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Single-cell CRISPR-based transcriptome screens are potent genetic tools for
concomitantly assessing the expression profiles of cells targeted by a set of
guides RNA (gRNA), and inferring target gene functions from the observed
perturbations. However, due to various limitations, this approach lacks
sensitivity in detecting weak perturbations and is essentially reliable when
studying master regulators such as transcription factors. To overcome the
challenge of detecting subtle gRNA induced transcriptomic perturbations and
classifying the most responsive cells, we developed a new supervised
autoencoder neural network method. Our Sparse supervised autoencoder
(SSAE) neural network provides selection of both relevant features (genes) and
actual perturbed cells. We applied this method on an in-house single-cell
CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq)
focusing on a subset of long non-coding RNAs (lncRNAs) regulated by
hypoxia, a condition that promote tumor aggressiveness and drug resistance,
in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated
gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the
2 main transcription factors of the hypoxic response, was transduced in
A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions
during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and
HIF2 by confirming the specific effect of their knock-down during the
temporal switch of the hypoxic response. Next, the SSAE method was able to
detect stable short hypoxia-dependent transcriptomic signatures induced by the
knock-down of some lncRNAs candidates, outperforming previously published
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machine learning approaches. This proof of concept demonstrates the relevance of
the SSAE approach for deciphering weak perturbations in single-cell transcriptomic
data readout as part of CRISPR-based screening.
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1 Introduction

Cancer cells in solid tumors often suffer from hypoxic stress and
adapt to this micro-environment via the activation of Hypoxia
inducible factor (HIF), a heterodimeric transcription factor
composed of either HIF-1α or HIF-2α (initially identified as
endothelial PAS domain protein (EPAS1)) and HIF-1β/ARNT
subunits Semenza (2012); Rankin et al. (2016); Rankin and
Giaccia (2016). In normoxia, HIFα is continuously degraded by
an ubiquitin–dependent mechanismmediated by interaction with to
the von Hippel–Lindau (VHL) protein. Hydroxylation of proline
residues in HIFα is necessary for VHL binding and is catalyzed by
the α-ketoglutarate-dependent dioxygenases prolyl hydroxylases
(PHD). During hypoxia, PHDs are inactive, leading to HIF-α
stabilization, dimerization with HIF-1β and finally translocation
into the nucleus to bind to E-box-like hypoxia response elements
(HREs) within the promoter region of a wide range of genes that
control cellular oxygen homeostasis, erythrocyte production,
angiogenesis and mitochondrial metabolism Kaelin and Ratcliffe
(2008). These molecular changes are notably crucial for cells to
adapt to stress by lowering oxygen consumption by shifting from
oxidative metabolism to glycolysis. While HIF-1 and HIF-2 bind to
the same HRE consensus sequence, they are non-redundant and
have distinct target genes and mechanisms of regulation. It is
generally accepted that the individual HIFs have specific
temporal and functional roles during hypoxia, known as the HIF
switch, with HIF-1 driving the initial response and HIF-2 directing
the chronic response Koh and Powis (2012). In most solid tumors,
including lung adenocarcinoma (LUAD), the degree of hypoxia is
associated with poor clinical outcome. Induction of HIF activity
upregulates genes involved in many hallmarks of cancer, including
metabolic reprogramming, epithelial-mesenchymal transition
(EMT), invasion and metastasis, apoptosis, genetic instability and
resistance to therapies. Emerging evidence have highlighted that
hypoxia regulates expression of a wide number of non-coding RNAs
classes including microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) that in turn are able to influence the HIF-
mediated response to hypoxia Bertero et al. (2017); Choudhry
and Harris (2018); Barth et al. (2020). LncRNAs constitute a
heterogeneous class of transcripts which are more than 200 nt
long with low or no protein coding potential, such as intergenic
and antisense RNAs, transcribed ultraconserved regions (T-UCR) as
well as pseudogenes. Recent advances in cancer genomics have
highlighted aberrant expression of a wide set of lncRNAs
Carlevaro-Fita et al. (2020), revealing their roles in regulating the
genome at several levels, including genomic imprinting, chromatin
state, transcription activation or repression, splicing and translation
control Slack and Chinnaiyan (2019). LncRNAs can regulate gene
expression through different mechanisms, as guide, decoy, scaffold,
miRNA sponges or micropeptides. Of note, recent studies

demonstrated the role of several lncRNAs in the direct and
indirect regulation of HIF expression and pathway through
diverse mechanisms Choudhry and Harris (2018). Moreover,
hypoxia-responsive lncRNAs have been shown to play regulatory
functions in pathways associated with the hallmarks of cancer. For
instance, the hypoxia-induced Nuclear-Enriched Abundant
Transcript 1 (NEAT1) lncRNA has been associated with the
formation of nuclear structures called paraspeckles during
hypoxia as well as an increased clonogenic survival of breast
cancer cells (Choudhry and Harris, 2018). Another highly studied
lncRNA, Metastasis-Associated Lung Adenocarcinoma Transcript 1
(MALAT1, also known as NEAT2) has been found upregulated by
hypoxia in LUAD A549 cells and associated with various cellular
functions depending on tumor cell types including cell death,
proliferation, migration and invasion Hu et al. (2018). Starting
from an expression screening in LUAD patients samples and cell
lines subjected to hypoxia, we have characterized a new nuclear
hypoxia-regulated transcript from the Lung Cancer Associated
Transcript (LUCAT1) locus associated with patient prognosis
and involved in redox signaling with implication for drug
resistance Moreno Leon et al. (2019). Additional promising
lncRNAs candidates regulated by hypoxia and/or associated with
bad prognosis have been identified but deciphering the regulatory
functions of these poorly annotated transcripts remains a major
challenge. Pooled screening approaches using CRISPR-based
technology have offered the possibility to evaluate mammalian
gene function, including lncRNAs at genome scale levels Liu
et al. (2017). More recently, they have been applied to cancer cell
lines and have confirmed the oncogenic or tumor suppressor roles of
some lncRNAs Esposito et al. (2022). This strategy is able to test a
large number of candidates simultaneously but require well
identified phenotypes such as cell proliferation, cell viability, or
cell migration. More subtle screens require techniques based on
transcriptomic signatures Gapp et al. (2016) and approaches have
been developed to combine CRISPR gene manipulation, including
CRISPR interference and single-cell RNA-seq (scRNA-seq) based
on droplet isolation, such as Perturb-seq Replogle et al. (2020),
CROP-seq Datlinger et al. (2017) and ECCITE-seq Mimitou et al.
(2019). These methods combine the advantages of screening a large
number of genes simultaneously and linking themodifications to the
transcriptomic phenotype, all by breaking down the perturbation
signal cell by cell Slack and Chinnaiyan (2019); Replogle
et al. (2020).

