎 = 80). The perturbations are therefore expected to become localized in the
Shercliff layers, and to exhibit a shape with approximate uniformity along the magnetic field.

We can further verify the universal scaling behavior for our duct results over intervals of 𝛼.
This is reported in figure 8b. It shows the dependence of normalized Re𝐸 and 𝛼 for different
Ha as well as the universal curve from the Q2D model in figure 8a. The agreement with the
Q2D model is excellent except in the limit 𝛼 → 0, where the duct curves depart from the
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Figure 9: (a) Re𝐸 for 𝛼 = 0 (full lines) and optimal 𝛼 (dashed) vs. 𝛾 in duct geometry. (b)
Re𝐸 for 𝛼 = 0 (duct, limit 𝛾 ≫ 1) vs. Ha and comparison with Hartmann layer scaling.

Q2D theory. In contrast to the Q2D asymptotic behavior Re ∼ 1/𝛼, they saturate at finite
values of Re for 𝛼 = 0. These values increase monotonically with Ha.

As already noted, the dependence Re(𝛼) in the Q2D model appears to be a power law for
𝛼 → 0 and for 𝛼 → ∞ (see figure 8a). The former is consistent with a regular limit 𝛼 → 0
in the Q2D equations. The 𝑂 (𝛼2) scaling for large 𝛼 cannot be justified in this way. It can be
understood as a diffusive scaling associated with wavelengths with a viscous damping rate
𝑂 (𝛼2Re−1) so high that it requires Re = 𝑂 (𝛼2) for damping to be balanced instantaneously
by non-normal amplification.

4.4. Case 𝛼 = 0
While the disturbances with 𝛼 = 0 do not minimise Re𝐸 for Ha ⩾ 5, they are interesting
in their own right since their corresponding Re𝐸 has a different dependence on Ha than
the optimal mode. This is apparent from figure 9a that shows the 𝛾-dependence of Re𝐸 for
𝛼 = 𝛼𝑚 and 𝛼 = 0. For large 𝛾, Re𝐸 for 𝛼 = 0 saturates like the minimal Re𝐸 but the
saturation levels for 𝛼𝑚 and 𝛼 = 0 separate further as Ha grows. For small 𝛾, a saturation
is only apparent for Ha = 5 with comparable levels for 𝛼𝑚 and 𝛼 = 0. For Ha = 10 and
Ha = 20 the curves for 𝛼𝑚 and 𝛼 = 0 continue to decay below 𝛾 = 0.25. It can be expected
that the curves for 𝛼 = 0 eventually reach the saturation levels for the channel case. These
correspond to the minima of Re𝐸 on the axis 𝛼 = 0 in figures 4c, 4d. For Ha = 10 and
Ha = 20 these values are Re𝐸 ≈ 158 and Re𝐸 ≈ 310, respectively.

The saturated values of Re𝐸 for 𝛼 = 0 and 𝛾 > 1 are shown in figure 9b as black circles.
They clearly scale as Re𝐸 ∼ 𝑂 (Ha) with a proportionality constant ≈ 23. This linear scaling
is consistent with the behavior of linear, streamwise-independent optimal perturbations
investigated by Krasnov et al. (2010). These authors found that those perturbations reside in
the Shercliff layers. A linear scaling was also obtained by Lingwood & Alboussière (1999).
These authors investigated energy stability for a single insulating Hartmann layer. They found
Re𝐸 = 25.6 Ha for purely streamwise-independent modes (𝛼 = 0). Although the numerical
value of the proportionality constant for the duct is close to 25.6, the corresponding modes
are distinct. Perturbations localized in the Hartmann layers only appear as higher modes in
the duct case. For 𝛾 = 1, the 9th mode is the lowest one with such a spatial structure. The
corresponding Re𝐸 of the 9th mode (also displayed in figure 9b) agrees very well with the
energy stability limit from Lingwood & Alboussière (1999).

In summary, the case 𝛼 = 0 provides a linear dependence between Reynolds and Hartmann
numbers for energy stability. This is consistent with threshold values of Re found in
experiments on the relaminarization of turbulent MHD duct flows (Branover 1978; Moresco
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& Alboussière 2004). A scaling with Ha1/2 is not observed in those experiments. This
underlines the dynamical importance of long-wave modes in transitional and turbulent MHD
duct flows despite their non-optimal properties.

