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Abstract 

 

Recent discoveries on Mott insulating and unconventional superconducting states in twisted 

bilayer graphene with moiré superlattices have not only reshaped the landscape of “twistronics”, 

but also sparked the rapidly growing fields of moiré photonic and phononic structures. These 

innovative moiré structures have revealed new routes of exploration for classical wave physics 

leading to intriguing phenomena and robust control of electromagnetic and mechanical waves. 

Drawing inspiration from the success of twisted bilayer graphene, this perspective casts an 

overarching framework of the emerging moiré photonic and phononic structures that promise 

novel classical-wave devices. We begin with the fundamentals of moiré superlattices, before 

highlighting recent works that exploit twist angle and interlayer coupling as new ingredients to 

engineer and tailor the band structures and effective material properties of photonic and phononic 

structures. We finally discuss future directions and promises of this emerging area in materials 

science and wave physics. 
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Main 

Van der Waals (vdW) heterostructures are two-dimensional (2D) atomic layer heterostructures 

where the interlayer binding is achieved via weak vdW interactions1. The study on how relative 

twist angle between successive layers in vdW heterostructures can be used to manipulate the 

material’s electronic properties is often referred to as twistronics2. An increasingly important topic 

in twistronics is twisted bilayer graphene (TBG), where two graphene sheets are placed on top of 

each other with a slight angle misalignment3. Such a small twist results in an artistic moiré 

superlattice at a much larger length scale than the underlying graphene lattice, radically changing 

the band structure of bilayer graphene with the more conventional AA-stack and AB-stack (Bernal) 

configurations, which in turn gives rise to unconventional electronic4,5, optical6,7, and thermal 

properties8 of TBG. One of the most extraordinary features of TBG is the emergence of zero-

energy-level flat bands at a series of so-called magic angles. 

In 2011, it was first predicted by Bistritzer and MacDonald that the Dirac-point velocity vanishes 

at some magic angles (the smallest being around 1.05o)5. Nearly flat bands would emerge at the 

magic angle, which contributes a sharp peak to the Dirac-point density of states (DOS). This study 

marked an important milestone for the theoretical work in twistronics. It was not until 2018, that 

the magic-angle bilayer graphene was experimentally confirmed by Jarillo-Herrero’s group at MIT 

9,10. Their back-to-back papers on Nature reported on two ground-breaking discoveries pertaining 

to the magic-angle bilayer graphene: correlated (Mott) insulation9 and unconventional 

superconductivity at around 1.7 K10. These two discoveries have generated a host of theoretical 

and experimental papers seeking to better understand and further explore exotic phenomena 

associated with magic-angle TBG11–13. 

Taking inspiration from TBG, researchers in classical waves have attempted to employ the twist 

degree of freedom as a new dimension to expand the design space of synthetic photonic and 

phononic structures, such as photonic crystals (PtC) and phononic crystals (PnC). For example, 

stacking up two PtCs or PnCs in honeycomb lattice with a small twist angle between the two layers 

constitutes a simple analogue of TBG14–19. Using these bilayer twisted photonic and photonic 

structures, magic angles have been investigated for electromagnetic and mechanical waves, 

revealing a new route for flat band engineering in synthetic moiré photonic and phononic structures. 

Some of the moiré photonic and phononic bilayer designs go beyond merely mimicking magic 



angle bilayer graphene. One example in this regard is the demonstration of polariton topological 

transition in bilayers of α-phase molybdenum trioxide (α-MoO3)
20, where the polariton dispersion 

can be precisely controlled by the twist angle and shows a transition point at a fundamentally 

different magic angle from the one in TBG. This work exemplifies how researchers can draw 

inspiration from TBG to introduce new design paradigms to enable optical and acoustic properties 

unavailable in monolayer synthetic photonic and phononic structures.  

In this perspective article, we will showcase recent developments in the field of moiré classical-

wave structures. Specifically, we introduce the moiré pattern and its underlying mathematics (Box 

1). We will provide a general guideline for the design of photonic and phononic moiré structures, 

followed by detailed examination of these two types of structures. Our discussion will delve into 

the construction of the moiré superlattices, the characterization of their wave dispersion behavior, 

and the customization of their twist angle and interlayer coupling strength to realize unique wave 

phenomena for both electromagnetic and mechanical waves. We will also address the challenges 

and routes for applications in this field, and conclude by highlighting the future directions for the 

development of photonic and phononic moiré structures. We would like to highlight that there is a 

recent review paper on moiré photonics and optoelectronics21. Our paper, in turn, offers a 

complementary perspective to further illuminate the emerging field of moiré physics.  