In single cell omics applications, most of the quantified features
are weakly detected, resulting in large, sparse and noisy data which
required feature selection to extract biologically relevant signals
Townes et al. (2019). Moreover, cells are often grouped according to
their phenotype and/or their experimental condition in order to
compare features quantification between the defined cell classes.
However, the intra-classes heterogeneity can mask a signal of
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interest. This is particularly the case in the context of CRISPRi
screens with a single-cell transcriptomic readout where the
inhibition level of the target gene varies between each cell and
induces a more or less detectable perturbation signature.
Classification tools such as Mixscape Papalexi et al. (2021), based
onMixture Discriminant Analysis Hastie and Tibshirani (1996), has
proven efficacy to identify strong CRISPR-induced effects but was
unable to detect subtle weak transcriptomic perturbations.

In the present work, we have developed a single-cell CRISPR-
interference-based (CRISPRi) transcriptome screening based on the
CROP-Seq approach to gain insight on the regulatory functions of
hypoxia-regulated lncRNAs. As a proof-of-concept, we generated a
CROP-seq library, including validated guide RNAs (gRNA)
targeting six previously identified lncRNAs regulated by hypoxia
and/or associated with bad prognosis Moreno Leon et al. (2019) as
well as the two master transcription factors of the hypoxic response
(HIF1A and HIF2/EPAS1) and negative control guides. To optimize
analysis of fine-tuned regulations in this dataset, we have adapted a
Sparse supervised autoencoder (SSAE) neural network Barlaud and
Guyard (2021a), where we relax the parametric distribution
assumption of classical VAE. It leverages on the known cell
labels, corresponding to the received gRNA, and a classification
loss to incite the latent space to fit the true data distribution. We first
validated the approach on HIF1 and HIF2/EPAS1 knock-down,
showing a good sensitivity to detect the known temporal switch
between both regulators. We then applied the SSAE to the cells
treated with the different hypoxia-regulated lncRNAs gRNA to
identify subtle signatures linked to the knock-down of the lncRNAs.

2 Materials and methods

2.1 Lentivirus production

Lentiviruses were produced using a standard Lipofectamine
2000™transfection protocol, using one million HEK293 cells
seeded in a 25 cm2

flask in DMEM medium supplemented with
10% bovine serum. A mixture of four plasmids (3 µg pMDLg/pRRE
(addgene ”12,251”), 1.4 µg pRSV-Rev (addgene ”12,253”), 2 µg
pVSV-G (addgene ”12,259”) and 2.5 µg of the plasmid containing
the expression cassette to package the pooled CROP-seq guides) was
transfected. Forty-eight h later, the medium was collected,
centrifuged for 5 min at 3000 rpm, and 2.5 mL supernatant
containing the viral particles was collected and used to infect
cells or aliquoted and stored at −80°C. Large scale preparations
of lentiviruses were produced at the Vectorology facility, PVM,
Biocampus (CNRS UMS3426), Montpellier, France.

2.2 Generation of dCas9-expressing
A549 cell line

The A549 lung adenocarcinoma cell line was infected with a
lentivirus produced from the plasmid lenti-dCas9-KRAB-MeCP2 (a
gift from Andrea Califano, addgene 122,205) allowing the
expression of a dCas9-KRAB-MeCP2 fusion protein and a gene
conferring resistance to blasticidin. Infected cells were then grown in
the presence of 10 μg/mL of blasticidin (Sigma). Selection of A549-

KRAB-MeCP2 cells was complete within 3–5 days. Bulk blasticidin
resistant cells were amplified and cloned for the CRISPRi scRNA-seq
experiments. The best clone was selected according to the expression
level of dCas9-KRAB-MeCP2 mRNA and to the most effective
inhibition of NLUCAT1 using the NLUCAT1 sg3 RNA.

2.3 Cloning of individual guides in the
CROPseq-Guide-Puro plasmid

The CROPseq-Guide-Puro plasmid (Datlinger et al., 2017) (a
gift from C Bock, Addgene plasmid 86,708) was digested using the
restriction enzyme BsmBI (NEB R0580) for 2 h at 50°C. The relevant
fragments (around 8 kB) were gel-purified using the Qiagen Gel
purification kit and stored at −20°C in 20-fmol aliquots. Guides
against the targeted genes (see Supplemental Table S1 for selected
sequences) were cloned using the Gibson assembly method
(NEBuilder HiFi DNA Assembly Master Mix, NEB E2621).
Aliquoted, BsmBI-digested plasmid was mixed with 0.55 µL guide
oligonucleotide (200 nM) in 10 µL total volume, combined with
10 µL 2X NEBuilder HiFi Assembling Master mix and the mixture
was incubated at 50°C for 20 min. Then, 8 µL of NEBuilder
Assembling mixture was incubated with 100 µL of Stable
competent E coli. The mixture was heat-shocked at 42°C for 45 s
and transferred to ice for 2 min. SOCmedium (900 µL) was added to
the Stabl2-NEBuilder mixture and the mix was incubated at 37°C for
1 h. Transformed bacterial cells (350 µL) were plated onto LB
agarose plates containing ampicillin (100 μg/mL) and incubated
overnight at 37°C. Individual colonies were picked and grown
overnight in 5 mL of Terrific Broth medium containing 150 μg/
mL ampicillin and low-endotoxin, small scale preparation of
plasmid DNA were performed using the ToxOut EndoFree
Plasmid Mini Kit from BioVision (K1326-250). All plasmids were
verified by Sanger sequencing with the primer 5′-TTGGGCACT
GACAATTCCGT-3’.