5. Coherent structures at criticality
5.1. Theoretical link with linear optimal perturbations (LOPs)

Although many energy stability calculations principally report values of Re𝐸 and the
corresponding optimal wavenumbers at criticality (i.e. at Re = Re𝐸), the associated flow
structures, corresponding to the eigenvectors of the linearised operator in (2.20), are usually
not investigated in detail with the possible exception of Pothérat et al. (2000). These coherent
structures are not directly observable flow structures in an experimental setting, unlike e.g.
unstable global modes. However, as mentioned earlier, they bear a strong relation with the
linear optimal perturbations (LOPs) celebrated in non-modal instability analysis (Schmid
2007; Kerswell 2018). The LOPs are the initial velocity fields 𝒖 (𝑇 )

opt that optimise the finite-
time perturbation energy growth

𝐺 (𝑇, 𝒖(0)) = |𝒖(𝑇) |2/|𝒖(0) |2 (5.1)

for any given time horizon 𝑇 > 0, under the action of the linearised dynamics (Reddy
& Henningson 1993). They are relevant for Re > Re𝐸 , when energy growth is indeed
instantaneously possible and max (𝐺) > 1 for at least some value of𝑇 . The maximum energy
growth corresponding to the short time horizonsΔ𝑡 ≪ 1 verifies𝐺 (Δ𝑡, 𝒖Δ𝑡

opt) ⩽ ∥I+2(Δ𝑡)L∥
at first order in Δ𝑡, where L is the linearised operator at 𝑡 = 0. This tends to unity, for fixed
Δ𝑡, as Re approaches Re𝐸 from above. The structures achieving the largest energy growth
at Re = Re𝐸 are hence precisely the critical perturbations computed in all energy stability
studies as a byproduct of the eigenvalue problem (2.20). In other words, the LOPs computable
at Re > Re𝐸 continue smoothly into the critical perturbations computed here. In the same way
as the detailed investigation of the LOPs has shed light on the (linear) transition mechanisms,
it is hence useful to investigate the critical perturbations at Re𝐸 as they might already
feature elements related to the transition observed at larger Re. This is for instance the case
for the channel flow discussed in §3, where the mode that attains the lowest Re𝐸 changes
from a streamwise to a spanwise uniform structure as Ha is increased, and for intermediate
parameter values correspond to an oblique wave. Such a trend is in complete agreement with
the behaviour of LOPs reported by Krasnov et al. (2008) (see their figure 7). On a technical
level, the critical perturbations computed from (2.20) are independent of any target time,
which makes their description simpler.

It is useful to recall the main teachings of the quest for LOPs in simple configurations,
namely the purely hydrodynamic channel flow with streamwise periodicity. Two-dimensional
computations (assuming no spanwise dependence of the flow) have highlighted the Orr
mechanism as the most efficient way to extract energy from the base flow (Farrell 1988).
The Orr mechanism consists of a progressive shearing of the perturbations in the direction
associated with the base flow. The corresponding optimal perturbations are easily recognised
by the tilting of spanwise vortices against the shear. Three-dimensional computations of
LOPs have highlighted a much more efficient energy growth mechanism, linked to the
lift-up mechanism (Brandt 2014) which actively exploits the spanwise dependence of the
disturbance. The associated optimal perturbations look like long tubular streamwise vortices
evolving rapidly into streamwise streaks, characterised by a well-defined spanwise spacing.
These optimal disturbances are often two-dimensional (Butler & Farrell 1992), now in the
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(a) (b) (c)

Figure 10: Isosurfaces of 𝑢𝑥 for the leading eigenmodes at Ha = 0, 𝛾 = 1 and streamwise
wavenumbers (a) 𝛼 = 0.6, (b) 𝛼 = 1.2 and (c) 𝛼 = 2.4. The streamwise period displayed in

each case is the period for 𝛼 = 1.2.
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Figure 11: Contours of 𝑢𝑥 in the planes 𝑧 = 0 (a-c) and 𝑦 = 1/2 (d-f) for the leading
eigenmodes at Ha = 0 for the same parameters as Figure 10.

sense that they do not depend on the streamwise coordinate, and even when they are three-
dimensional, the tilting of the vortices against the shear is not pronounced.

