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Abstract
Additive manufacturing (AM) has emerged as a commonly utilized technique in the manufacturing process of a wide 
range of materials. Recent advances in AM technology provide precise control over processing parameters, enabling the 
creation of complex geometries and enhancing the quality of the final product. Moreover, Machine Learning (ML) has 
become widely used to make systems work better by using materials and processes more intelligently and controlling 
their resulting properties. In industrial settings, implementing ML not only reduces the lead time of manufacturing pro-
cesses but also enhances the quality and properties of produced parts through optimization of process parameters. Also, 
ML techniques have facilitated the advancement of cyber manufacturing in AM systems, thereby revolutionizing Industry 
4.0. The current review explores the application of ML techniques across different aspects of AM including material and 
technology selection, optimization and control of process parameters, defect detection, and evaluation of properties results 
in the printed objects, as well as integration with Industry 4.0 paradigms. The progressive phases of utilizing ML in the 
context of AM, including data gathering, data preparation, feature engineering, model selection, training, and validation, 
have been discussed. Finally, certain challenges associated with the use of ML in the AM and some of the best-practice 
solutions have been presented.
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Introduction

Additive manufacturing (AM) technologies, particularly in 
the process of manufacturing polymer and polymer-based 
composite components, are introducing a significant shift in 
production paradigms as an important element of the Indus-
trial Revolution 4.0, currently extending their application 
to a variety of industrial sectors [1–7]. The term “additive” 
refers to the notion of adding materials (usually in sequen-
tial layers) to obtain the three-dimensional geometry of final 
products, as opposed to conventional technologies which 
mainly involve forming and subtracting materials [8, 9]. 
AM brings several advantages, such as the ability to produce 
complex geometries that would be difficult or impossible to 
achieve with conventional techniques. It would also reduce 
production time, minimize material waste, and enhance cost 
efficiency [10].

However, AM faces challenges due to inherent variations 
in manufacturing conditions and process parameters, where, 
for example, even small fluctuations in process parameters 
can significantly affect the energy input and result in micro-
structural defects. Fortunately, Machine Learning (ML) 
methods have emerged as a promising solution, offering 
great potential for determining the complexity of the com-
bined effects of process parameters on the final performance 
of AMed parts [11]. The utilization of ML techniques has 
significantly increased in recent years owing to the large 
amounts of available data, advancement in computational 
technology, and emerging advanced ML algorithms and 
tools [12]. ML has been applied in AM for several purposes, 
such as optimizing input parameters, analyzing dimensional 
accuracy, detecting defects during manufacturing, and pre-
dicting material properties [9].

ML models can be trained using different types of data in 
AM, aimed to address various problems concerning differ-
ent AM phases from process design and conception, prepro-
cessing, process optimization and operation control, quality 
control, and smart manufacturing [1, 13]. For instance, such 
approaches would be used to design and realize innovative 
microstructural architecture, intelligent optimization part 
features such as density and topology optimization [14], 
detect and control various defects [15] and residual stress 
distribution [16, 17], and improve manufacturability [18] 
and operational performance within the AM process. Even-
tually, these efforts ensure greater efficiency, quality, and 
customization of process output, addressing many of the 
current AM challenges.

This paper explores the application of ML in polymer 
additive manufacturing, focusing on addressing challenges 
across various stages of the AM process. Section “Polymer 
additive manufacturing technologies” provides an over-
view of key polymer AM technologies, setting the stage 
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by highlighting their capabilities and challenges. Sec-
tion  “Machine learning” covers the fundamentals of ML, 
including data collection, preprocessing, feature engineer-
ing, model selection, and validation, within the context 
of polymer AM. These foundational sections lead to sec-
tion “Application of machine learning in polymer additive 
manufacturing”, which discusses specific ML applications 
in design, process optimization, quality control, and smart 
manufacturing. Finally, section “Challenges associated with 
using ML in AM” examines challenges such as overfitting, 
data acquisition, computational cost, and standardization, 
offering insights into current limitations and future direc-
tions for ML in AM.

Polymer additive manufacturing 
technologies

Originally introduced as a rapid prototyping technique, 
the use of AM has become increasingly widespread for a 
wide variety of applications, offering particular advantages 
in product development, efficient production, and innova-
tive manufacturing [10] by providing unique capabilities 
in the manufacturability of complex geometries, optimiz-
ing mechanical performance, and sustainability of mate-
rial processes. Despite these advancements, the application 
of polymer AM parts confronts several critical challenges, 
including the inherent mechanical limitations of the poly-
mers used, a lack of comprehensive understanding of the 
interplay between the part architecture and mechanical 
properties, and the suboptimal matching of part design to its 
functional requirements [2, 19–22].

Polymers are dominant materials in industrial AM appli-
cations, accounting for around 51% of all materials used in 
the various AM technologies [23]. They are available in a 
variety of forms, including thermoplastic filaments, pow-
ders, and reactive resins, usable in different AM processes. 
Correspondingly, each material has inherent capabilities 
and limitations in terms of process design and final proper-
ties, which should be considered in material and technology 
selection and conception.

As depicted in Table  1, AM technologies have been 
classified into seven categories according to the Standard 
Terminology for AM Technologies (ISO/ASTM 52900: 
2021) [24], including Binder Jetting (BJT), Directed Energy 
Deposition (DED), Material Extrusion (MEX), Material Jet-
ting (MJT), Powder Bed Fusion (PBF), Sheet Lamination 
(SHL) and Vat Photopolymerization (VPP). Each of these 
technologies presents unique advantages and challenges 
[6, 25]. Moreover, multi-step processes combine various 
technologies to leverage the strengths of each, as required 
for achieving the desired design [26]. Similarly, hybrid 

manufacturing processes combining additive manufacturing 
and subtractive methods can offer high efficiency, improved 
surface finishing, and dimensional accuracy, further reduc-
ing manufacturing time and costs by minimizing material 
waste within a single setup [27]. These attributes underscore 
AMs pivotal role in advancing sustainable and efficient pro-
duction paradigms. Table 1 provides a summary of catego-
ries and the most common subcategories of polymer AM 
techniques [28].

Among these, MEX, VPP, and MJT are the most widely 
used polymer-based AM technologies [28]. For instance, 
stereolithography (SLA), a VPP technology, has been 
the first AM technology to be commercialized since the 
1980s [29]. SLA along with its variants such as masked 
projection technologies (e.g. LCD masked stereolithogra-
phy, digital light processing (DLP), and continuous digi-
tal light processing (cDLP)), have gained a large share of 
industrial applications [30–32]. In this regard, it has been 
reported that photopolymers, which are used in VPP and 
MJT technologies, account for around 50% of AM market 
share [33].

Prototyping can still be considered the most important 
application for AM. Fused Filament Fabrication (FFF), also 
known as Fused Deposition Modeling (FDM™), is a MEX 
technology that can be considered one of the simplest and 
most attractive processes currently available for the AM 
[19, 34], and has gained wide applications, notably for pro-
totyping and producing functional parts of thermoplastics 
polymer components with low melting points and compos-
ites [35, 36].

Selective laser sintering (SLS), a PBF technology, is 
another widely used AM technology of polymer materi-
als. This technology, besides promising advantages in the 
fabrication of highly isotropic parts with complex geom-
etries without support structures, is still limited to polymers 
with large enough sintering window, such as polyamide 11 
and 12 (PA-11 and PA-12), Polystyrene (PS), thermoplas-
tic Polyurethane (TPU) and thermoplastic elastomers [37]. 
Nevertheless, huge advantages in the fabrication of biocom-
patible porous components made this technology a great 
choice for biomedical applications [38].

The use of pure polymer AMed parts has traditionally 
been mainly limited to conceptual prototyping. This is pri-
marily due to their inherent limitations in mechanical per-
formance. As shown in Fig.  1, mechanical properties are 
one of the main concerns in AM research. These research 
efforts have led to the emergence of innovative processes 
and materials for the production of functional advanced 
polymer components.

Conversely, AM technologies of polymer composites 
have undergone significant advancements over time, with 
researchers investigating and exploring novel materials to 
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Indeed, the manufacturing rate of AM for composites and 
its capacity to produce consistent results are typically lower 
compared to traditional materials [40]. However, there is 
a growing interest in transitioning from rapid prototyping 
to mass production of functional parts. With this transi-
tion, new materials could also be developed by the synthe-
sis of new matrix materials, which can provide excellent 

address the inherent limits of pure polymer materials. These 
technologies have the ability to greatly enhance industrial 
manufacturing by providing excellent functionality and 
mechanical performance. Nevertheless, the limitation of 
printable materials, that may meet the design requirements 
of AM technologies, remains a key challenge for broader 
industrial applications of high-performance composites. 