Box 1 | The moiré pattern 

The moiré pattern is a well-known visual effect that can be observed when at least two planar 

periodic structures such as grids or gratings are superposed or overlaid closely to each other with 

a misalignment, such as an angular twist. The moiré pattern is often seen as an alternation of 

dark and bright areas, where the bright areas are created when the two layers largely overlap, 

while the dark areas are ones where the two layers overlap to a much lesser extent. The moiré 

pattern is highly sensitive to geometrical displacement and rotation of one layer with respect to 

the other, which renders the moiré-inspired system an extremely dynamic platform for a wide 

range of applications such as displacement22 and movement23 measurements. Interestingly, 

moiré patterns have also been historically used for marine navigation in shoreside beacons called 

“Inogon lights” to indicate safe paths for ships and prevent them from running into underwater 

cables and pipelines. 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.203901


In condensed matter physics, moiré patterns are typically created from angular misalignment 

between a pair of atomic monolayers. Of particular interest is the TBG, largely owing to the 

zero-energy level flat bands at the magic angles. Here, we delineate the geometrical construction 

of the moiré superlattice from twisting two monolayers of atoms. Let the periodicity of the first 

lattice be governed by two primitive lattice vectors 𝒂1 and 𝒂2. The position of each unit cell 

(atom) can be then described by the vector 𝑹𝑎 = 𝑛1𝒂1 + 𝑛2𝒂2 where 𝑛1 and 𝑛2 are integers. 

Assuming the second lattice is identical to the first one, but rotated by an angle 𝜃, each unit cell 

in the second lattice would be located at 𝑹𝑎′ = 𝑚1𝒂1
′ + 𝑚2𝒂2

′ , where 𝑚1 and 𝑚2 are integers 

and 𝒂1
′   and 𝒂2

′   are vectors after rotation of 𝒂1  and 𝒂2 . In the (𝑥, 𝑦)  plane, if we adopt the 

complex notation 𝑎𝑘 = 𝑎𝑘,𝑥 + 𝑗𝑎𝑘,𝑦  where 𝑎𝑘,𝑥  and 𝑎𝑘,𝑦  are the coordinates of the vector 𝒂𝑘 

(𝑘 = 1; 2 ), then one can write 𝑎𝑘
′ = 𝑎𝑘𝑒𝑗𝜃 , which leads to 𝑅𝑎′ = 𝑚1𝑎1

′ + 𝑚2𝑎2
′ = (𝑚1𝑎1 +

𝑚2𝑎2)𝑒𝑗𝜃. In general, the equality 𝑅𝑎′ = 𝑅𝑎 is not necessarily valid for any set of integers 𝑛1, 

𝑛2, 𝑚1, and 𝑚2, meaning that the resulting moiré patterns are not guaranteed to be perfectly 

periodic ⎯ they can be instead quasiperiodic. These twist-induced moiré patterns, however, can 

become perfectly periodic for discrete values of 𝜃 which can be determined by the set of 𝑛1, 𝑛2, 

𝑚1 and 𝑚2 that lead to 𝑅𝑎′ = 𝑅𝑎. These angles, known as commensurate angles, can be given 

by Eq. (1), as long as the solution is a real number24, 

𝜃 = 𝑖 𝑙𝑛 (
𝑛1𝑎1,𝑥 + 𝑛2𝑎2,𝑥 + 𝑖(𝑛1𝑎1,𝑦 + 𝑛2𝑎2,𝑦)

𝑚1𝑎1,𝑥 + 𝑚2𝑎2,𝑥 + 𝑖(𝑚1𝑎1,𝑦 + 𝑚2𝑎2,𝑦)
) (1) 

A trivial solution would be 𝑚1 = 𝑛1 and 𝑚2 = 𝑛2, which corresponds to 𝜃 = 0.  

For the case of triangular, honeycomb, and Kagome lattices, the periodicity can be defined by 

the set of vectors 𝒂1 = 𝑎(1,0) and 𝒂2 = 𝑎(1 2⁄ , √3 2⁄ ) where 𝑎 is equal to 𝑝, √3𝑝, or 2𝑝 for 

the triangular, honeycomb, and Kagome lattice, respectively, with 𝑝 being the distance between 

closest atoms. Subsequently, Eq. (1) becomes, 

𝜃 = 𝑖 𝑙𝑛 (
2𝑛1 + 𝑛2 + 𝑖𝑛2√3

2𝑚1 + 𝑚2 + 𝑖𝑚2√3
) (2) 

However, in the case of twisted bilayer square lattices, Eq. (1) becomes, 

𝜃 = 𝑖 𝑙𝑛 (
𝑛1 + 𝑖𝑛2

𝑚1 + 𝑖𝑚2
) (3) 



Then, 𝜃  being real valued requires 𝑚1
2 + 𝑚2

2 + 𝑚1𝑚2 = 𝑛1
2 + 𝑛2

2 + 𝑛1𝑛2  for triangular, 

honeycomb, and Kagome lattices, while this relation becomes 𝑚1
2 + 𝑚2

2 = 𝑛1
2 + 𝑛2

2 for the case 

of the square lattice. Apart from the trivial solution, one can consider the solution 𝑚1 = 𝑛2 and 

𝑚2 = 𝑛1 that gives the commensurate angles of the twisted bilayer lattices. Panel a shows the 

discrete commensurate angles as a function of these integers for twisted bilayers with triangular, 

honeycomb, and Kagome lattices (upper sub-panel), and the square lattice (lower sub-panel). 

