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Introduction:
In diffusion MRI, biophysical models promise to provide measures directly related to tissue
microstructure1,2,3. This is made possible at the cost of modeling assumptions, which can be
invalidated in pathological situations4. In contrast, the diffusion tensor distribution (DTD) framework5

characterizes the distribution of Gaussian diffusion compartments inside a voxel, from which
estimates of the microscopic anisotropy (µFA) or the orientation parameter (OP) can be computed.
The objective of this work is to help with the interpretation of such parameters by comparing them with
microstructure features in simulated substrates of white matter.

Methods: Substrate generation. We generated a collection of 11 numerical substrates using
CACTUS6. Briefly, we employed a two steps procedure: the first step initializes the substrate with a
single fiber population with a given dispersion angle and fixed radii distribution. The second step
minimizes fiber overlap and extreme curvature. We did not use the third step to increase packing6 as it
was not a priority for this experiment and increased the computational cost.
The collection has an intracellular volume fraction at 0.72 and a gamma distributed radius (κ = 1,
mean radius = 2.5μm). The only parameter that varies across the substrates is the dispersion which
ranges from 0° to 25° in steps of 2.5°. The substrates are cubes with a side length of 200μm.
Orientation parameter. We wanted to link the dispersion of our substrate with the orientation
parameter (OP) described in QTI5. This parameter, which ranges from 0 to 1, geometrically describes
the orientation of the diffusion tensors distribution with OP=0 for isotropically oriented tensors and
OP=1 for perfectly aligned tensors.
To serve as a reference, we estimated a ground truth, geometric OPgt, from the substrates. We
decomposed the fiber centerlines into fixed-length segments, which we assimilated to rank-1 tensors,
from which we computed OPgt

5. Note that the segment length impacts this estimation of OPgt, with
larger segments smoothing out micro-undulations, resulting in larger OPgt. To be comparable to the
orientation dispersion estimated from the DTD, we advocate choosing a segment length in the same
order as the characteristic diffusion length, which is , where 𝜏 is the effective diffusion time; we2𝐷τ
evaluated 𝜏 in the range 60-80ms, which corresponds to a characteristic diffusion length of 15-18μm.
Signal simulation and DTD estimation. The signal was generated for an acquisition scheme
optimized for the reconstruction of several DTD parameters7. This scheme includes linear, spherical
and planar tensor encoding (LTE, STE and PTE, respectively; see Fig.1). We used the numerically
optimized waveforms8 to generate a gradient trajectory for a spherical b-tensor; this trajectory was
then modified by applying proper scaling and rotation5 to generate 120 waveforms corresponding to
the acquisition scheme.
The intra-cellular and extra-cellular contributions to the signal were simulated separately through
Monte-Carlo simulation9 for each substrate. We generated 106 particles diffusing during 101ms with
1000 timesteps, with a diffusivity of 2μm2/ms.
The estimation of the DTD parameters and the OP from the simulated signal was done using the QTI
implementation of Dipy10.

Results: Figure 2 shows 2 substrates corresponding to angular dispersion of 5° and 25°. The link
between these angular dispersions and OPgt is illustrated in Figure 3 for a range of segment lengths
(from 1 to 100μm). For a given substrate, OPgt increases with the segment length.
Figure 4 plots the OP estimated from the DTD with respect to geometric OPgt, for the same range of



segment lengths. For both the intracellular and extracellular signals, the OP estimated from the DTD
is strongly correlated to OPgt. The bottom figure suggests that when we have dispersion in the
substrate, we can no longer model the extracellular part of the signal as a single gaussian
compartment, which contradicts the assumptions made in most biophysical models of white matter1,2,3.

Discussion and conclusions: In realistic white matter substrates, there is a clear link between the
estimated OP from the diffusion signal and the dispersion of fibers. The extra-axonal diffusion is
complex and cannot be represented by a single diffusion tensor.
Future work includes extending the range of orientation dispersion within the substrate and testing the
effect of the acquisition scheme. It would also be interesting to study the link between the microscopic
anisotropy and geometric properties of the substrates (e.g. axonal radius or density), and to assess
the influence of these parameters on the estimation of OP.
Last, the substrates we generated are composed exclusively of white matter fibers. The presence of
other cell structures (glial cells, soma, etc.) could also influence the estimation of mathematical
parameters and needs to be taken into consideration.
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6. Villarreal-Haro JL, Gardier R, Canales-Rodríguez EJ, et al. CACTUS: a computational framework for generating

realistic white matter microstructure substrates. Front Neuroinform. 2023;17:1208073.

7. Morez J, Szczepankiewicz F, den Dekker AJ, Vanhevel F, Sijbers J, Jeurissen B. Optimal experimental design

and estimation for q-space trajectory imaging. Hum Brain Mapp. 2023;44(4):1793-1809.

8. Sjölund J, Szczepankiewicz F, Nilsson M, Topgaard D, Westin CF, Knutsson H. Constrained optimization of

gradient waveforms for generalized diffusion encoding. J Magn Reson. 2015;261:157-168.

9. Rafael-Patino J, Romascano D, Ramirez-Manzanares A, Canales-Rodríguez EJ, Girard G, Thiran JP. Robust
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Summary:
We compared the diffusion tensor distribution parameters to microstructure features in realistic,
simulated substrates in diffusion MRI. The orientation parameter is related to the actual angular
dispersion of white matter fibers; extra-axonal signal reveals complex, non-Gaussian diffusion.



Figures: 

Figure 1: (left) Repartition of the 120 b-tensor encoded acquisitions corresponding to the Q3 scheme7

used for the simulations; (right) template gradient trajectory to implement the spherical tensor
encoding (STE) b-tensors.

Figure 2: Realistic white matter substrates generated with CACTUS6 with angular dispersion of 5°
(left) and 25° (right).



Figure 3: Geometric OPgt computed for several lengths of segments as a function of the target
dispersion for our collection of substrates.



Figure 4: Estimated OP from the signal for our collection of substrates as a function of geometric OPgt

computed from the substrate for several lengths of segments for the intra-cellular signal (top) and
extra-cellular signal (bottom).