Table 1  Additive manufacturing process terminology according to ISO/ASTM 52,900: 2021 [24] 
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In the optimization of AM processes, various final prop-
erties can be defined as optimization targets at different 
scales, indicating the multiphysics and multiscale nature 
of these studies [40, 43–45]. Accordingly, personalized 
material architecture can be designed and realized utilizing 
AM technologies, providing application-oriented features 
in terms of mechanical and physicochemical properties in 
different scales. For instance, bioinspired AM architectures 
have been introduced to ensure the biocompatibility of com-
ponents, from the molecular to the macroscopic scale [46]. 
This includes molecular lever cytotoxicity, morphological 

mechanical properties. Therefore, further research is needed 
to explore more suitable materials and applications for AM 
polymer composites [13].

Multi-material AM offers a wide range of possibilities 
for the design and manufacture of functional components. 
For example, the ability to create components with spatially 
varying properties makes them suitable candidates to pro-
duce functionally graded materials (FGMs). However, the 
co-processing of two or more raw materials poses more 
complex requirements in terms of process design, optimiza-
tion, and control [41, 42].

Fig. 1  Keyword co-occurrence analysis for additive manufacturing as reported by Zheng et al. [39], indicating the importance of the mechanical 
properties of AMed parts
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while data-driven models offer scalability and efficiency in 
exploring the effects of processing parameters on final part 
properties.

For instance, vat photopolymerization processes com-
prise in-situ photochemical reactions that provoke vari-
ous phenomena including shrinkage (resulting in residual 
stresses and or deformation), thermal and chemical com-
position evolution, solute redistribution and segregations. 
Such phenomena would also influence the resin characteris-
tics (namely critical energy Ec and depth of penetration Dp) 
during the process. Similarly, extrusion-based processes 
(such as FFF) involve thermal evolutions including crystalli-
zation and diffusion, determining layer adhesion conditions, 
and the eventual performance of the component [66, 67]. In 
general, layer-by-layer fabrication is the common approach 
in most AM technologies, despite some exceptions such as 
volumetric [68, 69] or multiaxial approaches [70]. Hence, 
the sequence of material addition (through deposition, cur-
ing, sintering, etc.) within the layers, as well as the stack-
ing orientation of the layers, have a decisive effect on the 
stress distribution and the final microstructure of the AMed 
part [71–73]. These process parameters need to be consid-
ered alongside material variables and desired properties. In 
particular, composite materials and multi-material additive 
manufacturing would require case-specific optimization of 
process parameters.

During the AM processes, several parameters can affect 
the process and final properties of components. As illus-
trated in Fig. 2, One can categorize these parameters into 
material, process, machine, and environment parameters. 
These parameters have different effects on the evolution of 

miscibility, and microstructure porosity, as well as FGM 
structures, extending to the macroscopic scale by the coher-
ence of the thermal expansion coefficient and of the overall 
mechanical behavior of the component [46–54].

The optimization of process parameters should be 
addressed in the overall context of the Process-Structure-
Properties-Performance (PSPP) relationship as a key area 
of research in AM materials science [55–63]. The structure 
of a material refers to its internal architecture, which can 
be studied at different scales from the nano-(molecular 
or atomic level) to the macro-scale (visible features such 
as layers or fiber alignments) [55, 64]. Microstructure is 
directly influenced by the manufacturing process and 
sequentially determines material properties as well as over-
all mechanical anisotropy and geometrical accuracy due to 
architectural properties and residual stress distribution in 
the final part.

Physics-informed approaches rely on constitutive equa-
tions that describe the underlying physical phenomena of 
AM processes, structures, and properties. However, they 
are limited by high computational costs and the need to 
calibrate input parameters. On the other hand, data-driven 
models use ML and statistical analysis to predict AM 
results without explicit physical equations. These models 
can efficiently process large data sets to uncover patterns 
and correlations. However, they can suffer from a lack of 
interpretability and the need for extensive data for training. 
Kouraytem et al. [65] suggest that both physics-driven and 
data-driven models have their place in advancing the under-
standing of PSPP relationships in AM. Physics-driven mod-
els provide detailed insights into the mechanisms involved, 

Fig. 2  An overview of additive manufacturing parameters
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work is another instance representing a case study in the use 
of the Convolutional Neural Networks (CNN) deep learning 
approach to predict the stress distribution in AMed parts.

Emerging design approaches for the innovative optimiza-
tion of AM processes would result in satisfying a variety of 
design criteria, including mechanical performance, geometric 
precision, and aesthetic properties while taking into account 
application-specific properties such as biocompatibility and 
applicability under severe conditions, and finally manufac-
turing cost-effectiveness and sustainability. For example, 
the generative design (GD) approach uses algorithm-driven 
processes to generate design alternatives based on specified 
goals, constraints, parameters, and material choices [14]. It 
leverages artificial intelligence and computational methods 
to explore a vast design space, presenting designers with 
optimized solutions that meet predefined criteria in order to 
take full advantage of AM capabilities [14, 85, 86].

For instance, Li et al. [87] introduced a multidisciplinary 
topology optimization (TO) framework for AM regarding 
PSPP relationships. TO is described as a method that itera-
tively optimizes material distribution within a given design 
space, subject to constraints, to achieve designs that meet 
predefined objectives, such as minimal mass or maximal 
stiffness. The experimental evaluations have been conducted 
on an SLS process using PA-12 powder. The proposed 
workflow involves mapping functions of PSPP relationships 
through a data-driven approach and optimizing process 
parameters and structural topology using a gradient-based 
algorithm. The study showcases the efficacy of this method 
by implementing three case-specific optimizations, result-
ing in significant enhancements in lightweight performance 
as compared to traditional optimization methods.

Furthermore, another study by Barbieri and Muzzupappa 
[88] focused on the design and optimization of two com-
ponents of a Formula Student race car - a rocker arm and 
a brake pedal - to evaluate and compare the potential and 
limitations of GD and TO tools with the objectives of reduc-
ing weight and improving stiffness. The analysis indicates 
that GD generally outperforms TO in producing more opti-
mized solutions with significant reductions in weight and 
improvements in mechanical performance. This advantage 
is attributed to the ability of GD to explore a wider design 
space without the limitations imposed by a predefined initial 
design space, as is the case with TO.

Machine learning

ML is a subfield of artificial intelligence that focuses on 
the development of algorithms enabling computers to learn 
from data and make predictions based on learned patterns. 
ML models can enhance their performance over time by 

material during the process. For example, during the FFF 
process, different process parameters affect the thermal 
treatment of the deposited material during solidification, 
the effective contact and formation of the adhesion inter-
face, and, consequently, the eventual mechanical behavior 
and geometrical stability of AMed parts [74, 75]. Similarly, 
within the SLS process, laser energy density has a deter-
minative role alongside powder properties, chamber tem-
perature, and even atmosphere composition. It is therefore 
necessary to study the combined influence of these param-
eters and to establish adequate strategies to enhance the 
microstructure of the final product [75–78].

As an example, Özen et al. [79] have studied the micro-
structure and mechanical properties of PETG FFF samples 
under different layer thicknesses and deposition over-
laps. These results indicate the influence of the deposition 
strategy on the effective adhesion between the deposited 
filaments and the reduction of intra-layer porosity, which 
ultimately has a critical effect on the overall performance of 
the AMed components.

From another point of view, the slicing direction of com-
ponent design (i.e. building orientation) under consistent 
deposition patterns can be investigated. As an example, 
Chacón et al. [80] characterized the effect of construction 
orientation, layer thickness, and feed rate on the mechani-
cal performance of PLA samples produced by the FFF pro-
cess. This study shows that PLA samples exhibit significant 
anisotropy, and that edge-oriented samples and flat con-
figurations exhibit higher stiffness and ultimate tensile and 
flexural strengths. On the other hand, the mechanical prop-
erties of upright-oriented samples are enhanced by increas-
ing layer thickness and decreasing feed rate. However, 
these variations were not significantly evident in edge and 
flat orientations, except in the case of low layer thickness. 
It’s worth mentioning that the research employed a response 
surface methodology for tensile and flexural strengths, 
analyzed using Statgraphics Centurion XVII software. An 
analysis of variance (ANOVA) was performed to assess the 
significance of factors such as construction orientation, feed 
rate, and layer thickness [80].

The structural analysis and simulation of AMed tech-
niques involve using computational models to predict the 
mechanical behavior and structural integrity of the designed 
parts under various loading conditions [3, 64, 81]. Advanced 
simulation tools, for example using finite element analysis 
(FEA), are employed to assess stress distribution, deforma-
tion, and failure modes. This ensures that the designs are not 
only manufacturable but also meet the required performance 
criteria [82]. Within the work of Guessasma et al. [83], the 
anisotropy of FFF AMed ABS polymer parts under different 
building orientations has been investigated through X-ray 
micro-tomography and FEA. Moreover, Khadilkar et al. [84] 
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the fundamental workflow known as the end-to-end ML 
process. This approach is of utmost importance as it sets the 
foundation for the model’s efficacy in subsequent phases, 
including prediction, validation, and overall accuracy evalu-
ation. A general ML project’s workflow is shown in Fig. 3. 
The very first step is to comprehend and define the problem 
and objective of the ML project. In the context of polymer 
AM, this could involve optimizing the process parameters 
such as extrusion temperature to prevent warping [91], 
predicting the final performance features such as tensile 
strength of printed parts [92, 93], or identifying defects dur-
ing the printing process [94, 95]. This guarantees that the 
model leads to findings that are relevant and replicable in 
both research and industrial settings.