5.2. Duct visualisation for Ha = 0.
We begin by visualising the eigenmodes of the eigenproblem (2.20) in the non-MHD case
when Ha = 0. Starting with the least stable modes and focusing on the square duct (𝛾 = 1),
figure 10 shows three-dimensional rendering of the isosurfaces of 𝑢𝑥 for three values of 𝛼
from low to high, respectively 𝛼 = 0.6, 1.2 and 2.4. The tilting against the shear typical of Orr
modes is found visually in figure 10. This tilting is confirmed by looking at the perturbations
both in the 𝑥𝑦 and 𝑥𝑧 planes, as shown in figure 11 for the same values of 𝛼.

For a better visualisation of the flow in a cross-section, we chose to display in figure 12
only the real part of the velocity field associated with 𝑢𝑥 , and chose (before normalisation)
the cross-section where the amplitude of Re(𝑢𝑥) is maximal. This representation makes the
symmetries of the different modes easier to interpret. In particular, figure 12 shows the four
least stable modes. We can adopt the nomenclature introduced in the linear stability analyses
of Tatsumi & Yoshimura (1990) (for hydrodynamic duct flow) and Priede et al. (2010) (for
the Hunt’s flow which admits the same symmetry classification), which is based on listing
whether the symmetry of 𝑢𝑥 with respect to the 𝑧-axis (resp. the 𝑦-axis) are odd or even.
It can be checked that this classification remains unaffected by the presence of the Lorentz
force in the governing equations. This gives way to the respective symmetry types I (odd in
𝑦, even in 𝑧), II (odd in 𝑦 and 𝑧), III (even in 𝑦 and 𝑧) and IV (even in 𝑦/odd in 𝑧). The modes
listed in Figure 12 are (a) type IV, (b) type I, (c) type III and (d) type II.
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Figure 12: Eigenmodes by ascending Re𝐸 from (a) to (d) for Ha = 0, 𝛾 = 1 and 𝛼 = 0.3
visualized by real part of 𝑢𝑥 . 𝑢𝑥 is normalized such that its maximum is equal to unity.

These modes correspond to type I (b), type II (d), type III (c) and type IV (a).
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Figure 13: Re𝐸 vs. 𝛼 (at optimal wavenumber) for different modes computed for Ha = 0,
𝛾 = 1.

The values of Re𝐸 corresponding to each of these four modes are, for a more efficient
representation, plotted versus their corresponding optimal wavenumber 𝛼 in Figure 13. It is
clear that the two modes with symmetry I and IV are equivalent for 𝛾 = 1 and the optimal
structure for all values of 𝛼. Modes II and III cross near 𝛼 = 2.

For Ha = 0, the structure and symmetry type of the lowest mode can change with the aspect
ratio 𝛾. This was already noted in connection with figure 6a. The plots of cross-sections of
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Figure 14: Lowest eigenmodes (type II) for Ha = 0, 𝛼 = 0 and (a) 𝛾 = 2, (b) 𝛾 = 4
visualised by 𝑢𝑥 . 𝑢𝑥 is normalized such that its maximum is equal to unity.

𝑢𝑥 for 𝛾 = 2 and 𝛾 = 4 are shown in figure 14b. These modes have symmetry II. At 𝛾 = 4,
the number of structures along the 𝑦-direction is twice that for 𝛾 = 2.

5.3. Duct visualisation for Ha ≠ 0.
We move next to the visualisation of the eigenmodes of the eigenproblem (2.20) in the MHD
case. Figure 15 shows three-dimensional visualisations of the least stable modes found in
square duct (𝛾 = 1) at Ha = 20 for 𝛼 = 1/2, 1, 2 and 4. Again, long modes with small or
vanishing 𝛼 are associated at higher Re with the lift-up mechanism while the Orr mechanism
is present in shorter-wavelength structures. A clear difference is that the structures are more
localized near the side walls since the central part of the velocity distribution has low shear.
As for Ha = 0 the streamwise velocity has also been plotted in the 𝑥𝑦 plane where variations
along 𝑦 are important (see figure 16), whereas in the 𝑥𝑧 plane the perturbations show a more
uniform dependence on 𝑧. The tilting against the shear, clearly visible in the Shercliff layers,
is noted for 𝛼 = 1, 2 as well as for 𝛼 = 4 where the lowest value of Re𝐸 is achieved for
𝛾 = 1. For smaller 𝛼 = 1/2, the streaky perturbations are found in the Shercliff layers only
and are less elongated along 𝑧 than for the higher 𝛼 values. Isosurfaces of the corresponding
streamwise vorticity 𝜔𝑥 are shown in figure 17. Their position inside the Shercliff layers is
consistent with the emergence of streamwise streaks via the lift-up mechanism.