2.4 Selection of the guides

A549-dCas9-KRAB-MeCP2 cells were infected with lentiviruses
obtained from individual CROPseq-Guide-Puro plasmids, encoding
individual guides. Infected cells were then grown in the presence of
1 μg/mL of puromycin (Sigma). A week later, total RNAs were purified
from A549-KRAB-MeCP2 cells infected with guide encoding
lentiviruses and RT-qPCR (primers sequences presented in
Supplemental Table S2) were performed to measure expression of
the targeted genes. RT-qPCR was performed using Fast SYBR Green
MasterMix (Thermo Fisher Scientific) and ABI 7900HT real-time PCR
machine. A validated guide was defined as a guide providing at least
75% inhibition of targeted gene expression compared to a control guide.

2.5 Lentiviral transduction with gRNA
libraries and cell preparation for chromium
scRNA-seq

A549-dCas9-KRAB-MeCP2 cells were transduced with different
amounts of the viral stock containing the library of pooled, selected
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gRNA. After 6 h, the virus-containing mediumwas replaced by fresh
complete culture medium. Puromycin selection (1 μg/mL) was
started at 48 h post-transduction, and 2 days later, the plate with
about 30% surviving cells was selected, corresponding roughly to a
MOI = 0.3. The cells were then amplified under puromycin selection
for 5 days. The cells were then plated and further cultured in
normoxia or in hypoxic condition (1% O2) for 3 h, 6 h or 24 h.
Cells were trypsinized counted and assessed for cell viability using
the Countess 3 FL (Fisher Scientific). Samples were then stained for
multiplexing using cell hashing Stoeckius et al. (2018), according to
the Cell Hashing Total-Seq-ATM protocol (Biolegend), using
4 distinct Hash Tag Oligonucleotides-conjugated mAbs
(TotalSeq™-B0255, B0256, B0257 and B0258). Briefly, for each
condition, 1.106 cells were resuspended in 100 µL of PBS, 2%
BSA, 0.01% Tween and incubated with 10 µL Fc Blocking reagent
for 10 min at 4°C then stained with 0.5 µg of cell hashing antibody
for 20 min at 4°C. After washing with PBS, 2% BSA, 0.01% Tween,
samples were counted and merged at the same proportion, spun
5 min 350 x g at 4°C and resuspended in PBS supplemented with
0.04% of bovine serum albumin at final concentration of 500 cells/μL.
Samples were then adjusted to the same concentration, mixed in PBS
supplemented with 0.04% of bovine serum albumin and pooled
sample were immediately loaded onto10X Genomics Chromium
device to perform the single cell capture.

2.6 Generation of CROP-seq librairies and
single-cell RNA-seq data processing

After single-cell capture on the 10X Genomics Chromium
device (3′ V3), libraries were prepared as recommended,
following the Chromium Next GEM Single Cell 3’ Reagent
Feature Barcoding V3.1 kit (10X Genomics) and a targeted
gRNA amplification Hill et al. (2018) with respectively 6, 8 and
10 PCR cycles. Libraries were then quantified, pooled (80% RNA
libraries, 10% gRNA libraries and 10% hashing libraries) and
sequenced on an Illumina NextSeq 2,000. Alignment of reads
from the single cell RNA-seq library and unique molecular
identifiers (UMI) counting, as well as oligonucleotides tags
(HTOs) counting, were performed with 10X Genomics Cell
Ranger tool (v6.0.2). Reads of the gRNA library were counted
with CITE-seq-Count (v1.4.2). Cells without gRNA counts were
discared. Counts matrices of total UMI, HTOs, and gRNA were thus
integrated on a single object using Seurat R package (v4.1.0), from
which the data were processed for analysis. On the total of
19,663 cells, 817 cells without gRNA counts were discared. HTOs
and gRNA were demultiplexed with HTODemux() and
MULTIseqDemux(autoThresh = TRUE) functions respectively, in
order to assign treatment and received gRNA for each cell. On the
remaining 18,846 cells, only cells identified as “Singlet” after
demultiplexing of HTO counts were conserved (14,276 cells). The
repartition of cells assigned as ”Doublet” (high expression of at list
2 different gRNA), ”Negative” (no detected gRNA) and ”Singlet” (a
unique detected gRNA) in all conditions is showed in (Supplemental
Table S3). Finally, after transforming the data of the subset of ”Singlet”
cells using SCTransform(), computing PCA, and performing KNN
clustering, 2 clusters of low UMI content and high mitochondrial
content cells (3087 cells) were eliminated for the rest of the analysis.

2.7 Method: a new sparse supervised
autoencoder neural network (SSAE)

2.7.1 State of the art of neural networks methods
Deep neural networks have proven their efficiency for classification

and feature selection inmany domains (Emmert-Streib et al., 2020), and
have also been applied to omics data analyses (Lopez et al., 2018;
Leclercq et al., 2019). Among the proposed neural networks
architectures, autoencoders are able to learn a representation of the
data, typically in a latent space of lower dimension than the input space.
As such, they are often used for dimensionality reduction (Hinton and
Zemel, 1994) and have applications in the medical field as data
denoisers or relevant feature selectors (Vincent et al., 2010; Snoek
et al., 2012). A widely used type of autoencoders is the Variational
Autoencoder (VAE) (Kingma and Welling, 2014). This VAE adds the
assumption that the encoded data follows a prior gaussian distribution,
and thus combines the reconstruction loss with a distance function
(between the gaussian prior and the actual learned distribution). For
example, VAEs have been applied to scRNA-seq to predict cell response
to biological perturbations (Lotfollahi et al., 2019) and Omics dataset
(Eltager et al., 2023). Recently, (Le et al., 2018), provided a supervised
auto-encoder neural network that jointly predicts targets and inputs
(reconstruction). However, neither VAEs (Kingma and Welling, 2014)
nor SAEs (Le et al., 2018) provide a solution to the problem of relevant
features and cells selections needed to increase the sensitivity of
CRISPR-based perturbation associated with scRNAseq readout.

2.7.2 SSAE criterion
In this section, we cope with these two issues by providing a sparse

supervised autoencoder (SSAE) neural network method for selecting
both relevant features (genes) and actual perturbed cells. Figure 1
depicts the main constituent blocks of our proposed approach. Note
that we added a ”soft max” block to our SSAE to compute the
classification score. Let X be the concatenated raw counts matrix
(n × d) (n is the number of cells and d the number of genes) of
control cells (targeted with a negative control gRNA) and gRNA-
targeted cells for each target gene in a particular condition (Normoxia,
Hypoxia 3 h, 6 h or 24 h). Let Y be the vector of labels (n × 1) which
component is 0 for control cells and 1 for the perturbed cell. Those
labels, either ”control” or ”gRNA-targeted”, has been previously
assigned for each cell according to the quantification of each gRNA
of the CROP-seq library. Let Z be the encoded latentmatrix (2 × 2). The
matrix X̂ (n × d) is the reconstructed data. W is the matrix of the
weights of the linear fully connected autoencoder neural network.

