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Abstract

Phylogenetic inference aims at reconstructing the tree describing the evolution of
a set of sequences descending from a common ancestor. The high computational
cost of state-of-the-art Maximum likelihood and Bayesian inference methods lim-
its their usability under realistic evolutionary models. Harnessing recent advances
in likelihood-free inference and geometric deep learning, we introduce Phylo-
former, a fast and accurate method for evolutionary distance estimation and
phylogenetic reconstruction. Sampling many trees and sequences under an evo-
lutionary model, we train the network to learn a function that enables predicting
the former from the latter. Under a commonly used model of protein sequence
evolution and exploiting GPU acceleration, it outpaces fast distance methods
while matching maximum likelihood accuracy on simulated and empirical data.
Under more complex models, some of which include dependencies between sites,
it outperforms other methods. Our results pave the way for the adoption of
sophisticated realistic models for phylogenetic inference.

Keywords: phylogenetic reconstruction, neural network, attention, machine learning,
regression
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1 Introduction

Phylogenetics, the reconstruction of evolutionary relationships between biological enti-
ties, is used in many research domains to provide essential insights into evolutionary
processes. It is employed in epidemiology to track viral spread [1], in virology to iden-
tify events of recombination [2], in biochemistry to evaluate functional constraints
operating on sequences [3], in ecology to characterize biodiversity [4]. Central to these
works, the phylogeny is a binary tree whose internal nodes correspond to ancestral enti-
ties, branches represent the amount of evolutionary divergence, and leaves correspond
to extant entities. Most of the time, molecular phylogenies are estimated from aligned
nucleotide or amino acid sequences using probabilistic model-based approaches in the
Maximum Likelihood (ML) or Bayesian frameworks. The models typically describe
the probability of substitution events along a branch of the phylogenetic tree, whereby
an amino acid (or nucleotide) is replaced by another. Parameters of these models
include rates of substitution, the topology of the phylogeny, and its branch lengths—
representing the expected number of substitutions per site occuring along that branch.
In the ML framework, parameter inference is achieved by heuristics that attempt to
maximize the likelihood. In the Bayesian framework, it is often achieved by Markov
Chain Monte Carlo algorithms that sample the posterior distribution. Both approaches
are computationally expensive for two reasons. First, they need to explore the space of
tree topologies, which grows super-exponentially in the number of leaves [5]. Second,
this exploration involves numerous computations of the likelihood, each obtained with
a costly sum-product algorithm (Felsenstein’s pruning algorithm [6]). This computa-
tional cost has kept researchers from using more realistic models of sequence evolution,
which would for instance take into account interactions between sites of a protein (as
in e.g., [7]). Such simplifications are well-known to be problematic, as several recon-
struction artifacts directly associated to model violations were discovered early in
the history of model-based phylogenetic reconstruction [8–10]. Much faster methods
exist, but they are generally less accurate [11]. In particular, distance methods (e.g.,
Neighbor Joining (NJ) [12], BioNJ [13], FastME [14]) build a hierarchical clustering
of sequences based on some estimate of their evolutionary pairwise distances, i.e.,
the sum of the branch lengths along the path between pairs of sequences on the true
unobserved phylogenetic tree. NJ is guaranteed to reconstruct the true tree topology
if applied to the true distances [15], making the problem of estimating the tree and
the set of distances equivalent. In practice, distances are typically estimated under
the same probabilistic models as ML and Bayesian methods but considering each pair
separately—whereas the latter consider all sequences at once—which greatly simpli-
fies computations but discards part of the global information contained in the full set
of homologous sequences.

Here we present Phyloformer, a phylogenetic inference method exploiting all
sequences at once with the speed of distance methods. Importantly, Phyloformer
can handle complex models of sequence evolution for which likelihood computations
would not be feasible. We build on recent advances in deep learning for multiple
sequence alignments [MSAs, 16] and in the likelihood-free inference paradigm (Fig.
1). Sometimes referred to as simulation-based inference [17], this paradigm exploits
the fact that simulating data under probabilistic models of sequence evolution is
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computationally affordable, even in cases where computing likelihoods under these
models is expensive. Through simulation we sample a large number of phylogenetic
trees and MSAs evolved along these trees, given a probabilistic model under which we
want to perform phylogenetic inference. We then learn a function that takes an MSA
as input and outputs the evolutionary distances between all pairs of sequences on
the tree. This function provides a point inference of the full set of pairwise distances
under the chosen probabilistic model, conditional to the observed MSA. Learning the
function is computationally intensive, but once done, Phyloformer can be used in
combination with a distance method to reconstruct a tree from an MSA very rapidly,
regardless of the complexity of the model of sequence evolution. We show that under
the common LG+GC model [18], Phyloformer leads to phylogenies as accurate as
state of the art ML methods but runs two orders of magnitude faster. Under more
realistic models, e.g. accounting for pairwise dependencies between sites, Phyloformer
provides more accurate estimates than all other inference methods.