Each line of connected dots corresponds to a value of 𝑛2 that varies from 𝑛1 + 1 (gray) to 𝑛1 +

8  (blue). These figures suggest that the distribution of commensurate angles in the case of 

triangular, hexagonal, or Kagome lattices is slightly denser in comparison to that of the twisted 

bilayer square lattice. Panel b also shows examples of unit cells of the moiré superlattices for 

one small and one large commensurate twist angles. The number of atoms per unit cell is greater 

in the case of twisted bilayer Kagome lattice than honeycomb and triangular ones. Note that the 

superlattices are drawn in a way that they have the identical size for different cases, resulting in 

atoms appearing with varying sizes.   

Among these four types of twisted bilayer lattices, the most frequently studied one is the TBG 

(honeycomb lattice) with the exploration of its electronic5,9–12,25, optical6,7,26–28, and thermal 

properties8,29,30. Meanwhile, fewer works have explored the electronic dispersion of twisted 

bilayer triangular lattices using WSe231, MoSe2/WSe232, WSe2/WS233 and transition metal 

dichalcogenides34, while other studies have investigated twisted bilayer Kagome lattices35,36 and 

square lattices37–40. 

Moiré patterns can also be created by considering two lattices with mismatch in their 

periodicities along a specific direction. Consider a one-dimensional (1D) periodic lattice with a 

period of 𝑎 and a second lattice with a period of 𝑎′ = 𝑎 + 𝛿𝑎 where 0 < 𝛿 < 1, then stacking 

the two lattices would yield a 1D moiré pattern. This pattern is generally quasiperiodic but can 

also be perfectly periodic for discrete values of 𝛿, which can be found by using the equation 

𝑛𝑎 = 𝑚𝑎′ , where 𝑛  and 𝑚  are integers. This leads to the relation 𝛿 = (𝑛 − 𝑚) 𝑚⁄   with the 

condition of 1 < 𝑛 𝑚⁄ < 2. Panel c shows the values of 𝛿 as a function of 𝑛 and 𝑚 (the number 

indicated for each line of connected dots is the value of the integer 𝑚), while panel d presents 

examples of a 1D moiré superlattice created from two 1D lattices and a 1D moiré superlattice 

created from two layers of triangular lattices with a periodicity mismatch in the horizontal 



direction. These bilayer 1D moiré patterns in classical waves have been studied less extensively 

than 2D moiré patterns and the relevant works have been mainly focused on optics41,42. Finally, 

the mismatch in periodicity can be also created in both spatial directions43. 

 

  

Box 2 | Moiré lattices in classical waves  

The design of moiré photonic/phononic structures requires multidisciplinary knowledge in 

materials science, optics, acoustics, and engineering. The choice of materials, the periodicity of 

the moiré pattern, the coupling between the two layers, the band structures of the moiré structure, 

and tunability by external stimuli are important aspects to be considered. Additionally, although 

the differences between photonic and phononic structures in terms of the wave types and the 

frequency ranges determine the choice of the constituent materials in their design, the general 

guidelines for designing the moiré photonic and phononic structures are similar. A moiré 

photonic (phononic) structure is generally created by stacking two layers of photonic (phononic) 

lattices in a way that facilitates the interaction between the waves supported by each layer. In 

this case of mimicking TBG where the interlayer hopping is crucial, the stacking of two photonic 

(phononic) layers is designed to ensure the interaction between the propagating electromagnetic 

(mechanical) waves between the two layers. This interaction is usually enabled either by 

coupling the evanescent wave fields14,16,19,44 or by introducing a coupling medium between the 

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

 n
2
= n

1
+4

 n
2
= n

1
+5

 n
2
= n

1
+6

 n
2
= n

1
+7

 n
2
= n

1
+8

 

 

 n
2
= n

1
+1

 n
2
= n

1
+2

 n
2
= n

1
+3


 (

 
 )


 (

 
 )

 

 

n
1

 

 


 (

 
 )

 

 


 (

 
 )

n
1

 

n

1097 865
4

3

2

 

Triangular Honeycomb Kagome Square

a

1D Moiré in 1D lattice 1D Moiré in 2D lattice

b

c d

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

 n
2
= n

1
+4

 n
2
= n

1
+5

 n
2
= n

1
+6

 n
2
= n

1
+7

 n
2
= n

1
+8

 

 

 n
2
= n

1
+1

 n
2
= n

1
+2

 n
2
= n

1
+3


 (

 
 )


 (

 
 )

 

 

n
1

 
 


 (

 
 )

 
 


 (

 
 )

n
1

 

n

1097 865
4

3

2

 



two layers 18,45. The strength of the interlayer coupling can be controlled by adjusting the 

separation distance or the thickness and property of the coupling medium between the layers. 