The goal is to compute the network weightsWminimizing the total
loss which includes both the classification loss and the reconstruction
loss. To perform feature selection, as large datasets often present a
relatively small number of informative features, we also want to sparsify
the network, following the work proposed in Barlaud and Guyard
(2020). Thus, instead of the classical computationally expensive
lagrangian regularization approach (Hastie et al., 2004), we propose
to minimize the following constrained approach (Barlaud et al., 2017)
according to the Eq. (1):

Loss W( ) � H Z,Y( ) + λψ X̂ −X( ) s.t. ‖W‖11 ≤ η. (1)
We use the Cross Entropy (CE) Loss for the classification loss H.

We use the robust Smooth ℓ1 (Huber) Loss (Huber, 2011) more robust
than the mean square error (MSE) as the reconstruction loss ψ.
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2.7.3 Sparsity and gene selection using structured
projections

A classical approach for structured sparsity is the Group LASSO
method (Yuan and Lin, 2006; Kim and Xing, 2010) which consists of
using the ℓ2,1 norm for the constraint onW. However, the ℓ2,1 norm
does not induce an efficient sparse structured sparsity of the network
(Barlaud et al., 2020), which leads to negative effects on
performance.

In our method we achieve structured sparsity (feature selection)
using the bilevel ℓ1,1 projection (Barlaud and Guyard, 2020) of the
weights W. We compute this bilevel ℓ1,1 projection using fast ℓ1
algorithms (Condat, 2016; Perez et al., 2019). We can also use the
new ℓ1,∞ which provides similar sparsity performances(Perez et al.,
2023). Note that low values of η imply high sparsity of the network.
Since the curve accuracy as a function of parameter η is concave
Perez et al. (2023), we compute the maximum with the golden

section algorithm (or any classical optimization algorithm). We
compute feature importance for the sparse supervised autoencoder
using the SHAP method, implemented in the captum python
package (Lundberg and Lee, 2017). Those ranked weights give
the top discriminating genes between the compared classes,
which can be interpreted as the perturbation signature.

The main difference with the criterion proposed for VAEs in
Kingma and Welling (2014); Eltager et al. (2023) and the criterion
proposed for SAEs in Le et al. (2018) is the introduction of the
constraint on the weightsW to sparsify the neural network, in order
to select relevant genes.

2.7.4 Selecting actual perturbed cells using the
softmax classifier

The goal of this section is to estimate the cells actually perturbed.
We propose the following procedure thanks to the softmax formula

FIGURE 1
Sparse Supervised autoencoder (SSAE) framework: (A) SSAE framework overview. X is the concatenated raw countsmatrix (n × d) (n is the number of
cells and d the number of genes) of control cells (targeted with a negative control gRNA) and gRNA-targeted cells for each target gene in a particular
condition. Y is the vector of labels (n ×1) which component is 0 for control cells and 1 for the perturbed cell. Z is the encoded latentmatrix (2×2). X̂ (n × d) is
the reconstructed data. (B) Two-step SSAE classification of perturbed cells among gRNA-targeted cells.
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(Eq. (2)). A first SSAE run gives a perturbation score thanks to the
softmax layer Barlaud and Guyard (2021b) for both non-targeted
control cells and for cells targeted for a particular gene.

softmax Z( ) � exp Zi( )
∑k

j�1exp Zj( )
∀i � 1, 2 (2)

According to this specific score, called perturbation score, cells are
separated into 2 subsets: targeted cells with a score > 0.5 are
classified as ”perturbed” cells, whereas targeted cells with a score
< 0.5 are classified as ”non-perturbed” cells. A new data matrix and
a new label vector is generated, containing only the raw counts and
labels of the selected perturbed cells and an equivalent number of
randomly sampled non-targeted control cells in order to balance
both classes. A second SSAE run provides a new list of the most
discriminant features between both classes, ranked by their weight.
This procedure is run multiple times with different initialization
seeds in order to compute a mean and a standard deviation of the
obtained ranks. The standard deviation ranks are used to evaluate
the robustness of the perturbation signature. Again, neither VAEs
(Kingma and Welling, 2014) nor SAEs (Le et al., 2018) provide a
solution to the actual perturbed cell selection.

2.7.5 Implementation of the SSAE framework
Following the work by Frankle and Carbin in (Frankle and

Carbin, 2019), and further developed in (Zhou et al., 2019), we
follow a double descent algorithm, originally proposed as follows:
after training a network, set all weights smaller than a given
threshold to zero, rewind the rest of the weights to their initial
configuration, and then retrain the network from this starting
configuration while keeping the zero weights frozen. We replace
the thresholding by our ℓ1,1 projection. We implemented our SSAE
method using the PyTorch framework for the model, optimizer,
schedulers and loss functions. We train the network using the
classical Adam optimizer (Kingma and Ba, 2015). We used a
symmetric linear fully connected network (Barlaud and Guyard,
2021a), with the encoder comprised of an input layer of d neurons,
one hidden layer followed by a ReLU activation function and a latent
layer of dimension k = 2 since we have two classes. The accuracy of
the model, the mean and variance of the rank of selected genes was
computed for each SSAE run using 4-fold cross-validation (which
means that the train-validation split is random every time) and a
mean over 3 seeds.