For the least stable modes found for 𝛾 = 1, this leads to the figure 18 where Re𝐸 for a
given mode is plotted versus the corresponding wavenumber 𝛼. A clear departure from the
Ha = 0 case is observed. This is mainly due to the fact that 𝛼 = 0 perturbations are much
more damped than non-zero ones. In particular, the value for Re𝐸 starts from 470 for 𝛼 = 0
(to be compared to a value of less than 100 for Ha = 0), then it decreases rapidly to values
closer to 250-300 in the range 3 ⩽ 𝛼 ⩽ 4, only to start rising beyond that. Almost identical
values of Re𝐸 are obtained for the symmetry types III and I as well as IV and II, i.e. with
either even or odd symmetry in 𝑧. The lateral symmetry, therefore, does not matter except
for small 𝛼. Cross-sections of the real part of the 𝑢𝑥 modes are again shown in figures 19,
20 and 21. For both 𝛼 = 1/2 (figure 19) and 𝛼 = 2 (figure 20), the perturbations are clearly
located in the Shercliff layers with symmetries type I (19a and 20a), III (19b and 20b), II
(19c and 20c) and IV (19d and 20d). It is again apparent that the structures become more
elongated along 𝑧 for the higher 𝛼 in figure 20.

Not all eigenmodes found in this study are located in the Shercliff layers, although those
which minimise the value of 𝑅𝑒𝐸 generally are. The existence of modes localized inside the
Hartmann layers, already mentioned in §4.4, is demonstrated in figure 21. These different
modes are of type I, II, III and IV, respectively (modes 9-12). The corresponding values of
𝑅𝑒𝐸 are all close to 530, which is roughly twice the global minimising value of 𝑅𝑒𝐸 for
these parameters. Owing to the wide separation between the Hartmann layers, the symmetry
with respect to 𝑧 has little influence on the value of 𝑅𝑒𝐸 . The symmetry with respect to 𝑦

hardly affects the eigenvalues either.
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(a) (b)

(c) (d)

Figure 15: Isosurfaces of 𝑢𝑥 for the leading eigenmodes at Ha = 20, 𝛾 = 1 and streamwise
wavenumbers (a) 𝛼 = 1/2, (b) 𝛼 = 1, (c) 𝛼 = 2 and (d) 𝛼 = 4. The streamwise period

displayed in each case corresponds to the period for 𝛼 = 1.
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Figure 16: Contours of 𝑢𝑥 in the plane 𝑧 = 0 for the same parameters as figure 15.

6. Summary and conclusions
In this computational study, energy stability theory was applied to the case of hydrodynamic
and magnetohydrodynamic duct flow, in the situation where the flow is electrically conduct-
ing, the walls electrically insulating, and the applied magnetic field is transverse. The duct
is assumed periodic in the streamwise direction. The values of the energy Reynolds number
Re𝐸 were reported in a parametric study accounting for variable streamwise wavenumber 𝛼,
variable cross-sectional aspect ratio 𝛾 and variable Hartmann number (which is proportional
the intensity of the applied magnetic field). By going to the 𝛾 ≪ 1 limit, the results for
spanwise-periodic channel flow were recovered. For 𝛾 ≫ 1, they also match with the quasi-
two-dimensional (Q2D) computations performed in Pothérat (2007) for short streamwise
wavelengths. The related perturbations are found along the sidewalls (e.g. inside the Shercliff
layers). The special case of streamwise-independent perturbations shows a different scaling
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Figure 17: Isosurfaces of 𝜔𝑥 for the leading eigenmode at Ha = 20, 𝛾 = 1 and streamwise
wavenumber 𝛼 = 1/2. Only half the streamwise period is shown.
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Figure 18: Re𝐸 vs. 𝛼 for different modes computed for Ha = 20, 𝛾 = 1.