Following the problem definition, the iterative and 
dynamic journey begins with data collection and data 

adjusting their algorithms or adding new data [89]. Gener-
ally, ML can be defined as algorithms “allowing computers 
to solve problems without being specifically programmed 
to do so” [90]. For instance, in the context of polymers 
AM, ML techniques are instrumental in optimizing process 
parameters, improving material properties, and predicting 
potential defects. The following sections provide an over-
view of a typical ML project, followed by detailed discus-
sions on the application of ML methods in various sectors of 
AM. Finally, the paper considers the challenges associated 
with utilizing ML in AM projects.

General overview of a machine learning project

In order to describe the application of an ML project, it is 
crucial to outline a roadmap of interconnected steps forming 

Fig. 3  Workflow of an end-to-end ML project
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Within AM, the data collection process involves a wide 
range of data types, and different sensors and monitoring 
devices are employed for this purpose. Particularly, the data 
collected can be categorized into several phases, including 
but not limited to process parameters, in-situ monitoring 
data, and post-process evaluation metrics.

Process parameters refer to the input variables that can 
be controlled or adjusted during the AM process, such as 
layer thickness, print speed, energy input (e.g., laser power 
in laser-based AM techniques), and material flow rate. In 
polymer AM, these parameters are critical as they directly 
influence the quality and characteristics of the final printed 
component, including its mechanical properties and sur-
face finish. For example, variations in layer thickness or 
print speed can lead to defects such as voids or poor layer 
adhesion, which in turn affect the mechanical performance 
of the part. Data on these parameters is crucial for train-
ing ML models to predict and optimize outcomes, such as 
improving the tensile strength or reducing the porosity of 
the printed polymer parts.

In-situ monitoring data is collected in real-time during 
the AM process using a variety of sensors and monitor-
ing equipment. This data is invaluable for developing ML 
models that can predict and correct defects as they occur. 
For example, thermal imaging captures temperature dis-
tributions across the printed part, which is essential for 
understanding and controlling thermal gradients that may 
cause warping or residual stresses in polymers [96, 97]. 
Acoustic emissions can provide early warning of defects 
such as cracks or delamination [98], while optical coher-
ence tomography offers detailed insights into layer-by-layer 
build quality [99]. Collecting and analyzing this data allows 
for real-time adjustments to process parameters, thereby 
enhancing the overall quality and consistency of the AM 
process.

After the AM process, a series of experimental evalua-
tions are conducted to assess the quality and properties of 
the printed components. These evaluations include mechan-
ical testing (e.g., tensile and fatigue behavior, fracture 
toughness, creep, and hardness), which are critical for deter-
mining whether the printed part meets the required speci-
fications for its intended application. Surface roughness 
measurements are particularly important in polymer AM, 
as surface finish can significantly impact the part’s perfor-
mance, especially in applications requiring high precision or 
specific aesthetic qualities. Rheological and physicochemi-
cal evaluations provide further insights into the material 
properties, such as viscosity and chemical stability, which 
are essential for ensuring that the printed parts maintain 
their integrity under various environmental conditions.

Collecting this comprehensive dataset is essential for 
validating the predictions made by ML models and ensuring 

preprocessing, where raw data is gathered from various 
stages of the AM process and prepared for analysis. This 
raw data may include input characteristics, such as G-code 
and input process parameters, output characteristics, such as 
geometrical accuracy, microstructure, and mechanical char-
acteristics of final parts, and in-process sensor data. Analyz-
ing and visualizing this data provides insights that guide the 
implementation of the ML model, helping to understand the 
complex relationships between process parameters and final 
product structure, properties and performance.

Feature engineering is a critical step where specific char-
acteristics, such as layer adhesion quality or surface rough-
ness, are selected or engineered to enhance the model’s 
predictive performance. For example, in polymer AM, fea-
tures might include cooling rates or infill patterns, which 
are known to significantly impact the mechanical properties 
of the printed components. Once features are selected, the 
dataset is divided into training and testing sets. For instance, 
training sets might include historical data from past produc-
tion runs, while testing sets could consist of newly produced 
parts. The model selection and training phases are crucial, 
where various algorithms—such as neural networks or deci-
sion trees—are trained on this data to detect patterns that 
relate to the desired output, such as minimizing print defects 
or maximizing strength. After training, models are evalu-
ated using the testing data to assess their performance and 
generalization ability. For instance, an ML model trained to 
optimize layer thickness might be tested on a new batch of 
prints to see if it can accurately predict the optimal settings 
for achieving desired material properties.

Finally, the ML process includes hyperparameter tuning, 
deployment, monitoring, and maintenance. For AM appli-
cations, this could involve adjusting model parameters to 
better align with changes in material batches or machine set-
tings, integrating the model into the manufacturing work-
flow to provide real-time optimization recommendations, 
and ensuring the model adapts over time as new data is 
collected. The end-to-end ML process in polymer AM thus 
encapsulates the journey from raw data to valuable insights 
that drive informed decisions, improving the efficiency and 
quality of the manufacturing process. Successful implemen-
tation requires collaboration between data scientists, engi-
neers, and domain experts who understand the intricacies of 
both ML and AM technologies.

Data collection

In applied science, data is generally collected from two main 
sources: laboratory experiments and computational simu-
lations such as FEA and density functional theory (DFT) 
[63]. In this step, the authenticity and origin of the collected 
data significantly impact the quality of the ML model [11]. 
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comparable scale, which is particularly important in AM 
where varying units and scales are common.

Exploratory Data Analysis (EDA) is used to identify 
existing patterns and correlations in the data, such as the 
relationship between print speed and surface roughness or 
between layer height and tensile strength. In polymer AM, 
EDA helps in understanding complex interactions between 
process parameters and final part properties, guiding the 
selection of relevant features for the ML model [100, 101].

A rule of thumb when dealing with data in the collec-
tion and analysis step is to consider the “7 Vs” of big data, 
which are Value, Volume, Variety, Velocity, Veracity, Visu-
alization, and Variability (Fig. 4). In polymer AM, the Value 
lies in the predictive insights ML can provide, Volume refers 
to the vast amounts of data generated during AM processes, 
and Variety reflects the diverse types of data (e.g., ther-
mal images, mechanical properties). Velocity is critical in 
real-time monitoring and control, while Veracity involves 
ensuring data accuracy and reliability. Visualization tools 
help in understanding complex data patterns, and Variabil-
ity accounts for the changing conditions in AM processes, 
such as variations in material properties or environmental 
conditions.

Feature engineering

Feature engineering is the process of using domain 
knowledge to create new features from existing data 

that the AMed components meet the desired specifications 
and performance criteria. The utilization of this data enables 
the training of ML models to optimize process parameters, 
detect defects in real-time and predict the final properties of 
the printed components.

Data preprocessing

Data preprocessing is a crucial step in the lifecycle of an 
ML project, particularly within the context of polymer AM. 
This step involves preparing the raw data collected during 
the AM process to ensure that it is in a suitable format for 
training ML models. The objective is to enhance the mod-
el’s ability to learn effectively and efficiently by providing it 
with clean, consistent, and meaningful data.

In polymer AM, preprocessing tasks include data clean-
ing, where noise, errors, and inconsistencies in sensor data 
(e.g., temperature fluctuations or material flow variations) 
are corrected or removed. Handling missing values and out-
liers is also critical; for instance, gaps in thermal imaging 
data [96, 97] or unexpected spikes in acoustic emissions 
[98] need to be addressed to avoid misleading the model 
during training.

Encoding categorical variables such as different poly-
mer types into a numerical format is another important step, 
allowing the ML model to process these variables effec-
tively. Data scaling or normalization ensures that all input 
features, such as print speed and layer thickness, are on a 

Fig. 4  Big data characteristics known as the ‘7 
Vs’
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algorithms are generally categorized into three broad 
classes: supervised learning, unsupervised learning, and 
reinforcement learning [110]. Figure  5 presents a few 
popular ML techniques for each category [111]. Figure 5 
presents a few popular ML techniques within each cat-
egory, illustrating their applicability to various tasks in 
polymers AM.

Supervised learning

In supervised learning, the model is trained on a labeled 
dataset to learn the relationship between input variables and 
their corresponding outputs, enabling it to predict results on 
new data. The model’s performance is assessed by compar-
ing its predictions on a test dataset with the actual outcomes. 
Later, cross-validation techniques are used for performance 
evaluation. The main objective of a regression-based ML 
model is to minimize the difference (error) between the 
predicted output and the actual data, thereby identifying 
a model that accurately correlates inputs and outputs. The 
most commonly used supervised learning algorithms are 
Deep Neural Network (DNN), Support Vector Machines 
(SVM), Random Forests (RF), Bayesian Networks (BN), 
and Decision Trees (DT) [10].