3 Results

3.1 Single-cell CRISPRi screening of
hypoxia-regulated lncRNA

In order to gain new insights into the molecular functions of
6 hypoxia-regulated lncRNAs in LUAD cells, we performed a single-
cell CRISPRi transcriptome screening based on the CROP-Seq
approach (Figure 2A). We transduced A549 cells expressing
double transcriptionnal repressor dCas9-KRAB-MeCP2 with a
mini-library containing 12 validated gRNA targeting CYTOR
(also known as LINC00152), LUCAT1, MALAT1, NEAT1,
SNHG12 and SNHG21 as well as the two key regulators of the

hypoxic response, HIF1A and HIF2/EPAS1 (Table 1). Each guide
was individually validated by qPCR in A549 cells, showing a 75%–
95% inhibition of the target compared with control cells (Figure 2B).
Two additional guides, with no effect on the genome, were used as
negative controls. In order to mimic the hypoxic environment in
which tumors develop in vivo, we equally divided the transduced
dCas9-KRAB-MeCP2 A549 cells in 4 samples that we then cultured
in normoxia or in hypoxia during 3, 6 or 24 h. Cells from each
sample were labeled with a specific barcoded antibody (HTOs),
pooled, and simultaneously sequenced using droplet based scRNA-
seq (10X Genomics Chromium). The received gRNA and the culture
condition were subsequently assigned for each cell by
demultiplexing both gRNA and HTOs counts respectively.

Overall, we found a balanced representation for each treatment
and for each gRNA among the sequenced cells, except for the cells
targeted by ”SNHG12-sg3” which were depleted in all conditions
(Figure 2C, Supplemental Figure SA and Supplemental Table S3).
Moreover, the expression of this particular gRNAwas lowly detected
in those cells, confirming previous observations that this gRNA
induced cell death and that only cells with low expression survive.
Inhibition of target gene expression in the presence of their
corresponding gRNA were validated in all 4 conditions, as well
as their progressive increase (CYTOR, LUCAT1, NEAT1, SNHG12)
or decrease (HIF1A and SNHG21) during hypoxia
exposure (Figure 2D).

3.2Mathematical and biological validation of
the SSAE approach

In order to validate the SSAE approach, we first evaluated the
effect of feature and cell selection on the accuracy of the model, and
then the biological relevance of the detected transcriptomic
perturbations induced by the knock-down of the two main
regulators of the hypoxic response, HIF1A and HIF2.

3.2.1 Feature and cell selection improve the
accuracy of the model

We compared the performance of SSAE, for different criterion
(MSE and Huber), with or without gene selection using ℓ1,1

constraint projection, and with or without cell selection on the
dataset of HIF2-targeted cells and negative control cells cultured in
hypoxic condition for 24 h. Table 2 indicates that the SSAE with ℓ1,1

constraint projection and Huber criterion is able to discriminate
both classes by selecting only a fraction of measured genes (19.46%),
as it is shown in the matrix of connections between the first and
second layer (Figure 3A). Moreover, the improvement of 5.39% of
the model accuracy by using SSAE with ℓ1,1 constraint projection
compared to SSAE without projection shows the efficiency of
selecting only the most relevant features.

Figure 3B shows the distribution of perturbation scores
computed with the softmax formula (2) for non-targeted and
HIF2-targeted cells. Running the SSAE after selecting only
perturbed HIF2-targeted cells, without feature selection, improves
the accuracy by 4.67% (Table 3). Combining feature and cell
selection improves the accuracy by 10.4%. To further
demonstrate the efficiency of the SSAE classification, we
compared the average expression of the top 15 genes of the
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FIGURE 2
Single-cell CRISPRi screening: (A) Design of CROP-seq experiment. (B) Bar charts showing the relative expression of the different trancripts by RT-
qPCR following infection of A549-KRAB-MeCP2 cells with lentivirus obtained from individual CROPseq-Guide-Puro plasmids, encoding the indicated
guides. Expression levels were evaluated using comparative CT method, and normalized using transcript levels of each targeted gene in control
conditions (guide Neg-sg1) as 100%. (C) Repartition of cells classified as Doublet (more than 1 assigned gRNA), Singlet (1 assigned gRNA), and
Negative (no assigned gRNA) after demulplexing of gRNA counts in each condition, prior to low quality cells filtering. (D) Heatmap of target gene RNA in
each cell, labelled according to assigned gRNA and condition after demultiplexing.
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perturbation signature induced by HIF1A and HIF2 inhibition
between control, non-perturbed and perturbed cells in the 3 time
points of hypoxia exposure. Supplemental Figure SB shows that the
effect of HIF1A or HIF2 inhibition is systematically mitigated in
cells classified as non-perturbed compared to perturbed cells. The

percentage of cells classified as perturbed among targeted cells for
each gRNA in each condition are shown in Figure 4.

Finally, we tested the stability of the SSAE according of the
number of cells by progressively sub-sampling the cells in each
condition and evaluated the classification accuracy for each
condition. The data showed overall a very good stability, with
however some differences between the conditions (Supplemental
Figure SC), indicating that the number of cells required to obtain an
optimal result also depends on the intensity of the biological signal.

3.2.2 Knock-down of HIF1A and HIF2 differentially
modulate the hypoxic response

Globally, the inhibition of HIF1A induced a strong
transcriptomic perturbation which affected more than 85% of
targeted cells in all conditions (Table 4; Figure 4). Even in
normoxic condition, the signature amplitude was sufficient to
allow a classification accuracy above 93%. Among the genes
modulated independently from the hypoxic status, we found
SNAPC1, IGFL2-AS1, BNIP3L and LDHA, whereas PGK1,
PDK1, or BNIP3 modulations were specific to hypoxic conditions
(Figure 5A). We also found gene modulations specific to early
(KDM3A, HIPLDA, ZNF292, EGLN3) or late (SLC16A3, GPI,
PGAM1, TPI1) hypoxic response, which correspond to the
progressive establishment of the HIF1A-mediated metabolic
switch Kim et al. (2006). In normoxia, the knock-down of
HIF2 did not produce stable perturbations, except for its own
target gene EPAS1 (Figure 5B). The 2 early time points of
hypoxia exposure showed an improvement of the associated
classification accuracy, which reflected a slight increase of the
transcriptomic perturbation induced by HIF2 knock-down in
these experimental settings. This early signature was mainly

TABLE 1 gRNA library.

gRNA Target Type % Inhibition

HIF1A-sg1 HIF1A Hypoxic response regulator >95%

HIF1A-sg2 >95%

HIF2-sg5 HIF2/
EPAS1

>95%

LINC00152-
sg3

CYTOR Hypoxia-regulated lncRNA >75%

LUCAT-sg3 LUCAT1 >97%

LUCAT-sg5 >90%

MALAT-sg1 MALAT1 >95%

NEAT1-sg2 NEAT1 >85%

NEAT1-sg6 >95%

SNHG12-sg1 SNHG12 >75%

SNHG12-sg3 >90%

SNHG21-sg5 SNHG21 >85%

Neg-sg1 None Negative control None

Neg-sg2

TABLE 2 Comparison of different criterion on HIF2 datase (CE is the cross entropy).