than in the Q2D case, which agrees with the arguments developed in Krasnov et al. (2010).
The visualisation of the critical structures, interpreted as precursors of the popular linear
optimal perturbations (LOPs), allows one to identify the mechanisms at play at Re𝐸 , namely
the Orr and the lift-up mechanism. All these optimal structures are found to be robustly
located in the Shercliff layer. This result is nicely consistent with the localisation of the linear
optimal modes reported in Cassells et al. (2019). Note that the Shercliff layer is also the
part of the cross-section where turbulence remains last in the spatio-temporally intermittent
regime, as Ha is increased (Krasnov et al. 2013). This robust property highly suggests, by
extrapolating the system to yet higher Re and to the fully nonlinear regime, that transition
to turbulence in this geometry starts generically with the destabilisation of the Shercliff
layer. Such conclusions need to be supported by nonlinear computations which are currently
underway (Brynjell-Rahkola et al. 2022).
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Figure 19: Eigenmodes by ascending Re𝐸 from (a) to (d) for Ha = 20, 𝛾 = 1 and 𝛼 = 1/2
visualized by real part of 𝑢𝑥 . 𝑢𝑥 is normalized such that its maximum is equal to unity.

These modes correspond to type I (a), type II (c), type III (b) and type IV (d).

Appendix A. Construction of matrices in the eigenvalue problem (2.38)
In order to describe how the matrices are assembled we focus on the case with non-zero
streamwise wavenumber, i.e. on the discretization of equations (2.23-2.27). The case of
zero streamwise wavenumber can be treated similarly except that the relevant equations are
(2.32-2.35). They are discretised by the same approach, which should be apparent from the
following discussion.

Since the vorticity components �̂�𝑦 , �̂�𝑧 are given by the Laplacians of �̂�𝑦 and �̂�𝑧 , 𝜙 (c.f.
equations (2.25,2.26,2.27)), we chose a larger set of basis functions for these quantities.
We use (𝑁𝑦 + 1) × (𝑁𝑧 + 1) Chebyshev polynomials for the two vorticity components and
(𝑁𝑦 + 3) × (𝑁𝑧 + 3) Chebyshev polynomials for the vector streamfunction components and
the electric potential.

We write these two sets {𝑔𝑚} and {ℎ𝑚} using a combined single index rather than double
indices. The definitions are

𝑔𝑘+1+𝑙 (𝑁𝑦+3) (𝑦, 𝑧) = 𝑇𝑘 (𝑦/𝐿𝑦)𝑇𝑙 (𝑧/𝐿𝑧), 0 ⩽ 𝑘 ⩽ 𝑁𝑦 + 2, 0 ⩽ 𝑙 ⩽ 𝑁𝑧 + 2 (A 1)

and

ℎ𝑘+1+𝑙 (𝑁𝑦+1) (𝑦, 𝑧) = 𝑇𝑘 (𝑦/𝐿𝑦)𝑇𝑙 (𝑧/𝐿𝑧), 0 ⩽ 𝑘 ⩽ 𝑁𝑦 , 0 ⩽ 𝑙 ⩽ 𝑁𝑧 . (A 2)
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Figure 20: Eigenmodes by ascending Re𝐸 from (a) to (d) for Ha = 20, 𝛾 = 1 and 𝛼 = 2
visualized by real part of 𝑢𝑥 . 𝑢𝑥 is normalized such that its maximum is equal to unity.

These modes correspond to type I (a), type II (c), type III (b) and type IV (d).

The expansion for �̂�𝑦 then reads

�̂�𝑦 =

𝑁max,1∑︁
𝑚=1

Ω
(𝑦)
𝑚 ℎ𝑚(𝑦, 𝑧), 𝑁max,1 = (𝑁𝑦 + 1) (𝑁𝑧 + 1). (A 3)

Analogously, the expansion for �̂�𝑦 is

�̂�𝑦 =

𝑁max,2∑︁
𝑚=1

Ψ
(𝑦)
𝑚 𝑔𝑚(𝑦, 𝑧), 𝑁max,2 = (𝑁𝑦 + 3) (𝑁𝑧 + 3). (A 4)