The photonic (phononic) dispersion of the moiré structure an be further tailored by the twist of 

one layer with respect to the other. This design strategy enabled the observation of band 

dispersion of classical waves analogous to the electronic dispersion in TBG for different 

stacking configurations such as AA and AB14,16–18,45,46. Moreover, it has revealed the emergence 

of flat bands for electromagnetic16–19,44 and mechanical waves14,15,17 at specific angles. Beyond 

mimicking the electronic band dispersion of TBG, other photonic (phononic) moiré designs have 

been developed to enable intriguing phenomena for classical waves. Those moiré platforms were 

constructed either by stacking periodic lattices20,38,41,47,48, not necessarily graphene-like, or by 

moiré patterning the effective properties of the photonic/phononic structure49–51. In many of 

these works, it is not necessarily the interlayer coupling that dictates the wave behavior. For 

example, a single layer of moiré pattern has been shown to also support topological transitions 

in the isofrequency contours for mechanical waves51. The choice of the constituent material for 

the moiré photonic/phononic structure also holds significant importance, except in the case of 

acoustic structure. Particularly for airborne sound, the constituent material's role in acoustic 

crystal/metamaterial is relatively insignificant. This is because most materials can be treated as 

acoustically hard compared to air, and therefore their sole purpose is to provide rigid surfaces to 

channel the sound.  

 

Moiré photonic structures 

The generalized concept of homogeneous crystals is considered valid when the behavior of a 

crystal can be modeled by the effective medium theory. For photonics (or phononics), such a 

concept goes hand in hand with the long wavelength approximation, under which the crystal can 

be greatly simplified by taking its average electromagnetic (or mechanical) response ⎯ a process 

known as homogenization. For instance, certain natural crystals (e.g., black phosphorous52, α-

MoO3
20,53,54, and WTe2

55) and nanostructured crystals with deep subwavelength periodicity (e.g., 

graphene and hBN nanoribbon arrays47,56) can be treated as homogeneous crystals, where an 

anisotropic surface conductivity tensor can be used to characterize these low-dimensional 

materials for manipulating light7. Owing to dispersion, the imaginary part of the surface 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.203901


conductivity tensor can have opposite signs in the two orthogonal directions within a certain 

frequency range, where the crystal would behave like a strongly anisotropic 2D material known as 

hyperbolic metasurface. When two such hyperbolic metasurfaces are stacked up, a moiré 

metasurface is created (Fig. 1a). The isofrequency contour of the moiré metasurface lies 

somewhere between those of the two individual metasurfaces due to the coupling effect (Fig. 1b). 

The isofrequency contour can be analytically derived by first choosing plane waves as the basis 

for the three domains created by the two metasurfaces (the domain above the top metasurface; the 

domain in between; the domain below the bottom metasurface), and then matching the boundary 

conditions of the two metasurfaces which are determined by the surface conductivity tensor. By 

tuning the twist angle between the two hyperbolic metasurfaces, the isofrequency contour evolves 

from being hyperbolic to elliptical, which is analogous to the Lifshitz transition in electronics20,57,58. 

The isofrequency contour flattens at a photonic magic angle where the transition from hyperbolic 

to elliptical contour occurs. The self-collimation phenomenon can be detected at the magic angle 

since the group velocity direction is fixed due to the flattened isofrequency contour (Fig. 1c)20,59.  

In addition to the electrical surface conductivity, chiral surface conductivity was also discovered 

in photonic twisted bilayer graphene metasurfaces when retrieving the effective electromagnetic 

parameters60–63. The opposite chirality can be simply created by the relative rotation of the two 

layers which has mirror symmetry. Note that though graphene can be also considered an optical 

metasurface, the optical properties of TBG are beyond the scope of this perspective and the reader 

is referred to a review paper for more in-depth discussion on this topic64. 

When the working wavelength is comparable with the unit cell of the crystal, homogenization is 

no longer valid, and the Bloch's theorem can be applied to analyze the PtC’s electromagnetic 

response. The periodicity of the moiré pattern at a commensurate angle is usually much larger than 

the size of the unit cell of the monolayer. However, in the case of honeycomb lattice, when the 

twist angle is 0 (AA stacking) or 60 (AB stacking), the periodicity of the moiré pattern reaches 

its minimum, which is the same as that of the monolayer (Fig. 1d)16. Additionally, narrow solitons 

appear between AB and BA domains and high local optical conductivity can be observed at the 

AA domains by the nano-imaging experiment6,65. By creating effective potential wells centered 

around AA stacked region, the intrinsic localized states are obtained, which leads to the superflat 

bands in a wide and continuous parameter space66. Hence, a detailed investigation of AA and AB 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.203901
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.203901


stacking is crucial for understanding the underlying physics of moiré patterns16. Figure 1d 

illustrates an example wherein a PtC layer comprises a metallic plate featuring a hexagonal lattice 

of metallic pillars that facilitate the propagation of spoof surface plasmons (SSPs)67. The band 

structure of the SSP resulted from such a lattice mimics that of the graphene, with a Dirac cone 

appearing at the K point of the reciprocal lattice68. The stacking of two of these PtC lattices at an 

appropriate separation distance allows the SSPs from the two layers to interact, leading to a 

dispersion behavior that is strikingly similar to that of the bilayer graphene16. Furthermore, the 

tight binding model developed in bilayer graphene can be readily used to describe the dispersion 

of the bilayer PtC at the vicinity of the Dirac frequency with properly fitted parameters16 (Fig. 1d).  

Additionally, different quantitative analyses have been applied to the photonic analogy of TBG19,48. 