Criterion Gene selection (%) F1 score (%) Accuracy (%)

CE + Huber and No-proj 97 80.54 87.29

CE + Huber + ℓ1,1 19.46 90.48 92.68

CE + MSE + ℓ1,1 19.46 89.86 92.16

FIGURE 3
Impact of feature and cell selection on the accuracy of the model comparing HIF2-targeted cells and negative control cells after 24 h of hypoxic
exposure. (A) Sparsity of the first layer: Left: using no projection, Right: using our ℓ1,1 projection. (B)Distribution of the perturbation score for non-targeted
and HIF2-targeted cells.
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TABLE 3 SSAE Accuracy without or with feature and cell selection.

SSAE (without feature and cell
selection) (%)

SSAE (only with feature
selection) (%)

SSAE (with feature and cell
selection) (%)

87.29 92.68 97.67

FIGURE 4
Percentages of targeted cells classified as perturbed or non-perturbed for each gRNA in each condition.

TABLE 4 SSAE classification and accuracy for HIF1A and HIF2 gRNA targeted cells.

Treatment Targeted cells Perturbed cells (%) Accuracy (%)

HIF1A Normoxia 475 86.7 95.33

HIF1A Hypoxia 3 h 554 87.5 94

HIF1A Hypoxia 6 h 372 85.8 93.67

HIF1A Hypoxia 24 h 554 85.7 94.67

HIF2 Normoxia 147 11.6 66.67

HIF2 Hypoxia 3 h 202 51 86.33

HIF2 Hypoxia 6 h 104 38.5 82.33

HIF2 Hypoxia 24 h 213 84 97.67
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driven by genes involved in lipid metabolism ANGPTL4,
IGFBP3 and HILPGA. Discrepancies between the results at 3 h
or 6 h were mainly due to the lower number or targeted cells at 6 h
(104 instead of 202), which impacted the classification. At 24 h of
hypoxic exposure, the effect of HIF2 inhibition reached its
maximum, with 84% perturbed cells and an accuracy of 97%
(Table 4; Figure 4). However, this signature was quite different
from that of HIF1A-targeted cells under the same condition. Indeed,
some upregulated (ALDH3A1, CPLX2, FTL, PAPPA) or

downregulated (ATP1B1, FXYD2, ANXA4, LOXL2) genes in
HIF2-targeted cells were not modulated in HIF1A-targeted cells
(Figure 5C). Moreover, several genes showed an opposite
perturbation between the two groups of cells. This was the case
for BNIP3, PGK1, GPI, FAM162A, SLC16A3, TPI1, or
PGAM1 which were downregulated upon HIF1A inhibition but
were found upregulated uponHIF2 inhibition after 24 h of culture in
hypoxia. These results were consistent with the known role of HIF2,
which is activated upon prolonged exposure to hypoxia and is

FIGURE 5
Knock-down of HIF1A and HIF2 differentially modulate the hypoxic response. (A) Top 20 discriminant features between perturbed and control cells
for HIF1A for each treatment. Upregulated or downregulated genes are written in red or blue respectively. (B) Top 20 discriminant features between
perturbed and control cells for HIF2/EPAS1 for each treatment. (C) Differentially expressed genes between perturbed and control cells for HIF1A and
HIF2 for each treatment, expressed as log2FC (Fold Change).
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involved in the regulation of the chronic hypoxic response Koh and
Powis (2012). They also confirm that in LUAD cells, HIF1A and
HIF2-regulated functions are specific, or even antagonistic for
certain genes, which has been previously demonstrated in other
cancers Raval et al. (2005).

3.3 Knock-down of hypoxia-regulated
lncRNA LUCAT1 leads to hypoxic condition-
dependent transcriptomic modulations

We then applied the SSAE method to classify cells treated with
the 6 gRNA targeting hypoxia-regulated lncRNAs and cultured in
the 4 conditions. Globally, the SSAE was able to classify perturbed
and control cells with a good overall accuracy around 80%, except
for SNHG12 and SNHG21 (Table 5; Figure 4). However, despite
their promising accuracies, we did not detect any other stable
perturbations than the target gene for both MALAT1 and
NEAT1 targeted cells, as indicated by the obtained high means

and standard deviations of the computed ranks, while those two
lncRNAs were previously associated with various gene regulation
functions Dong et al. (2018); Amodio et al. (2018) (Figures 6A,B).
The SSAE outcomes were different for the classification of
LUCAT1-targeted cells. Indeed, the transcriptomic inhibition of
LUCAT1 resulted in a stable upregulation for PCOLCE2 and
ISCA1 in normoxia, HDHD2 after 3 h, and 6 h of hypoxia
(Figure 6C). ISCA1 and HDHD2 encode for metal ion binding
proteins, whereas TFCP2 is a known oncogene. After 24 h of
hypoxia, a completely different perturbation signature was found,
with at least 6 stably modulated genes, including the upregulation of
KDM5C, TMEM175 and NIT1, as well as the downregulation of
ATP6AP1, PEX1 and PHF20. ATP6AP1 and PEX1 are respectively
components of the V-ATPase and the peroxisomal ATPase
complexes, while TMEM175 is a proton channel also involved in
pH regulation. KDMC5 and PHF20 are both involved in chromatin
remodeling and transcriptomic regulation, while NIT1 is associated
to tumor suppressor functions. This particular signature allowed the
classification of 90,4% of targeted cells with an accuracy of 85,67%

TABLE 5 Supervised autoencoder classification and accuracy for hypoxia regulated lncRNAs gRNA targeted cells (*obtained without cell selection).