For the discretisation of the Poisson equation (2.25) we demand that the partial differential
equation holds at the interior collocation points

(𝑦𝑘 , 𝑧𝑙) =
(
𝐿𝑦 cos

(
𝑘𝜋

𝑁𝑦 + 2

)
, 𝐿𝑧 cos

(
𝑙𝜋

𝑁𝑧 + 2

))
. (A 5)

To wit,
𝑁max,2∑︁
𝑚=1

Ψ
(𝑦)
𝑚

(
𝜕2𝑔𝑚

𝜕𝑦2

����
(𝑦𝑘 ,𝑧𝑙 )

+ 𝜕2𝑔𝑚

𝜕𝑧2

����
(𝑦𝑘 ,𝑧𝑙 )

− 𝛼2𝑔𝑚(𝑦𝑙 , 𝑧𝑘)
)

︸                                                        ︷︷                                                        ︸
=Q𝑖,𝑚

=

𝑁max,1∑︁
𝑚=1

Ω
(𝑦)
𝑚 ℎ𝑚(𝑦𝑘 , 𝑧𝑙)︸      ︷︷      ︸

=R𝑖,𝑚

, (A 6)
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Figure 21: Selection of eigenmodes for Ha = 20, 𝛾 = 1 and 𝛼 = 0 visualized by 𝑢𝑥 . (a)
mode 9 with Re𝐸 = 530.16, (b) mode 10 with Re𝐸 = 530.27, (c) mode 11 with

Re𝐸 = 530.32, (d) mode 12 with Re𝐸 = 530.33. 𝑢𝑥 is normalized such that its maximum
is equal to unity.

where 𝑖 = 𝑘 + (𝑙 − 1) (𝑁𝑦 + 1), 1 ⩽ 𝑘 ⩽ 𝑁𝑦 + 1, 1 ⩽ 𝑙 ⩽ 𝑁𝑧 + 1. For 𝑖 ⩽ 𝑁max,1, the matrix
elements R𝑖,𝑚 with 𝑚 > 𝑁max,1 are set to zero.

The remaining equations for 𝑁max,1 ⩽ 𝑖 ⩽ 𝑁max,2 are obtained from the boundary
conditions, which are imposed on the collocation points on the boundary. On the line 𝑧 = 𝐿𝑧

the value of 𝜓𝑦 is prescribed, e.g.

𝑁max,2∑︁
𝑚=1

Ψ
(𝑦)
𝑚 𝑔𝑚(𝑦𝑙 , 𝐿𝑧)︸       ︷︷       ︸

=Q𝑖,𝑚

= 𝑣𝑖 , (A 7)

where 𝑣𝑖 denotes the boundary value and 𝑖 = 𝑁max,1 + 𝑙 + 1 with 0 ⩽ 𝑙 ⩽ 𝑁𝑦 + 2. This
equation implies that R has only diagonal entries for 𝑖 > 𝑁max,1, which can be set to unity.
The remaining boundaries 𝑧 = −𝐿𝑧 , 𝑦 = ±𝐿𝑦 are treated in a similar way. The set of
boundary values 𝑣𝑖 complements the set of known values Ω

(𝑦)
𝑚 . For simplicity we define

them as 𝑠𝑖 = Ω
(𝑦)
𝑖

for 𝑖 ⩽ 𝑁max,1 and 𝑠𝑖 = 𝑣𝑖 = 0 for 𝑁max,1 < 𝑖 ⩽ 𝑁max,2. In summary, one
obtains a linear system

𝑁max,2∑︁
𝑚=1

Q𝑖,𝑚Ψ
(𝑦)
𝑚 =

𝑁max,2∑︁
𝑚=1

R𝑖,𝑚𝑠𝑚 (A 8)
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with full-rank matrices Q and R. One can therefore compute C(𝑦) = Q−1R and represent the
vector Ψ (𝑦)

𝑚 by

Ψ
(𝑦)
𝑖

=

𝑁max,2∑︁
𝑚=1

C(𝑦)
𝑖,𝑚

𝑠𝑚. (A 9)

Since the boundary values 𝑣𝑖 are all zero, this reduces to

Ψ
(𝑦)
𝑖

=

𝑁max,1∑︁
𝑚=1

C(𝑦)
𝑖,𝑚

Ω
(𝑦)
𝑚 , 1 ⩽ 𝑖 ⩽ 𝑁max,2. (A 10)