Supervised learning techniques mostly apply to classifi-
cation and regression tasks. Regression tasks aim at predict-
ing numerical or quantitative results such as the properties 
of AMed parts, including compressive strength [112, 113], 
surface roughness [114], tensile properties [115], and hard-
ness [116]. The process parameters were used as model 
inputs in these examples [28].

Classification tasks aim at defining decision boundaries 
between known classes based on patterns learned from the 
input training data. Tools based on classification models are 
frequently employed for real-time or in situ surveillance of 
AM processes, encompassing the identification of defects, 
detection of process irregularities, and prediction of product 
quality. These tasks often involve training ML models using 
images [28].

that make ML algorithms work better. It’s about trans-
forming raw data into features that better represent the 
underlying problem for the predictive models, resulting 
in improved model accuracy on unseen data. Features are, 
in short, input variables that an ML model uses to train 
itself to make predictions. The type of features a model 
uses depends on the problem at hand. In AM problems, 
features fall into three categories: numerical features 
which encompass a range of process parameters (e.g., 
scan speed, temperature, pressure, etc.). [102–104], cat-
egorical features (e.g., material type, infill pattern, layer 
strategy, etc.) [105, 106], and time-series features (e.g., 
sensor readings, vibration data, acoustic emissions, cool-
ing rates, etc.) [15, 107, 108].

Features can be selected manually or automatically using 
statistical techniques such as filter methods, wrapper meth-
ods, and embedded methods. However, automatic feature 
selection has disadvantages, including adding complexity to 
the ML model through redundant values. The primary statis-
tical methods employed in filter methods are Pearson corre-
lation, Spearman correlation, and variance threshold [109]. 
Their goal is to reduce the feature space by eliminating 
intercorrelated and semi-constant features. This enhances 
performance by reducing unnecessary complexity that may 
cause overfitting in the training model and decreasing com-
puting time.

After completing feature development, filtering, and 
selection, one can do further EDA to comprehend the data’s 
properties, the desired attributes, and the features [100, 
101]. EDA can provide valuable insights into any outli-
ers and incorrect data or features that need to be removed 
before starting the training and testing of the dataset for ML 
models.

Model selection

After preparing input data and features, the next step is 
selecting an appropriate ML algorithm. There are dif-
ferent approaches to categorizing ML algorithms. ML 

Fig. 5  Examples of popular ML methods of Supervised, Unsupervised, and reinforced learning

 

1 3

Page 11 of 27  52



International Journal of Material Forming (2024) 17:52

In polymer AM, RL can be employed for real-time opti-
mization of process parameters, which directly impacts the 
quality of printed objects and the efficiency of the AM pro-
cess. For instance, RL algorithms can be used to optimize 
the deposition trajectory in FFF processes, with specific 
goals such as minimizing process time while maintaining 
or improving the mechanical properties of the printed part 
[111].

Another example is the application of RL in the adap-
tive control of the printing process. For instance, RL can be 
used to monitor and adjust the print parameters in real-time 
to compensate for variations in material properties or envi-
ronmental conditions, such as temperature fluctuations or 
humidity changes. This capability is particularly beneficial 
in polymer AM, where such variations can lead to defects 
like warping, delamination, or inconsistent surface finish. 
By continuously learning from the production environ-
ment, RL algorithms can ensure that the printing process 
remains within optimal parameters, reducing the likelihood 
of defects and improving overall yield.

Selecting the appropriate RL algorithm for a polymer 
AM application depends on various factors, including the 
nature of the problem, the size of the training set, the type 
of available data, and the computational resources [10, 121]. 
For example, Q-learning and Deep Q Networks (DQN) are 
often preferred for their ability to handle large state-action 
spaces, which are common in complex AM processes where 
multiple parameters need to be optimized simultaneously. 
On the other hand, SARSA might be more suitable for envi-
ronments where safety or risk mitigation is critical, as it 
tends to be more conservative in its learning approach.

Model validation

One of the final phases of an ML project is model validation. 
This process ensures that the model is effective, reliable, and 
suitable for deployment. Model validation employs methods 
such as cross-validation to evaluate a model’s performance 
on unseen data. Cross-validation techniques are commonly 
employed to evaluate the model’s performance on unseen 
data, providing an estimate of its generalization ability. 
This step is particularly important in polymer AM, where 
process variability can introduce noise and affect the con-
sistency of the printed parts. By systematically partitioning 
the dataset and performing repeated training and validation 
cycles, cross-validation minimizes the risk of overfitting 
and ensures that the model remains accurate across different 
production scenarios.

Following successful validation, the focus shifts to 
optimizing the model’s performance through hyperpa-
rameter tuning. This involves refining the model’s param-
eters to achieve an optimal balance between accuracy, 

Unsupervised learning

Unsupervised learning, on the other hand, applies to discover-
ing patterns, clustering, and dimensionality reduction tasks and 
works with unlabeled data. Unsupervised learning algorithms 
learn entirely on their own and extract the features of input 
data, then categorize them into separated clusters. Therefore, 
these models are typically used to uncover hidden or unknown 
relationships within the data. K-means clustering, Hidden 
Markov models, Gaussian Mixture models, Autoencoder, and 
Generative Adversarial Networks (GAN) are among the most 
widely used unsupervised learning methods [10].

Clustering tasks involve the process of categorizing input 
data that share common characteristics. Clustering ML 
methods have been used for real-time monitoring of AM 
processes for defect detection, failure mode detection, and 
process monitoring.

Dimensionality reduction involves reducing the input 
features or data dimensionality while keeping as much vari-
ation or information as possible. Topics linked to polymer 
AM may involve several input variables, although not all of 
them have an equal amount of influence on the parameter 
under investigation. Dimensionality reduction approaches 
can improve model efficiency by selecting the most signifi-
cant input features. These methods have been utilized to 
explore the relationships between process parameters and 
properties [28]. Some examples of unsupervised learning 
algorithms in the AM field are K-means clustering, self-
organizing maps, and restricted Boltzmann.

Reinforcement learning

Reinforcement learning (RL) involves combining training 
and testing datasets to maximize overall reward by interact-
ing with the environment. In contrast to supervised learning, 
where algorithms are trained by the correct outputs for given 
inputs, RL algorithms operate on a system of rewards and 
punishments to encourage positive behaviors and discour-
age negative ones. The most commonly used RL algorithms 
include Dataset Aggregation (dAgger), Q-learning, Deep 
Q Network (DQN), State-Action-Reward-State-Action 
(SARSA), and Monte-Carlo learning [10].

Reinforcement learning algorithms typically use the con-
cepts of exploration and exploitation. Exploitation involves 
selecting actions that yield the highest rewards, while 
exploration involves trying new actions. By combining 
these strategies, the model can gradually improve its under-
standing of the environment, identify actions that result in 
positive rewards, and ultimately reach optimal solutions 
[117]. Some examples of reinforcement learning algorithms 
are Q-learning [118], temporal difference [119], and deep 
adversarial networks [120].
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contributes to the overarching goal of creating intelligent, 
adaptive manufacturing systems capable of producing high-
quality, cost-effective products with minimal human inter-
vention. Our current approach aims to synthesize several 
applications of ML into a comprehensive framework that 
addresses the main aspects of AM processes. The first sec-
tion (section Design) examines how ML techniques can be 
employed in the design and conception phase, selecting 
materials and AM technologies. This also involves using 
large datasets to identify optimal combinations of part 
geometry, materials, and technologies that yield optimized 
designs with superior performance and efficiency.

The following section explores the application of ML 
models in optimizing and controlling the AM process 
parameters. These models offer significant potential in 
identifying the optimal settings of process parameters to 
achieve desired design goals. In addition, they are helpful 
in controlling the AM process, permitting the detection of 
anomalies in processing conditions and the identification of 
potential defects. Such anomalies may stem from a variety 
of sources, including environmental disruptions or equip-
ment malfunctions.

From a more profound perspective, these ML-based 
methods can serve as a promising complement to traditional 
analytical and numerical methods for modeling the physi-
cal and chemical phenomena associated with the AM pro-
cesses. Integrating physical theories into ML models leads 
to the development of physics-informed ML models. Such 
models are particularly beneficial in leading the AM process 
toward the production of materials with customized micro-
structures and architectures.

AMed components quality control constitutes another 
major area of ML applications. Besides investigating pro-
cess parameters’ effects on microstructural evolutions, auto-
matic early fault detection systems represent an important 
field of research for the use of ML models in AM. Through 
the application of ML algorithms, potential defects can be 
automatically identified in real time during the AM process, 
providing immediate corrective measures. Moreover, ML 
approaches present huge advantages in material inspection 
and post-process analysis of the mechanical performance 
and physical properties of the final parts, ensuring they meet 
the required specifications.