Treatment Targeted cells Perturbed cells (%) Accuracy

LUCAT1 Normoxia 438 51.8 73.33%

LUCAT1 Hypoxia 3 h 583 77.7 82.33%

LUCAT1 Hypoxia 6 h 391 63.9 79%

LUCAT1 Hypoxia 24 h 666 90.4 85.67%

MALAT1 Normoxia 205 37.1 82.67%

MALAT1 Hypoxia 3 h 269 45 82.33%

MALAT1 Hypoxia 6 h 194 37.1 78.00%

MALAT1 Hypoxia 24 h 241 26.1 78.67%

NEAT1 Normoxia 274 59.1 86.33%

NEAT1 Hypoxia 3 h 390 73.3 89.00%

NEAT1 Hypoxia 6 h 237 52.7 85.33%

NEAT1 Hypoxia 24 h 566 58.7 87.33%

LINC00152 Normoxia 147 55.1 87.67%

LINC00152 Hypoxia 3 h 200 59 91.67%

LINC00152 Hypoxia 6 h 150 58 86.33%

LINC00152 Hypoxia 24 h 209 42.6 85%

SNHG12 Normoxia 196 14.8 65%*

SNHG12 Hypoxia 3 h 217 14.7 69%*

SNHG12 Hypoxia 6 h 154 3.9 67.4%*

SNHG12 Hypoxia 24 h 213 8.5 71%*

SNHG21 Normoxia 211 5.2 60.7%*

SNHG21 Hypoxia 3 h 256 3.5 61.1%*

SNHG21 Hypoxia 6 h 192 6.8 59.1%*

SNHG21 Hypoxia 24 h 299 2 63.5%*
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(Table 5; Figure 4). These results indicate that LUCAT1 inhibition
may induce hypoxic condition-dependent transcriptomic
modulations that potentially impact tumor survival and gene
regulatory processes during prolonged exposure to hypoxic
conditions, completing our previous observations Moreno Leon
et al. (2019).

For LINC00152, the combined inhibition of CYTOR/
LINC00152 with MIR4435-2HG (Figure 7A), whose sequences
are highly homologous (99% in the 220 bp region including the
most efficient gRNA), was sufficient to select half of the targeted cells
with an accuracy above 85% regardless of the condition
(Table 4; Figure 4).

FIGURE 6
Top 20 discriminant features between perturbed and control cells for LUCAT1 (A), MALAT1 (B) and NEAT1 (C) for each treatment. Upregulated or
downregulated genes are written in red or blue respectively.
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For the SNHG12 and SNHG21 datasets, the first round of SAE
selected only around 10% of perturbed cells (Table 5; Figure 4). Thus we
could not run the SAE for the second round because of a too low
number of cells for the 4 fold cross validation. For those 2 genes, we just
reported the average accuracies obtained after the first round of the
SSAE (Table 5). As SNHG21 expression is relatively low in LUAD cells

and is decreased by hypoxic stress, the extent of its inhibition was
therefore weaker and not sufficient to distinguish targeted from control
cells. Combined with the lack of transcriptomic effect induced by its
knock-down, it explains the poor classification results and the
randomness of features selected for cells targeted by this particular
gene under all conditions (Figure 7B).

FIGURE 7
Top 20 discriminant features between perturbed and control cells for LINC00152 (A), SNHG21 (B) and SNHG12 (C) for each treatment. Upregulated
or downregulated genes are written in red or blue respectively.
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3.4 SSAE classification revealed an anti-
apoptotic signature expressed by a subset of
SNHG12-targeted cells in response to the
cytotoxic effect of one of its gRNA

Looking at the SSAE classification outcomes for SNHG12-
targeted cells, only about 15% of them were classified as
perturbed in normoxia and after 3 h of hypoxia, with a poor
accuracy (Table 5; Figure 4). The number of selected cells was
even worse for a longer exposure to hypoxia.

Nevertheless, the ranked list of top discriminant features
between the few perturbed cells and control cells obtained for the
first two time points showed a notable perturbation signature. In
normoxia, it was only composed of BAG1 upregulation, whereas
after 3 h of hypoxia exposure, this signature was completed by GAS5
(snoRNAs-containing lncRNA gene), ARRB2, ATF5, and
ETHE1 upregulations (Figure 7C). These 5 genes are all known
anti-apoptotic factors. We hypothesized that this anti-apoptotic
signature was expressed by a subset of LUAD cells that were
actively escaping the cytotoxic effect we systematically observed
for the most efficient of the two gRNA selected for targeting
SNHG12, SNHG12-sg3 (Table 1). Indeed, most of the cells
classified as perturbed were specific to this particular gRNA
(Figure 4). As this signature progressively attenuated over time
under hypoxic conditions, we speculate that the activation of this
anti-apoptotic response may be inhibited by hypoxic stress, or that
hypoxia may protect against the cytotoxic effect of this guide. These
results demonstrate the precision of the SAE-based approach to
detect a short signature, even restricted to a small subset of cells.

3.5 Comparison of SSAE with others
machine learning methods

We compared the classification performance and the biological
relevance of extracted features between the SSAE, with and without
cell selection of the most responsive cells, SAE Le et al. (2018) and
Random Forests using 400 estimators and the Gini importance (GI)
for feature ranking. We performed this comparison for
2 representative datasets, namely, HIF2-targeted cells versus
control cells and LUCAT1-targeted cells versus control cells
following 24 h of hypoxia exposure.

For the first dataset, as HIF2 inhibition induced a strong
perturbation signature, the 10 first selected features between all
methods were highly similar, even between SSAE/SAE and Random
Forest (Figure 8A). However, using the SSAE with cell selection
outperforms Random Forest with an increase of 25.25% of accuracy.

For LUCAT1 dataset, few overlaps were found between the first
10 selected features with each method. The inhibition of the target
gene LUCAT1 was the only feature commonly detected (Figure 8B).
ATP6AP1 and PEX1 were the only two overlapping genes between
SSAE and SAE obtained signatures, while KDMC5, NIT1,
PHF20 and CCDC142 were specific to SSAE regardless of the
cell selection step. While the signature of Random Forests was
very specific, note that the author of RF proposes two measures
for feature ranking, the variable importance (VI) and Gini
importance (GI): Altmann et al. (2010) showed that if predictors
are real with multimodal Gaussian distributions, both measures are

biased. Moreover, since using the SSAE with cell selection
outperforms RF by 31.07%, SAE by 27% and SSAE without cell
selection by 1.67%, it is reasonable to claim that the SSAE
perturbation signature is the most relevant.