A silicon disk was used as the photonic counterpart of the carbon atom in graphene (Fig. 1e)19. 

The coupled mode theory was applied to describe the coupling between nearest-neighbor disks. 

For simplicity, a continuum model of the interlayer coupling strength was considered to replace 

the discrete coupling between two disks. Compared with the continuum model for the 

homogeneous crystals58 mentioned above, the interlayer coupling strength in the coupled mode 

theory is periodic and has the same periodicity as the moiré pattern. The band diagram and DOS 

calculated from the continuum model show local flat bands at the photonic magic angles (Fig. 1e). 

Similar photonic properties of twisted bilayer photonic honeycomb lattices have also been 

demonstrated18 , where the band structure was engineered by adjusting the device geometry and a 

larger band asymmetry was shown in the photonic system. While these two studies18,19 numerically 

demonstrated the magic angles in twisted bilayer photonic graphene at the optical frequency. The 

magic angles as well as topological corner modes were also demonstrated in a twisted bilayer 

photonic graphene at the microwave frequency16. Further, these studies16,18,19 explored interlayer 

coupling strength as a degree of freedom to tune the magic angle. Besides the magic angle flat 

band hosted by moiré structures, other exotic optical states can also be approached by tuning the 

angle between two photonic graphenes. Very recently, quasi-bound states in the continuum were 

theoretically evidenced in a moiré PtC at the THz frequency69. In addition to the honeycomb lattice, 

the photonic dispersion of the twisted bilayer square lattice photonic slab was investigated through 

a high-dimensional plane wave expansion method48,70 (Fig. 1f). Instead of choosing plane waves 

as the basis as mentioned in previous effective medium theory, Bloch waves were first chosen as 

the basis of the two slabs and plane waves were used as the basis of the surrounding space. Bloch 



waves in the slabs were then decomposed into plane waves and boundary conditions with the plane 

waves in the surrounding spaces were matched to collectively give rise to the analytical solution. 

Strongly tunable resonance properties and chiral behavior were discovered by observing the 

transmission under incident light with different frequencies and twist angles. The same type of 

twisted bilayer PtC slabs were also demonstrated to be a tunable narrow stop band frequency 

filter40. Interestingly, topological flat bands could be sustained in moiré photonic structures, where 

topological edge modes would deform into higher-order topological corner modes after breaking 

the reflection symmetry of the boundary of the superlattices71. 

When the twist angle is incommensurate, the photonic moiré pattern becomes aperiodic without 

translational periodicity while the rotational symmetry still persists38,49,72. Instead of using a bilayer 

system to generate the moiré pattern, the moiré patterns were projected onto a single surface using 

optical induction and the weight of the “two layers” can be tuned during the projection process to 

generate different moiré patterns38. The localization-delocalization transition of light by altering 

the patterns from incommensurable to commensurable was experimentally demonstrated. As a 

particular case of the incommensurate lattice, the quasilattice refers to the case when the lattice 

vectors have the equiangular offset between them and are of equal magnitude49. The 45 twist 

angle in a square lattice or 30 twist angle in a hexagonal lattice can form a quasilattice, which has 

8-fold and 12-fold rotational symmetry, respectively (Fig. 1h). Quasilattice patterns with rotational 

symmetries as high as 36-fold were developed by moiré nanolithography on silver plasmonic 

crystals72, and an increased number of surface-plasmon-polariton modes have been discovered in 

quasilattice72. In a recent study, a theoretical approach based on combining supercell calculation 

and band unfolding techniques was constructed to globally characterize the photonic dispersion of 

a 2D quasiperiodic moiré superlattice73. Compared with the typical near-field moiré photonic 

crystals, most recently, far-field coupling between moiré photonic architectures has been 

experimentally observed, where twist-angle-controlled directional lasing emissions were 

achieved74. 

In addition to the twist between two monolayer crystals, moiré patterns due to mismatched lattice 

constants have also been studied41,42,75. For instance, two parallel hexagonal lattice metallic ring 

metasurfaces with a lattice constant mismatch in one direction were introduced to form a moiré 

bilayer system (Fig. 1g)41. Since the periodicity of the moiré pattern is much larger than the unit 



cell, the supercell was decomposed into unit cells with different shifts between the two layers and 

the relative shift in the unit cell was treated as an effective gauge field created by an artificial 

magnetic field. The corresponding photonic Landau levels were observed experimentally. Similar 

results can also be found when overlapping two 1D PtC slabs with mismatched periods42,75,76 

where the authors showed a high concentration of the Wannier function in a moiré cell. In a recent 

study, a 1D moiré silicon photonic nanowire was designed and fabricated to demonstrate a host of 

behaviors including slow-light, high Q-factor moiré resonators, multi-resonant filters, suppression 

of grating sidebands, persistent vs extinguishable transmission, tunable Q-factors, and tunable 

group velocities77. 