Finally, our approach takes into account the integration of 
the AM process within Industry 4.0 paradigms, including the 
Internet of Things (IoT) and smart manufacturing. By imple-
menting ML model-based AM systems connected to a wider 
network of manufacturing processes, unprecedented levels 
of automation and efficiency can be achieved. This integra-
tion facilitates the real-time exchange of data between differ-
ent stages of the manufacturing process, from design to final 
product, optimizing the entire production chain.

interpretability, and computational efficiency. In polymer 
AM, where real-time predictions might be required for 
process control, hyperparameter optimization ensures that 
the model is not only accurate but also operationally viable 
within the constraints of the manufacturing environment.

Once optimized, the model is deployed for real-world 
application, where continuous monitoring is essential. This 
ongoing validation phase includes the periodic assessment 
of the model’s predictions against actual outcomes, ensuring 
that it adapts to any changes in material properties, process 
parameters, or environmental conditions. In the dynamic 
environment of polymer AM, this adaptability is crucial for 
maintaining the model’s relevance and effectiveness over 
time.

Application of machine learning in polymer 
additive manufacturing

Several approaches in classifications of different applica-
tions of ML techniques in AM technologies have been 
investigated in the literature. For instance, Jiang [111] dis-
cussed different ML methods applied to seven categories 
of AM techniques: material extrusion, powder bed fusion, 
material jetting, binder jetting, directed energy deposition, 
VAT photopolymerization, and sheet lamination. Then, he 
summarized the literature in three categories based on their 
target objectives: dimensional accuracy analysis, manufac-
turing defect detection, and property prediction. This cat-
egorization provides a guideline for researchers to review 
previous works and opt for suitable ML methods related to 
the specific aim at hand. However, he explained that consid-
ering the objective in itself does not provide an appropriate 
approach to choosing a proper ML technique since there are 
many other factors in play. For instance, in the context of 
optimizing process parameter problems, the application of 
previously utilized ML techniques would be rendered inef-
fective by the introduction of an additional process param-
eter as an input feature. Consequently, the incorporation of 
supplementary training data or the adoption of an alterna-
tive ML algorithm would lead to enhanced accuracy.

Similarly, Baumann et al. [89] have classified literature 
that applied ML technologies to AM contexts into five cat-
egories: selection or optimization of process parameters, 
adaption or optimization of the model (structure, topology, 
surface), process monitoring and control utilizing various 
monitoring technologies, general discussions and recom-
mendations for utilizing ML in the context of AM, espe-
cially in the prospect applications such as Industry 4.0.

The application of ML in polymer AM spans multiple 
domains, from design and process optimization to quality 
control and smart manufacturing. Each of these domains 
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traditional methods that require complex surrogate models 
and cannot reverse the PSP relationships, this framework 
utilizes ML to establish these relationships in any direction 
using additive manufacturing data. As demonstrated in a 
case study, the authors designed a customized ankle brace 
with tunable mechanical performance, demonstrating cus-
tomized stiffness through the application of the proposed 
ML framework. The case study results are compared to 
a traditional methodology result using surrogate models 
(Gaussian process regression models), demonstrating that 
the ML-integrated design approach not only matches but 
sometimes surpasses the accuracy and efficiency of conven-
tional methods. However, the article suggests that further 
research is needed to fully extend the models and methods 
to the broader PSP domain, noting that the proposed frame-
work primarily examines structure-property and property-
structure relationships.

In another study, Lee et al. [123] introduced an ML-based 
optimization approach for designing lattice structures’ beam 
elements using Bézier curves, a method initially utilized in 
computer graphics. This research focused on body-centered 
lattice structures, employing high-order Bézier curves for 
modeling beam element shapes to explore a more extensive 
and flexible design space. The process involves predict-
ing the relative density and modulus of the lattice structure 
through FEA and homogenization, with initial data sourced 
from randomly generated Bézier curve control points. Sub-
sequently, two deep neural networks (NNs) were trained to 
predict the relative density and relative Young’s modulus 
based on the shape of the Bézier curve. A hybrid approach 
combining neural network and genetic optimization (NN-
GO) was then applied to generate new beam element 
shapes, aiming to create innovative material structures. The 
optimized designs were compared with two conventional 
models: a cylindrical beam with a single geometric param-
eter (radius) and a graded-density beam parameterized by 
two variables (the radii of the cross-section at the midpoint 
and ends of the beam element). The study also explores the 
advantages of the combined NN-GO approach over a sim-
ple genetic optimization method in accelerating the design 
process. Finally, the research validates the optimized BC 
structure through additive manufacturing and compression 
experiments, demonstrating the effectiveness of the pro-
posed ML algorithm in optimizing the shape and mechani-
cal properties of lattice structures.

Wang et al. [124] introduced a novel approach to gen-
erating innovative structural designs by integrating topol-
ogy optimization and deep learning techniques, specifically 
through the use of Boundary Equilibrium Generative Adver-
sarial Networks (BEGAN). This method aims to overcome 
the challenges of automatically generating innovative and 
optimal structures that enhance the intelligence of structural 

Design

The design phase involves conceptualizing the AM process 
plan according to the design requirements and constraints. 
This would include defining the required properties of the 
final product and the constraints in terms of part manu-
facturability, efficiency, and sustainability of the process, 
as well as selecting materials and appropriate AM process 
technologies for the desired objectives. In addition, the part 
geometry could be optimized according to the performance 
requirements of the final product, and the process could be 
modeled and optimized in terms of shape deviations, ther-
mal gradients, and stress distributions, as well as energy 
consumption and material waste, mainly through analyti-
cal and numerical approaches. It should be mentioned that 
the inherent features of the process, such as the layer-wise 
nature of most AM processes, require several considerations 
for optimizing the process design.

Depending on the process nature and requirements, dif-
ferent aspects can be considered in the design for AM pro-
cesses, including manufacturability studies, geometrical 
optimizations, preprocessing such as slicing acceleration, 
material, process and machine parameters, and cloud ser-
vice platform, security, and sustainability [117].

According to Sbrugnera Sotomayor et al. [122], within 
the Design for Additive Manufacturing (DfAM) frame-
work, a holistic workflow is essential, incorporating vari-
ous design optimization strategies such as TO, lattice infill 
optimization, and GD. The study highlights the critical 
stages of the DfAM process, which include product plan-
ning, design optimization, manufacturing optimization, and 
product validation, underlining the importance of a guided, 
comprehensive approach to efficiently manage the design 
process. Specifically, it underscores the significance of 
leveraging optimization strategies early in the design phase 
to maximize the capabilities of AM, such as achieving com-
plex, lightweight, and high-performance parts. Moreover, 
the paper emphasizes the potential of integrating ML tech-
niques to enhance the DfAM workflow, suggesting that ML 
can significantly streamline and improve the design effi-
ciency in manufacturing by facilitating smarter decision-
making and reducing the number of design evaluations 
required. This integration of optimization strategies and ML 
in the DfAM process is crucial for overcoming traditional 
manufacturing limitations and fully exploiting the unique 
advantages offered by AM technologies.

In another work conducted by J. Jiang et al. [9], an ML-
integrated DfAM framework has been introduced, address-
ing process-structure-properties PSP relationships, which 
is capable of modeling input-output relationships in both 
directions. This is achieved by employing DNNs for point 
data and CNNs for distributions and image data. Unlike 
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and optimization of AM process parameters, including Arti-
ficial Neural Networks (ANN), Genetic Algorithms (GA), 
Principal Component Analysis (PCA), SVM, and Support 
Vector Regression (SVR) [89].

Data-driven ML models are becoming powerful tools for 
predicting complex, non-linear relationships between AM 
parameters, offering a promising alternative to conventional 
Design of Experiment (DOE) strategies. DOE relies on 
extensive trial and error to identify critical response behav-
iors, which can often be time-consuming and costly [126]. 
In contrast, ML models utilize historical data to streamline 
the optimization of process parameters, thereby enhancing 
the final properties in accordance with design aims.

By integrating principles of physics into machine learn-
ing algorithms, Physics-Informed Machine Learning 
(PIML) models provide a more detailed analysis of the 
relationships between process-structure-property-perfor-
mance (PSPP) within AM processes [127]. This approach 
not only makes machine learning models more interpretable 
by aligning them with physical laws but also enhances their 
accuracy and predictive capabilities. For instance, Inyang-
Udoh and Mishra [128] introduce a physics-based Recur-
rent Neural Network (RNN) model to optimize inkjet 3D 
printing processes, effectively demonstrating the balance 
between data-driven flexibility and the physical accuracy 
required for robust model performance. Building on the 
integration of physics-informed models, the application of 
machine learning in optimizing specific process parameters 
can further enhance the efficiency and precision of polymer 
additive manufacturing.