The expansion coefficients Ψ
(𝑧)
𝑖

and Φ𝑖 are obtained in an analogous way from eqs. (2.26)
and (2.27). Since boundary values are again zero, we have

Ψ
(𝑧)
𝑖

=

𝑁max,1∑︁
𝑚=1

C(𝑧)
𝑖,𝑚

Ω
(𝑧)
𝑚 , 1 ⩽ 𝑖 ⩽ 𝑁max,2 (A 11)

and

Φ𝑖 =

𝑁max,1∑︁
𝑚=1

C(𝜙)
𝑖,𝑚

Ω
(𝑧)
𝑚 , 1 ⩽ 𝑖 ⩽ 𝑁max,2. (A 12)

For the discretization of eq. (2.23,2.24) we use the smaller set of (𝑁𝑦 − 1) × (𝑁𝑧 − 1)
interior collocation points corresponding to the set {ℎ𝑚}, namely

(𝑦𝑘 , 𝑧𝑙) =
(
𝐿𝑦 cos

(
𝑘𝜋

𝑁𝑦

)
, 𝐿𝑧 cos

(
𝑙𝜋

𝑁𝑧

))
. (A 13)

Most elements of matrices A and B are obtained by demanding that the equations (2.23,2.24)
hold at these collocation points. The remaining ones are obtained from the boundary
conditions applied to the collocation points on the boundary.

It is straightforward but tedious to evaluate the contributions from the different terms
appearing in the equations (2.23,2.24). The Laplacian on the left hand side of eq. (2.23)
yields

𝑁max,1∑︁
𝑚=1

Ω
(𝑦)
𝑚

(
𝜕2ℎ𝑚

𝜕𝑦2

����
(𝑦𝑘 ,𝑧𝑙 )

+ 𝜕2ℎ𝑚

𝜕𝑧2

����
(𝑦𝑘 ,𝑧𝑙 )

− 𝛼2ℎ𝑚(𝑦𝑙 , 𝑧𝑘)
)
, (A 14)

where the term multiplying Ω
(𝑦)
𝑚 adds to the entry A𝑖,𝑚 where 𝑖 = 𝑘 + (𝑙 − 1) (𝑁𝑦 − 1). The

contribution from the second term is

−Ha2
𝑁max,2∑︁
𝑚=1

Φ𝑚

𝜕2𝑔𝑚
𝜕𝑦𝜕𝑧

����
(𝑦𝑘 ,𝑧𝑙 )

=

𝑁max,1∑︁
𝑛=1

Ω
(𝑧)
𝑛

(
𝑁max,2∑︁
𝑚=1

−Ha2C(𝜙)
𝑚,𝑛

𝜕2𝑔𝑚
𝜕𝑦𝜕𝑧

����
(𝑦𝑘 ,𝑧𝑙 )

)
(A 15)

We see that both Ω
(𝑦)
𝑚 and Ω

(𝑧)
𝑚 appear in the discretisation of eq. (2.23). It is therefore

necessary to combine Ω
(𝑦)
𝑚 and Ω

(𝑧)
𝑚 into a single vector 𝒀 of size 2𝑁max,1 with 𝑌𝑚 = Ω

(𝑦)
𝑚

and 𝑌𝑚+𝑁max,1 = Ω
(𝑧)
𝑚 for 1 ⩽ 𝑚 ⩽ 𝑁max,1. The matrices A and B are then also of size

2𝑁max,1 × 2𝑁max,1. The term multiplying Ω
(𝑧)
𝑛 on the right hand side of eq. (A 15) adds to

the matrix element A𝑖,𝑛+𝑁max,1 . The treatment of the other terms contributing to A and B at
the interior collocation points (A 13) is analogous.

The boundary conditions on �̂�𝑦 and �̂�𝑧 are implemented on the remaining rows of matrix
A, i.e. for index values 2(𝑁𝑦 − 1) (𝑁𝑧 − 1) < 𝑖 ⩽ 2𝑁max,1 as explained above for the
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computation of �̂�𝑦 from �̂�𝑦 . Since the boundary conditions do not contain the eigenvalue
Re, the corresponding rows of matrix B are filled with zeros.
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