 

Fig. 1 | Examples of moiré photonic structures. a, The moiré hyperbolic metasurface composed of two 

coupled uniaxial metasurfaces with a certain twist angle47. b, Dispersion relations as a function of the twist 

angle. The gray (black) solid lines denote the dispersion of the first (second) individual metasurface while 

the colored lines denote the dispersion of the moiré metasurface47. c,  Near-field images of fixed group 

velocity direction (red arrows) near the magic angle20. d, AA stacked and AB stacked bilayer photonic 

crystals and their associated band structures16. e, Twisted bilayer photonic structure based on a honeycomb 

lattice of silicon nanodisks and its comparison with the TBG. The dispersion curves and DOS with different 

a b c d
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twist angles show the existence of local flat bands at certain angles19. f, Twisted bilayer photonic crystal 

with circular holes in a square lattice and the transmission as a function of frequency and twist angle48. g, 

Moiré pattern formed using metallic rings with different periods in the top and bottom layers41. h, 8-fold 

quasilattice, 12-fold quasilattice, and a general incommensurate lattice formed by the overlap of square 

lattices from two layers49. 

Moiré phononic structures 

TBG not only sparked a substantial interest in developing moiré photonic structures, but also 

spawned the new field of moiré phononic structures for controlling acoustic14,17,45,78–80 and elastic 

waves15,24,46,51,81. A sonic bilayer structure was proposed, composed of two stacked phononic 

crystals (PnCs), where each monolayer PnC is made of a triangular lattice of rigid triangular units78  

(Fig. 2a). A perforated rigid plate separated the two PnCs, where the holes induce the interlayer 

coupling. The stacking was of AA configuration while the triangular units within each cell were 

rotated in both layers to give rise to different dispersion behaviors at the vicinity of the Dirac point. 

The existence of two types of topological valley edge states was numerically and experimentally 

demonstrated, with interfaces that support either valley Hall states propagating in both layers or 

layer-valley Hall states that mainly propagate in a single layer. Topological waveguiding with 

propagation from one layer to the other was also experimentally demonstrated (Fig. 2a right panel). 

Though this work does not directly involve moiré patterns, it is one of the earliest studies that 

provide crucial insight on how interlayer coupling and rotation can be harnessed to engineer the 

dispersion of bilayer PnCs. A bilayer PnC consisting of rigid cylindrical rods in honeycomb lattice 

was designed where the two layers were separated by a thin vibrating membrane to ensure the 

interlayer coupling of acoustic waves.45 (Fig. 2b). By choosing the proper interlayer coupling 

strength via changing the thickness and the density of the membrane, the authors numerically 

showed that the acoustic dispersion of the bilayer can mimic the electronic dispersion of the 

classical bilayer graphene near the Dirac cone frequency for both AA and AB stacking 

configurations with two sets of crossing Dirac bands and quadratic dispersion, respectively (Fig. 

2b). Shortly after, the twist degree of freedom was considered in a sonic bilayer crystal where each 

layer is a rigid plate with a honeycomb lattice of cylindrical air cavities14 (Fig. 2c). Each PnC plate 

supports spoof surface acoustic waves (SSAWs) propagating in the near field above the air cavities 

with evanescent decay in the direction perpendicular to the plate surface. By positioning the 

phononic plates to face each other with an air gap in between, the SSAW supported by each plate 
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can interact, mirroring the interlayer hopping in bilayer graphene. Further, twisting one plate with 

respect to the other creates a moiré pattern, and it was numerically shown that at specific twist 

angles (magic angles), flat bands appear with confined acoustic intensity in the AA regions of the 

moiré superlattice (Fig. 2c right panel).  

The magic angle strongly depends on the interlayer coupling strength and can be tuned by varying 

the distance between the PnCs. A bilayer twisted acoustic metamaterial was designed using a 

vibrating polyethylene membrane as the coupling medium17 (Fig. 2d). The authors also 

numerically showed trapping of sound via the twist which is associated with the flattening of the 

Dirac bands at a magic angle of 1.12o (Fig. 2d). This magic angle can be tuned to higher values by 

changing the interlayer coupling strength through varying the thickness of the membrane. The 

dispersion of these phononic bilayers can be described at the vicinity of the Dirac frequency by 

formulating the Hamiltonian from the tight binding model of the bilayer graphene. Recently, an 

acoustic bilayer design was built at a large twist angle of 27.79o, consisting of connected cavities79. 

Strong interlayer coupling was used to generate a band gap that harbors higher-order topological 

states.  

In the context of elastodynamics, the analog of TBG for elastic waves was designed by considering 

two weakly coupled vibrating plates via a thin elastic medium, where each plate is attached with a 

honeycomb lattice of point masses15 (Fig. 2e). The underlying physics of the interlayer coupling 

is the interaction of flexural waves hosted by the plates. The authors developed a theoretical model 

to describe their system based on Germain–Lagrange approximation from the equation of motion 

governing flexural waves in coupled plates. The twist angle comes into play when describing the 

mass distribution on both layers. They demonstrated the emergence of flat bands at a magic angle 

of 1.61o (lower panel of Fig. 2e). Meanwhile, Martí-Sabaté and Torrent24 conducted a theoretical 

study on the interaction of elastodynamic modes with a cluster of scatterers distributed in a moiré 

pattern over a thin plate. This study revealed the emergence of dipolar resonances at specific 

discrete values of the “twist angles” (Fig. 2f). A plate decorated with a lattice of pillars was 

constructed with modulated heights in a moiré pattern51, and topological transition of the 

isofrequency contour from hyperbolic to elliptical dispersion was demonstrated, similar to what 

was observed in a previous work in photonics20. Very recently, a family of bilayer PnC was 

presented, where both sides of a plate are decorated with a hexagonal lattice of pillars46. A plate 
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with a sufficiently large thickness possesses a weak interlayer coupling between surface acoustic 

waves (SAWs) propagating on each side of the plate, representing a direct analogue of bilayer 

graphene. The authors also studied the twisted bilayer PnC under a large commensurate angle of 