Correspondingly, process parameters would be opti-
mized for different targeted design features. For example, 
biological properties such as biocompatibility and cytotox-
icity can be improved through enhancing process condi-
tions and optimizing process parameters, which are crucial 
for biomedical applications. Moreover, the material evo-
lutions during the AM process are directly influenced by 
process parameter settings, which eventually determine the 
final attributes of the AMed component. When it comes to 
bioprinting, adjusting process conditions can be a delicate 
and challenging task since they have a direct impact on the 
cells and sensitive biomaterial. As an example, Xu et al. 
[129] aimed to improve cell viability in stereolithography 
(DLP)-based bioprinting processes, specifically address-
ing the challenges posed by ultraviolet (UV) irradiation 
on cells during bioprinting. They employed an ensemble 
learning model that incorporates neural networks, ridge 
regression, K-nearest neighbors (KNN), and RF algo-
rithms. This model is used to predict cell viability across 
different bioprinting parameters, including UV intensity, 
UV exposure time, gelatin methacrylate (GelMA) concen-
tration, and layer thickness. Also, using the random forest 

design, shorten the design cycle, and improve the design 
quality. The paper proposes a framework that uses topology 
optimization to generate a diverse set of optimized structural 
models, which serve as a training dataset for a deep learning 
model. The BEGAN algorithm is then applied to generate a 
large number of innovative structural designs. The applica-
tion of the framework is demonstrated through two engi-
neering case studies: the base plate of a cast steel support 
joint and a cross joint. These cases show how the method 
can intelligently generate designs with improved mechani-
cal performance and material efficiency. The generated 
structures are evaluated in terms of innovation, aesthetics, 
machinability, and mechanical performance. In addition, the 
feasibility of manufacturing the optimized designs through 
3D reconstruction and additive manufacturing techniques is 
demonstrated, highlighting the practical applicability of the 
proposed method.

Gu et al. [125] explored an innovative bioinspired 
approach to designing hierarchical composite materials. To 
discover high-performance materials, a CNN augmented 
with a self-learning algorithm was trained on a database of 
hundreds of thousands of FEA structures, resulting in the 
creation of microstructural patterns that enhance both the 
toughness and strength of materials.

The designs generated by the ML model were realized 
through a multi-material PolyJet AM process and subjected 
to tensile testing, validating the effectiveness of the ML 
approach in producing materials with improved mechani-
cal properties. This approach is highlighted as an alterna-
tive method of coarse-graining, which analyzes and designs 
materials without relying on full microstructural data.

An often underexplored yet critical aspect of applying 
machine learning in additive manufacturing is the selection 
of polymers. The choice of polymer material significantly 
influences the mechanical properties, durability, and overall 
performance of the final product. Machine learning models 
can be employed to analyze vast datasets comprising dif-
ferent polymer characteristics, environmental conditions, 
and intended use-cases to recommend the most suitable 
materials for specific applications. This capability not only 
streamlines the material selection process but also enables 
the customization of polymers tailored to specific perfor-
mance requirements, such as improved strength, flexibility, 
or thermal resistance.

Process parameters and operation

ML models excel at navigating the complex, non-linear 
dynamics characteristic of AM processes, offering an 
enhanced parameter optimization approach with reduced 
reliance on trial-and-error methods. Diverse ML techniques 
have been employed in order to facilitate the identification 
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In addition to optimizing process parameters, machine 
learning can play a pivotal role in linking these parameters 
to the in-service performance of the final products. By pre-
dicting how variations in processing conditions—such as 
temperature, pressure, and cooling rates—affect long-term 
performance attributes like fatigue resistance, wear, and 
environmental stability, ML models help in designing more 
robust and reliable AMed components. Moreover, the con-
tribution of machine learning to the recyclability of prod-
ucts is increasingly relevant. By analyzing the degradation 
of polymer properties through multiple cycles of reuse and 
predicting the remaining lifecycle of recycled materials, ML 
models aid in developing sustainable manufacturing prac-
tices that align with circular economy principles.

Fault detection and quality control

Predictive control based on ML models presents promis-
ing potential for automated manufacturing systems. By 
dynamically adjusting process parameters in real-time, the 
system can respond to variations in material behavior and 
environmental conditions, ensuring optimal results. How-
ever, the formation of certain defects may not be directly 
caused by process parameters. ML models would contribute 
to several early fault detection techniques in order to moni-
tor and control the part quality during the process. Process 
monitoring serves as the basis for implementing closed-loop 
process controls, a pivotal operational mode for several AM 
systems. Prem et al. [132] summarized the most impor-
tant monitoring techniques of the AM process as follows: 
Acoustic Emission Monitoring, Temperature Monitoring 
(regarding both material and environmental conditions), 
Camera-based Monitoring, Spectroscopy (for the analysis 
of plasma emissions from lasers), Infrared Imaging (for the 
assessment of heat distribution), Layer-by-Layer Imaging 
(incorporating X-ray/CT scanning for Non-destructive Eval-
uations (NDEs)), Process Parameter Monitoring, Machine 
Vision, Ultrasonic Monitoring (for in situ NDE, facilitating 
the detection of internal defects), Force/Vibration Sensing, 
Gas and Particle Monitoring, and Electromagnetic Sensing 
(utilizing eddy currents).

For example, Wasmer et al. [98] explored the potential 
of using acoustic emission (AE) with an RL model for real-
time and in situ quality monitoring in AM processes. The 
use of AE for capturing subsurface dynamics during AM 
processes offers significant advantages over surface-based 
monitoring techniques, such as temperature measurements 
or high-resolution imaging. The RL model demonstrates 
the ability to classify the quality of AM parts based on their 
unique acoustic signatures, achieving classification accuracy 
that indicates the method’s high potential for real-time qual-
ity monitoring. The paper highlights the cost-effectiveness 

algorithm, the study quantified the significance of each bio-
printing parameter on cell viability, and the performance of 
the predictive model was evaluated using metrics such as 
the coefficient of determination (R²), relative error (RE), 
and root mean square error (RMSE).

As process parameters significantly influence the final 
properties of AMed components, machine learning models 
provide a sophisticated approach to monitoring and control-
ling these parameters in real-time, ensuring consistency and 
quality across different production cycles.

In another study, Bonatti et al. [130], presented a DL 
approach to enhancing quality control in extrusion-based 
bioprinting (EBB). This research focused on developing a 
robust DL-based control loop designed to automate the opti-
mization of process parameters and monitor the process in 
real-time. The core of the study is the implementation of a 
CNN model designed to predict the outcome of the bioprint-
ing process based on video data collected during printing. A 
comprehensive dataset was compiled by recording the EBB 
process with a high-resolution webcam, covering various 
printing parameters like setup (mechanical or pneumatic 
extrusion), material color, layer height, and infill density. 
The collected data underwent preprocessing before being 
used to train and validate the CNN, focusing on controlling 
overfitting and optimizing the network’s prediction speed. 
This model is capable of classifying the print quality into 
categories such as good, under-extrusion, and over-extru-
sion, thus facilitating real-time adjustments to the printing 
parameters to ensure optimal results. Integrating the DL 
model with a mathematical model of the EBB process, the 
study showcases a quality control loop capable of real-time 
monitoring of the printing process. This loop can identify 
prints with errors early on to save material and time, and it 
automatically optimizes printing parameters for subsequent 
prints.

Zhang et al. [131] presented a comprehensive study on 
modeling the PSPP relationships within the FFF process 
using a DL approach based on Long Short-Term Memory 
(LSTM) networks for predicting the tensile strength of final 
parts. The study proposed a novel approach by integrating 
in-process sensing data (temperature and vibration) with 
process parameters and material properties into an LSTM-
based predictive model to enhance the accuracy and reliabil-
ity of tensile strength prediction. This model significantly 
outperformed traditional ML methods, such as SVR and RF, 
in predicting the tensile strength of printed parts. Layer-wise 
Relevance Propagation (LRP) has been employed to quan-
tify the influence of each process parameter on the model’s 
predictions, comparing the relative importance of different 
factors affecting tensile strength. This analysis highlighted 
the substantial impact of layer height, among other param-
eters, on the final part quality.
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ML model, specifically a backpropagation neural network 
(BPNN), to classify droplets into distinct modes based on 
their observed attributes. The BPNN demonstrated a high 
classification accuracy of 90%, indicating the model’s effec-
tiveness in identifying droplet formation patterns.

Lu et al. [136] developed a DL-based real-time defect 
detection and closed-loop control system for AM process-
ing of carbon fiber reinforced polymer (CFRP) composites 
(Fig. 6). They developed a robot-based AM system equipped 
with an integrated DL model for in-situ defect detection. 
Evaluating the performance of different deep learning algo-
rithms (Faster R-CNN, SSD, and YOLOv4) in detecting 
CFRP defects, specifically misalignments and abrasions, 
YOLOv4 stands out for its optimal balance of detection 
accuracy and efficiency. The severity of the defects can be 
quantified using the DL-based model combined with geo-
metric analysis. The system used real-time imaging to iden-
tify defects and automatically adjust process parameters 
(layer thickness, filament feed rate, printing speed, and path 
design) to mitigate or eliminate these defects.

Smart manufacturing

The fourth industrial revolution, known as Industry 4.0, is 
characterized by the integration of advanced manufacturing 
techniques with intelligent technologies to create smart fac-
tories [137]. These factories are capable of autonomously 
managing manufacturing processes, optimizing production 
workflows, and customizing products on demand through 
the digital interconnection of machines, systems, and pro-
cesses. This interconnectedness facilitates enhanced real-
time data exchange and decision-making, which is crucial 
for achieving the efficiency and adaptability required in 
modern manufacturing environments.