4 Discussion

Single-cell CRISPR(i)-based transcriptome screenings are
powerful tools for simultaneously accessing the expression
profiles of cells targeted by different gRNA, in order to infer
target genes functions from the observed perturbations. However,
these approaches are limited by the low molecule capture rate and
sequencing depth provided by droplet-based scRNA-seq, which
produce sparse and noisy data. Furthermore, the outcome of
CRISPR-induced modification in each cell is a stochastic event,
depending among other things, on the expression levels of the
transcribed gRNA and dCas9, as well as the accessibility of the
target gene locus, that may be heterogeneously regulated at the
epigenomic levels in the different cells. For these reasons, the
induced perturbation signature and its detection are likely
heterogeneous between cells, even when dCas9-expressing cells
receiving the same gRNA have been cloned. Deciphering this
heterogeneity in sparse data is even more complex when the
targeted genes are not master genes involved in signaling or
regulatory pathways, such as transcription factors and receptors.
In this respect, a previous study Papalexi et al. (2021) has shown that
this particular challenge cannot be met using conventional scRNA-
seq analysis tools such as differential expression, which is clearly
limited to the detection of weak and heterogeneous perturbation
signals. This challenge seems even more complex for the study of
perturbations mediated by knockdown of non-coding RNAs, which
have been largely involved in the fine-tuning of gene expression
regulation. To increase the sensitivity of single-cell CRISPR(i)-based
transcriptome screenings, we propose here a powerful feature
selection and classification approach based on a sparse supervised
autoencoder (SSAE). It leverages in particular on the known cell
labels initially given by gRNA counts demultiplexing to constrain
the latent space to fit the original data distribution. Beyond high
statistical accuracy, our SSAE offered relevant properties that
distinguishes it from classical classification methods: i) a
stringent feature selection producing an interpretable readout of
ranked top discriminant genes associated to their weights; ii) a
classification score which allow the selection of the most perturbed
cells and the eventual signal to obtain a more robust perturbation
signature. We first validated this approach by analyzing the
perturbations associated with the knock-down of the two master
regulators of the hypoxic response, HIF1A and HIF2. We showed
that the SSAE was able to learn a latent space and a perturbation
signature which can for exemple almost perfectly discriminate
HIF2-targeted cells from their control in condition of prolonged
hypoxia. The SSAE classification accuracy provided a global
perturbation score associated with HIF1A and HIF2 at each time
point, reflecting the biological activity of each factor during the
hypoxic response. We were able to recapitulate the known distinct
influence and target specificity of HIF1 and HIF2 during the hypoxia
time course Koh and Powis (2012), with notably i) a strong
perturbation driven by HIF1 at early time points;
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ii) a progressive influence of HIF2 with a maximum effect observed
at 24 h of hypoxia; iii) a specificity regarding their targets, with
sometimes an opposite regulation for some genes. Finally, this
unique dataset provides a global and dynamic description of the
transcriptomic modulations mediated by the two main regulators of
the hypoxic response in LUAD A549 cells. Surprisingly, we did not
detect any relevant and stable perturbation in cells targeted for
LINC00152, MALAT1, NEAT1 and SNHG21, in the four culture
conditions. This result appears quite unexpected for MALAT1 and
NEAT1, two of the most studied lncRNAs that are associated with
various functions in cancer, including proliferation, migration, and
invasion Arun et al. (2020); Dong et al. (2018). In particular, it has
been shown that MALAT1 knockout in the same cellular model
(A549) modulated a set of metastasis-associated genes Gutschner
et al. (2013). Although CRISPRi-mediated knock-down achieved an
efficient knock-down (> 95%), it is however possible that based on
the very high level of MALAT1, the remaining transcripts are
sufficient to mediate the cellular function. Another possibility
could be due to differences in methodology, notably the need to
isolate single clones for the knockout protocol, a long procedure that
can profoundly affect the transcriptome, compared with the CROP-
seq approach performed on a bulk population prior to immediate
single-cell isolation. A similar situation may occur for NEAT1, a
highly abundant lncRNA acting as a structural scaffold of
membraneless paraspeckle nuclear bodies. Moreover, NEAT1 can
produces two isoforms, with a differential regulation upon stress and
distinct functions Adriaens et al. (2019). Additional work will be
thus necessary to further analyze the relative proportion of the two
isoforms in A549 cells and their potential function during hypoxia.

However, for LUCAT1-targeted cells after 24 h of hypoxia
exposure, we found a stable signature of 6 modulated genes,
which are associated with pH or gene regulation. It suggested a

potential capacity of LUCAT1 to promote tumor cell survival during
prolonged hypoxia and to contribute to an aggressive phenotype in
LUAD cells, as we previously demonstrated Moreno Leon et al.
(2019). Finally, we also found a relevant signature in SNHG12-
targeted cells, characterized by the upregulation of anti-apoptotic
genes. As this signature is almost exclusive to cells targeted by the
most effective gRNA against SNHG-12, which appeared to
systematically induce cell death, we hypothesized that it is
expressed by surviving cells. The potential pro-oncogenic role of
the complex SNHG12 locus, producing a lncRNA and 3 snoRNAs,
should be pursued to decipher the molecular components associated
with this phenotype, as also suggested by previous studies Tamang
et al. (2019).

Autoencoder neural networks are state of the art for biological
analyses Eltager et al. (2023) and do not represent a computational
issue thanks to their implementation in dedicated frameworks such
as PyTorch. Compared to others autoencoders, the SSAE add the
projection step to achieve feature selection. However, its execution
time is very fast: for example, it is only 60 ms using aMacbook with a
M3 Processor for aMatrix of 1000 samples and 10,000 features Perez
et al. (2023).

The size of the perturbation signatures obtained for
LUCAT1 and SNHG12 datasets prevented the utilization of
functional enrichment analysis to characterize their modulated
functions. Moreover, as these small signatures were found in
specific subsets of targeted cells and dynamically during the
hypoxic response, it appears very difficult to validate them using
a global experimental approach that will average the signal across all
cells. Despite these limitations, we believe that our approach is well
suited to the particular deciphering of single cell CRISPR-based
screen with omics readout, or for other similar assays to assess the
effect of perturbation at the single cell level.

FIGURE 8
Comparison of the 10 first selected features between SSAE (with or without cell selection), SAE and Random Forests, for HIF2/EPAS1 (A) or
LUCAT1 (B) targeted cells in hypoxia 24 h. Associated accuracies are indicated in brackets.
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