38.213o, which creates a structure with an even sublattice exchange (SE) symmetry. Furthermore, 

by lowering the thickness of the plate, strong interlayer coupling can be introduced which leads to 

substantial changes of the band structure and the possibility of bilayer Valley Hall states under the 

even SE symmetry. 

 

Fig. 2 | Examples of moiré phononic structures. a, Bilayer sonic crystal made of two PnCs with triangular 

lattices, and a rigid plate with holes separates the two PnCs to enable mode coupling78. (Middle panel) The 

band dispersion shows crossing bands for AA staking. (Right panel) Bilayer valley Hall transport from the 

upper layer to the bottom one. b, Bilayer metamaterial made of two acoustic lattices of rigid cylinders in 

air separated by a thin vibrating membrane to mimic the interlayer hoping45. (Right panels) band dispersions 

of the AA and AB stacking. c, Twisted bilayer sonic crystal consisting of two rigid plates with air cavities 

facing each other, where each plate supports the propagation of SSAW14. (Right panel) band structures at a 

fixed twist angle of 3.481o for different interlayer couplings via changing the airgap thickness between the 

rigid plates. The acoustic intensity in the moiré supercell is plotted near the  point, for the bands marked 

in red color. d, Acoustic bilayer structure created from stacking two sonic crystals, each made of connected 
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cavities. The sonic crystals are separated by a vibrating membrane17. (Right panel) flat bands created at the 

magic angle with confined acoustic energy at the AA regions of the moiré supercell. e, Twisted elastic 

bilayer lattice made of two coupled plates decorated with honeycomb lattices of pillars, giving rise to flat 

bands at the magic angle15.  f, Moiré lattices made of a cluster of scatterers displaying dipolar resonances 

at discrete values of twist angle24. 

Outlook 

As it currently stands, there are two different research directions for moiré photonic and phononic 

structures. The first one is centered on identifying engineered artificial structures that control 

waves to emulate the electronic behaviors experimentally observed or theoretically predicted in 

TBG. The epitome of this effort is the finding of flat bands at magic angles in bilayer photonic16,19, 

sonic14,17, and elastodynamic15 moiré structures. While it is intriguing to show that the concept of 

magic angle can be generalized to virtually all classical wave systems, this twist-induced behavior 

(flat bands at the magic angle) has yet to be experimentally observed in a classical wave 

counterpart of TBG. This is largely because at small twist angles, the unit cell becomes extremely 

large, especially for moiré phononic and microwave photonic crystals due to the large employed 

wavelength. Challenges persist even in experiments involving relatively large twist angles. For 

instance, the observation of topological corner states in the SE even TBG is one such challenge16. 

In addition, in acoustic lattices, the thermos-viscous loss presents a major limiting factor. 

Furthermore, in contrast to electronic systems, it is relatively easy to engineer flat bands or higher-

order topological insulators using monolayer photonic and phononic crystals82. Therefore, it is 

crucial to elucidate the benefit of the twist-induced flat bands or topological corner modes in 

classical wave systems. While moiré crystals are tunable in nature due to their twist degree of 

freedom, and the results produced from classical wave systems can advance the research on TBG 

or twistronics in general by informing the discovery of new quantum materials, future work 

directions could leverage the engineering of flat bands and higher-order band topology for practical 

functionalities such as robust dynamic energy trapping via the twist, which could benefit the fields 

of nonlinear photonics and optomechanics. 

The second direction entails a broader scope and it seeks to expand the field of artificial photonic 

and phononic crystals by taking inspiration from TBG, in that the twist degree of freedom and 

interlayer coupling, or simply the moiré pattern are harnessed to give rise to new design paradigms 

of classical wave devices. This line of research often leads to results that represent a significant 
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departure from the TBG, in that these results find no counterparts in TBG20,38,46. While significant 

progress has been made in the development of moiré crystals, there is still a need to explore their 

integration into functional devices that can leverage twist and interlayer coupling for precise wave 

control. One potential application involves the use of moiré patterns in acousto-fluidics to create 

customizable fluid streaming patterns for the manipulation and trapping of microparticles. To 

achieve this goal, further research is needed to investigate the physics of acoustic streaming 

enabled by moiré patterns in fluids for the application of moiré phononic structures in fluid flow 

manipulation.  