In the context of polymer AM, the evolution towards 
smart manufacturing is the culmination of advancements in 
design optimization, process parameter control, and qual-
ity assurance—all of which are heavily influenced by ML 
techniques. The previous sections have demonstrated how 
ML contributes to optimizing the design of AMed compo-
nents, fine-tuning process parameters for improved material 
properties, and enhancing fault detection and quality control 
systems. These applications are foundational to the develop-
ment of smart manufacturing systems, where ML enables a 
higher level of automation and precision.

ML techniques play a pivotal role in smart manufacturing 
by enabling predictive maintenance, adaptive process con-
trol, and real-time quality monitoring. For instance, the inte-
gration of ML with in-situ monitoring technologies allows 
for continuous assessment of AM processes, enabling 
immediate adjustments to process parameters based on 
real-time data. This capability is essential for maintaining 

and reliability of using AE for detecting various physical 
phenomena associated with the AM process. The RL mod-
el’s self-learning capabilities suggest that this approach can 
reduce the need for extensive training datasets and adapt to 
new manufacturing conditions.

ML-based approaches not only augment the system’s 
adaptability to real-time data but also significantly improve 
the accuracy and efficiency of fault detection mechanisms. 
Notable contributions in this domain include several meth-
odologies such as ANN, Decision Trees, KNN, Principal 
Component Analysis (PCA), and SVM [89].

For instance, Erik Westphal and Hermann Seitz [133], 
employed a CNN-based approach to enhance quality con-
trol in the SLS process, to automate the detection of powder 
bed defects, They presented an innovative use of complex 
transfer learning methods to classify powder bed defects in 
the SLS process, utilizing a relatively small dataset. They 
employed pre-trained CNN models, specifically VGG16 
and Xception, with adaptations for defect classification in 
SLS images. The performance of the CNN models was thor-
oughly evaluated using metrics such as accuracy, precision, 
recall (sensitivity), F1-score, and the area under the receiver 
operating characteristic (ROC) curve (AUC).

Similarly, Klamert et al. [134], propose a real-time, in-
situ quality control system utilizing CNNs specialized 
to detect curling defects during the SLS process. The DL 
model is used to analyze infrared thermography recordings 
of the SLS process employing an infrared camera to capture 
temperature distributions on the powder bed surface. This 
allows for a detailed analysis of the thermal patterns associ-
ated with different process conditions. The VGG-16 network 
underwent iterative training using a binary cross-entropy 
cost function, Adam optimizer, and specific hyperparam-
eters. The network demonstrated exceptional performance, 
with an accuracy of 99.1% and an F1 score of 97.2% dur-
ing the training phase with artificially induced defects. 
Gradient-weighted Class Activation Mapping (Grad-CAM) 
was used to visualize and interpret the model’s predictions, 
highlighting areas of importance related to curling defects. 
Finally, the use of a VGG16 CNN architecture achieves an 
average curling failure detection accuracy of 98.54%.

In another study, Ogunsanya et al. [135], presented an 
innovative approach to improving the inkjet 3D printing 
(IJP) process through the application of image analysis 
and machine learning. The study focused on addressing the 
variability in droplet formation during the printing process, 
which can significantly impact the final product quality. The 
research introduces a novel vision-based technique for in-
situ monitoring of droplet formation. A drop watcher cam-
era is utilized to capture a sequence of videos from which 
droplet attributes such as size, velocity, aspect ratio, and 
presence of satellites are analyzed. The study employed an 
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As smart manufacturing systems become increasingly 
reliant on interconnected networks and cyber-physical sys-
tems, ensuring the security of AM operations is paramount. 
ML techniques such as K-Nearest Neighbors (KNN), Ran-
dom Forest (RF), and Decision Trees (DT) are employed 
to detect and mitigate cyber-physical attacks and intrusions. 
These techniques are vital for safeguarding the integrity of 
manufacturing infrastructures, preventing disruptions that 
could compromise product quality or lead to significant 
financial losses.

Despite the significant advancements in applying ML to 
smart manufacturing, several challenges remain. Issues such 
as data quality, model interpretability, and the need for mul-
tidisciplinary expertise must be addressed to fully realize 
the potential of ML in this domain. Future research should 
focus on enhancing the integration between ML and AM 
technologies, particularly in developing standards and fos-
tering cross-disciplinary collaboration. This will be crucial 
for driving innovation in manufacturing processes, materi-
als, and design strategies within the Industry 4.0 framework. 

the consistency and quality of AMed products, particularly 
when dealing with complex geometries and material com-
positions that are typical in polymer AM.

Moreover, ML-driven cost estimation models are crucial 
in optimizing resource allocation and financial planning 
within cybermanufacturing frameworks. For example, Chan 
et al. [138] explored an ML framework for cost estimation 
in the context of additive manufacturing, employing data 
analytics within a cybermanufacturing system. This sys-
tem integrates manufacturing software and hardware tools 
via an information infrastructure, accessible as services 
in cyberspace. In this framework, the manufacturing cost 
of new jobs is predicted by comparing it with similar past 
jobs. ML algorithms, including Dynamic Clustering, Least 
Absolute Shrinkage and Selection Operator (LASSO), and 
Elastic Net Regression (ENR), are applied to feature vectors 
representing job characteristics to estimate costs effectively. 
This approach enables more accurate financial planning and 
resource allocation, which are critical for maintaining com-
petitiveness in a rapidly evolving manufacturing landscape.

Fig. 6  The software architecture of the robot-based AM system within the work of Lu et al. [136]
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is essential. For example, instead of using raw temperature 
data, engineered features such as average layer tempera-
ture or thermal gradient could be more informative and less 
prone to capturing irrelevant noise. This targeted approach 
helps the model focus on the most significant factors affect-
ing part quality, thereby improving its predictive accuracy 
and robustness [28].

Data acquisition techniques

The performance of ML algorithms in polymer AM is 
heavily dependent on the quality and reliability of the data 
collected from various sensors during the manufacturing 
process. Effective data acquisition techniques are therefore 
critical to ensure that the data fed into the ML models offers 
valuable insights and accurately represents the process con-
ditions [117].

In polymer AM, sensors are deployed to monitor key 
parameters such as temperature, pressure, material flow, and 
surface quality in real-time. However, each in-situ monitor-
ing method comes with its own set of limitations, which 
can affect the quality of the data collected. For instance, 
thermal imaging sensors may suffer from accuracy issues 
due to emissivity variations in different polymer materials, 
while optical coherence tomography may struggle with cap-
turing high-resolution data at the speed required for real-
time monitoring. These limitations highlight the importance 
of selecting the most appropriate sensors based on a solid 
understanding of the specific characteristics that need to be 
captured for the ML model to be effective.

Moreover, the complexity of polymer AM processes 
demands that sensors not only capture the data accurately 
but also at a resolution and frequency that aligns with the 
rapid pace of the manufacturing process. This requires 
careful consideration of the trade-offs between sensor per-
formance, data fidelity, and the practical constraints of inte-
grating these sensors into the manufacturing line [139–141]. 
For instance, while high-resolution sensors may offer more 
detailed data, they can also generate large volumes of data 
that require substantial computational resources to process. 
Consequently, there is a need for advanced image process-
ing techniques and data reduction strategies that can extract 
meaningful features from raw sensor data without compro-
mising the integrity of the information.

Dataset size

One of the significant challenges in developing ML models 
for polymer AM is acquiring a sufficiently large and diverse 
dataset. The size and quality of the dataset are critical fac-
tors that directly impact the performance of the ML model, 
particularly in complex and variable processes such as AM. 

The following section will explore some of these critical 
challenges in greater detail, including the difficulties in data 
acquisition, managing computational costs, and the com-
plexities of model validation and standardization.

Challenges associated with using ML in AM

This section discusses the primary challenges related to the 
application of ML models in additive manufacturing, with 
a focus on polymer AM. The challenges addressed include 
overfitting and underfitting, data acquisition techniques, 
dataset size, computational cost, standardization, and the 
integration of physics-informed models.

Overfitting and underfitting

Poor predictive performance by ML models is often a result 
of overfitting or underfitting [12]. Overfitting occurs when 
a model learns the specific details and noise in the train-
ing data to an extent that hinders its performance on new, 
unseen data. This is particularly problematic in AM, where 
the variability in process conditions and material properties 
can lead to a model that performs well on a specific dataset 
but fails to generalize to broader applications. For instance, 
an overfitted model might accurately predict the mechanical 
properties of parts produced under controlled conditions but 
could fail when applied to a different batch of materials or 
slightly altered process parameters. Conversely, underfitting 
occurs when a model is too simplistic to capture the under-
lying patterns in the data. In polymer AM, this might happen 
if the model fails to account for the complex relationships 
between multiple process parameters, such as temperature, 
layer thickness, and cooling rates, leading to inaccurate pre-
dictions across both the training and test datasets. Underfit-
ting results in a model that does not adequately capture the 
intricate details of the AM process, leading to suboptimal 
recommendations for process adjustments.