Going forward, there is a plethora of directions that can be explored to bring the field of moiré 

photonic and phononic crystals to the next phase. For example, loss-and-gain can be added into 

the equation to enrich the physics of moiré photonic and phononic crystals, where the interplay 

between loss and gain can be further complemented by twist and interlayer coupling. It is noted 

that, two recent papers have theoretically studied PT-symmetric AA- and AB-stack bilayer 

photonic graphene83,84, and showed that PT symmetry induces band alteration in the vicinity of the 

Dirac point84 as well as the existence of exceptional concentric rings with particular topological 

features83. Another direction is to leverage the unique strength of PtCs and PnCs (or metasurfaces), 

where arbitrary 2D lattices other than the honeycomb lattice can be readily built, and their 

interaction with twist and interlayer coupling can be theoretically or even experimentally probed. 

In this spirit, bilayer square lattice PtC and photonic moiré pattern resulted from square lattices 

have been recently studied38,48. However, other lattices have been largely unexplored in classical 

waves such as the Kagome lattice. Additionally, while in electronic materials, the nearest interlayer 

hopping is naturally the strongest, photonic and phononic crystals can be a robust platform to 

engineer interlayer coupling, where long-range interlayer hopping can be made stronger than 

nearest interlayer hopping. Recent studies demonstrated that long-range hopping stronger than the 

nearest neighbor hopping can extend the topological order to a new topological class, giving rise 

to a greater number of topologically protected states in a 2D monolayer crystal85. We expect that 

similar novel large-chiral-number topological states can be uncovered in the moiré system. 

Another research avenue that has recently come to the front involves the exploration of bound 

states in continuum (BIC) within twisted bilayer phononic and photonic crystals. BICs are 

localized modes that can be present in the continuous spectrum of propagating or radiating waves, 
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but could not interact with any of these waves. A unique BIC has been observed in the continuum 

of a bilayer PtC, emerging from the coupling between transverse electric (TE) and transverse 

magnetic (TM) modes, arising from a broken symmetry in the bilayer structure86. In another study, 

twisted bilayer PtC slabs were constructed to exhibit a quasi-BIC by manipulating the twist and 

interlayer coupling69. Very recently, a mirror-stacking approach was developed to construct 

symmetry-protected topological BIC87 in acoustics. Such realizations provide further insights into 

the emergence of BIC for efficient localization of light and sound in moiré photonic and phononic 

structures.  On the same front of wave localization, an exciting avenue worth exploring involves 

introducing topological defects into moiré photonic and phononic structures. In these scenarios, 

the twist could alter the interaction among defect states between the layers, giving rise to new 

defect modes. This, in turn, could suggest potential applications for enhanced and loss-immune 

communication, lasing, and sensing. 

Meanwhile, nonlinear optical responses of the TBG have been investigated to demonstrate higher-

order harmonic responses that are absent in monolayer or conventional bilayer graphene, which 

spawned the field of optotwistronics88,89. Nonlinear optical waves have also been extensively 

studied in PtC, leading to applications towards reduced-size multifunctional control of light, 

photonic circuits for optical communication, and multi-photon absorption. In mechanical waves, 

nonlinear dynamical behaviors were also studied in PnCs to achieve subwavelength wave control90, 

acoustic nonreciprocity91, soft material lattices for nonlinear wave control92, and architected 

lattices for solitons manpulation93,94. However, nonlinear dynamic responses of twisted bilayer 

photonic and phononic crystals have yet to be explored. By incorporating the twist degree of 

freedom in conjunction with interlayer coupling, photonic and phononic crystals can achieve a 

whole new level of capability with highly customizable nonlinear dynamic behavior, which has 

the potential to revolutionize photonics and acoustics, leading to significant technological 

breakthroughs. 

Beyond passive moiré lattices, an exciting avenue to explore involves designing bilayer lattices 

with controlled non-reciprocal interactions between the layers which would involve an active 

system95. The combination of the twist and non-reciprocal interlayer coupling has the potential to 

expand the capabilities of twister bilayer lattices for wave manipulation. Along the same direction 

of active systems, instead of considering a static twist, it is worth exploring the dispersion of 



classical waves of a dynamic moiré lattice. This dynamic rotation induces a space-time modulation 

of the periodicity and/or quasi-periodicity of the bilayer lattice, hence its effective properties, 

which could potentially lead to exciting phenomena related to non-reciprocity. A bilayer structure 

with a rotating moiré pattern could offer a simple and efficient method to achieve spatial-temporal 

modulation. This approach is expected to be more relevant for acoustic waves due to their lower 

frequencies, though the flow generated by the rotation could present challenges for the experiment. 

Overall, as research in TBG continues to advance and the broader field of twistronics becomes 

increasingly multidisciplinary, we anticipate sustained growth in the subject of moiré photonic and 

phononic structures throughout the coming decade. In addition to the aforementioned exploratory 

directions, with the rapid evolution of fabrication and characterization techniques, we foresee the 

emergence of novel moiré platforms for classical waves in the future. These platforms may draw 

inspiration from advancements in twisted electronic heterostructures or involve the creation of 

innovative moiré structures beyond the equivalent of TBG for efficient wave control. 
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