To mitigate these issues, cross-validation is frequently 
employed as a method to assess the model’s generalization 
capabilities by evaluating its performance on multiple sub-
sets of the data. Regularization techniques, which involve 
adding a penalty to the model’s cost function, are also com-
monly used to prevent overfitting by discouraging the model 
from becoming too complex. In the context of polymer AM, 
regularization can be particularly useful in ensuring that the 
model remains generalizable across different production 
runs with varying materials and process conditions.

Feature selection and engineering are other critical strat-
egies in combating overfitting in polymer AM. Given the 
multitude of process parameters that influence the quality of 
the final parts, careful selection of the most relevant features 
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costs. This is exacerbated when high-frequency data collec-
tion is necessary to capture rapid changes in the manufactur-
ing environment.

To address the high computational costs associated 
with real-time data processing, one potential solution is 
to integrate domain knowledge and physical laws into the 
ML models [149]. By incorporating these principles, the 
complexity of the models can be reduced, which in turn 
decreases the time and computational resources required 
for training. For example, leveraging known relationships 
between temperature gradients and material properties can 
help streamline the data processing pipeline, enabling more 
efficient feature extraction and model training.

Additionally, techniques such as model simplification, 
where less complex models are used without significantly 
compromising accuracy, and the use of advanced algorithms 
that are optimized for speed and efficiency, can further miti-
gate computational costs. For example, employing light-
weight neural network architectures or optimizing existing 
algorithms to take advantage of parallel processing capabili-
ties can enhance computational efficiency.

Furthermore, the use of cloud computing and distributed 
computing resources offers another avenue for managing 
computational costs. By distributing the computational load 
across multiple servers or using scalable cloud-based solu-
tions, the time required for training large datasets can be sig-
nificantly reduced, making real-time analysis more feasible.

Standardization

A significant obstacle in the effective application of ML 
within polymer AM is the lack of standardization across 
various aspects of the field. This encompasses material 
properties, design principles, manufacturing processes, 
post-processing procedures, testing methods, and quality 
assurance measures. The absence of standardized practices 
impedes the full realization of ML’s potential, as it hinders 
the creation of a cohesive framework necessary for the shar-
ing and validation of ML models within the research com-
munity. Despite the growing number of researchers working 
on novel materials and AM methods, there is a notable lack 
of a unified, easily accessible database that includes a com-
prehensive range of materials, printing methods, and asso-
ciated data. Furthermore, although numerous criteria are 
used to evaluate the quality of AM-produced parts, there is 
a conspicuous absence of formally established measurement 
standards for such assessments [127]. This lack of standard-
ization poses significant challenges for the integration of 
ML into AM, as consistent, high-quality data is a prereq-
uisite for effective ML model training and deployment. To 
effectively implement ML in polymer AM, standardization 
is essential in several key areas:

In polymer AM, the high costs associated with collecting 
extensive training data often limit the availability of large 
datasets. For instance, gathering data from in-situ monitor-
ing systems across multiple production runs, with vary-
ing materials and process parameters, can be prohibitively 
expensive. This challenge is compounded by the fact that 
the effectiveness of an ML model is often proportional to the 
size of the dataset, particularly when the model must learn 
from a large number of input features [127].

To address the challenge of limited datasets, genera-
tive models, such as autoencoders, can be employed for 
data augmentation [12, 142, 143]. These techniques arti-
ficially enlarge the dataset by generating new data points 
that closely resemble the original training data. For exam-
ple, a variational autoencoder (VAE) can be used to create 
synthetic data that mimics the statistical properties of the 
real dataset, thereby enhancing the diversity and volume of 
training data available for model development [144]. How-
ever, excessive reliance on data augmentation poses risks, 
such as overfitting, where the ML model may become too 
attuned to the augmented data and fail to generalize well to 
real-world scenarios. It is crucial that the augmented data 
accurately reflects the variability and complexity of the 
actual manufacturing process, ensuring that the ML model 
remains robust and reliable. Ultimately, while data augmen-
tation offers a valuable tool for addressing the challenge 
of limited dataset sizes, it must be used judiciously, with 
careful consideration of its potential impact on model per-
formance. Complementary strategies, such as active learn-
ing and transfer learning, may also be employed to make 
the most of the available data while minimizing the risk of 
overfitting.

Computational cost

While data-driven numerical simulations employing ML 
approaches are often more computationally efficient than 
traditional physics-based simulations, training large datasets 
in the context of polymer AM can still be computationally 
intensive and time-consuming. This challenge is particu-
larly evident during in-situ monitoring, a critical phase in 
the application of ML to AM, where immediate, real-time 
data acquisition and analysis are required.

In polymer AM, in-situ monitoring includes various 
tasks such as layer thickness measurement [145], pow-
der bed quality assessment [146], temperature distribution 
monitoring [147], part geometry measurement [148], and 
atmosphere composition monitoring [146]. For instance, 
real-time monitoring of each layer’s thickness is essential 
for ensuring uniformity and adherence to design specifica-
tions. However, processing high-resolution images or sensor 
data for each layer can significantly increase computational 
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monitor and control them, thereby enabling seamless inte-
gration and data exchange.

Safety and compliance

ML models can play a crucial role in ensuring that AM pro-
cesses and products meet safety and regulatory standards. 
Standardizing safety requirements and compliance criteria 
allows ML algorithms to be trained to monitor adherence 
to these standards throughout the manufacturing process. 
This is particularly important in regulated industries, such 
as medical device manufacturing, where ensuring compli-
ance with safety standards is not only critical for product 
quality but also for regulatory approval.

Physics-informed models

Conventional ML methods typically uncover statistical 
correlations between input and output data, often without 
considering the underlying physical laws and principles 
governing the processes involved. This can result in mod-
els that lack a physical basis for the conclusions they reach, 
limiting their generalizability and applicability across dif-
ferent conditions and materials. For instance, in PolyJet 
technology, ML models may use droplet deposition patterns 
as inputs without fully accounting for the complex fluid 
dynamics and physical relationships that govern droplet for-
mation, distribution, and solidification. Such an approach 
may overlook critical factors, including the viscosity of the 
photopolymer material, the droplet ejection mechanism, 
and environmental conditions, all of which are essential 
for accurately predicting the final product’s resolution and 
mechanical properties.

This disconnect between data-driven models and physi-
cal reality can lead to ML models that perform well under 
specific conditions but fail to generalize across different 
materials or adapt to variations in printing parameters. For 
example, a model trained on a specific polymer might pre-
dict mechanical properties effectively for that material but 
could struggle when applied to a polymer with different vis-
cosity or curing characteristics. This limitation underscores 
the need for models that not only capture statistical correla-
tions but also respect the fundamental principles of polymer 
behavior and the dynamics inherent in the AM process, such 
as the jetting dynamics in PolyJet printing [150].

To address these limitations, an emerging approach is 
to integrate ML models with physics-informed models and 
experimental data. Physics-informed models incorporate 
physical laws and constraints directly into the ML frame-
work, enabling the model to make predictions that are not 
only statistically robust but also physically plausible. By 
embedding the principles of mechanics, thermodynamics, 

Data standardization

ML algorithms require large volumes of data for training and 
validation. Standardization of data formats, quality metrics, 
and collection methodologies across AM processes ensures 
that the data used is consistent, reliable, and suitable for ML 
applications. This encompasses data from sensors, process 
parameters, material properties, and post-process evalua-
tions. For example, standardizing the way temperature data 
is recorded across different AM systems can facilitate more 
accurate comparisons and model training, thereby enhanc-
ing the robustness of ML applications in AM.

Process consistency

Standardizing AM processes is critical for generating con-
sistent datasets that ML algorithms can effectively learn 
from. This includes standardizing machine settings, layer 
deposition techniques, and post-processing methods. Pro-
cess consistency leads to more predictable outcomes, which 
are essential for the development of reliable ML models. 
In polymer AM, for instance, standardizing the extrusion 
temperature and print speed across different machines can 
help ensure that the data generated is comparable, thereby 
improving the model’s ability to generalize across different 
AM systems.

Quality assurance and control

ML can be leveraged to predict and optimize the quality of 
AM-produced parts, but this requires standardized crite-
ria for quality assurance and control. Standards for defect 
detection, dimensional accuracy, and material properties 
are crucial for training ML models to distinguish between 
acceptable and unacceptable outcomes. Additionally, a stan-
dardized vocabulary for labeling categorical data, such as 
defect types, is essential for creating training datasets that 
are both consistent and comprehensive. This standardiza-
tion facilitates the development of ML models that are better 
equipped to ensure consistent part quality across different 
production environments.

Interoperability

For ML applications to be broadly effective across different 
AM platforms and technologies, standardization of machine 
interfaces, communication protocols, and data exchange 
formats is necessary. Interoperability ensures that ML algo-
rithms can be deployed across various AM systems with-
out requiring extensive customization. In polymer AM, this 
might involve standardizing the communication protocols 
between different AM machines and the ML systems that 
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