Related work [19] offer a recent review on deep learning for phylogenetics. [20, 21]
proposed likelihood-free methods for phylogenetic inference, by casting the problem as
a classification across possible topologies. Given the super-exponential growth of the
number of possible unrooted tree topologies in the number of sequences, they restricted
themselves to trees with four leaves (quartet trees), that could then be combined to
obtain larger trees [22]. Both methods relied on convolutional neural networks and
were therefore sensitive to the order of the sequences in the alignment and restricted
to a fixed sequence length—smaller sequences being accommodated with padding.
More recently, while still only considering quartet trees, [23] proposed a network that
was independent of sequence order, and reported accuracies similar to [21] using fewer
training samples. [24] showed that the accuracy of the network introduced in [21]
was lower than that of ML or distance methods when evaluated on difficult problems
involving long branches and shorter sequences (200 sites), for both quartet trees and
trees with 20 leaves. [25] proposed a generative adversarial network for phylogenetic
inference. While also likelihood-free, this approach required a new training for each
inference, and did not scale beyond fifteen species. [26] introduced a distance-based
learning method for the related problem of adding new tips into an existing tree.
Our work is also related to the recent corpus of methods predicting contact between
pairs of residues from MSAs, a crucial step in protein structure prediction [16, 27].
These methods infer distances between sites (columns in the MSA) whereas we infer
distances between sequences (rows in the MSA). Our network is trained end-to-end
to predict distances, whereas the [16] network is pre-trained on a masked language
modeling task to learn a data representation that is then used as input for residue
contact prediction learning.

2 Results

2.1 Likelihood-free phylogenetic inference with Phyloformer

Phyloformer is a learnable function for reconstructing a phylogenetic tree from an MSA
representing a set of homologous sequences (Fig. 1). It produces an estimate, under
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Fig. 1: Learning a function that reconstructs a phylogenetic tree from an MSA. We simulate
phylogenetic trees and evolve MSAs along these trees under a given probabilistic model
(Simulator panel). Once encoded, we use the examples of MSAs and corresponding trees to
optimize the prediction function, described in the Phyloformer network panel. Each square
denotes a vector of dimension d representing one site in one sequence or pair in the MSA,
where the value of d can be different at each step. Phyloformer starts (bottom left) from a
one-hot encoded MSA, and builds a representation for the pairs. These pairs then go through
several axial attention blocks which iteratively build a new representation for each pair that
accounts for the entire MSA, by successively sharing information across sites within each
pair and across pairs within each site (See The Phyloformer neural network). The sharing
mechanism relies on self-attention (central panel). We finally use a fully connected network on
each site of the resulting representation and average across sites to predict the evolutionary
distance between each pair (bottom right). At training time, we compare these distances
against real one to optimize the network parameters Φ. At inference time, we feed them to
FastME to reconstruct a phylogeny.

a chosen probabilistic model, of the distances between all pairs of sequences, which
is then fed to a fast clustering method to infer a phylogenetic tree. The key feature
of Phyloformer is its ability to produce pairwise distance estimates that account for
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all sequences in the alignment—providing more accuracy than the fast approaches
that consider each pair of sequences independently—without computing likelihoods—
leading to much faster inference than full ML or Bayesian approaches.

For a given model of sequence evolution p(MSA|τ, θ) describing how an observed
MSA evolves conditionally to a phylogeny τ and evolutionary parameters θ—
substitution rates, equilibrium frequencies—and priors π(θ) and π(τ), we gener-
ate a large number of samples {(MSA, τ, θ)} under the unnormalized posterior
p(MSA, τ, θ) = p(MSA|τ, θ)π(θ)π(τ) (Fig. 1, Simulator panel). We then use these
samples to build a function estimating the tree τ , by optimizing a parameterized
function FΦ(MSA) that takes the MSA as input and outputs an estimate of τ . More
precisely we output point estimates of the distances between pairs of aligned sequences
in τ , and minimize the average absolute error between these point estimates and
the real distances, which amounts to estimating the median of the posterior distri-
bution p(MSA|τ, θ), see Supplementary Methods 1.4. Assuming that the family of
functions described by FΦ is expressive enough and that enough samples are used,
this approach offers posterior inference under the model (π, p), effectively replacing
likelihood evaluations by samplings of p(MSA|τ, θ).

Our FΦ relies on self-attention—a mechanism popularized by the Transformer
architecture [28]—to build a vector representation for each pair of sequences that
contains all the information from the MSA required to determine the corresponding
distance. During each self-attention block, the representation of each pair is updated
using information extracted from all others. The learnable weights of the block deter-
mine how much each pair weighs in the update of any particular pair, as well as what
information it contributes. More precisely, we maintain a separate representation for
each position within each pair, and alternate between a separate update for each
site—whereby information is shared among pairs as we just described—and a similar
separate update for each pair whereby information flows among the sites [16, 29]. Fol-
lowing the attention blocks, we use a fully connected neural network on the enriched
representation of each pair of sequences to predict the corresponding distance on the
phylogenetic tree. The initial representation of each pair is an average of the one-hot
encodings of its sequences, that is blind to the rest of the MSA. Because the learn-
able weights are chosen to make the predicted distances as close as possible to the
real ones, we expect them to adaptively extract an MSA-aware representation for each
pair, that captures the relevant information from all sequences.

2.2 Under a standard model of evolution, Phyloformer is as
accurate and much faster than ML

We first assessed the performances of Phyloformer on data generated under the
LG+GC model of sequence evolution which combines the LG matrix of amino-acid
substitution [18] with rate heterogeneity across sites [30]. The LG model is widely
used, implemented in many phylogenetic tools [31–34] and amenable to likelihood com-
putation, making it a good model to compare against state of the art ML inference
methods. Following [35], we sampled trees under a birth-death process, subsequently
rescaling the branches to simulate variations of the rate of sequence evolution. We chose
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simulation parameters to match empirical data in the HOGENOM [36] and RaxML-
Grove [37] databases (see Online methods). We then evolved MSAs of 50 sequences
and 500 sites under LG+GC along these trees, and used the resulting data to train
Phyloformer. We compared Phyloformer (PF) followed by FastME to reconstruct the
tree from estimated distances against two ML methods, IQTree and FastTree, and
one distance method, FastME using LG pairwise distances. Fig. 2a shows the average
Kuhner-Felsenstein (KF) distance [38] between the true and reconstructed phylogeny
for each of these methods over 500 samples from the same model for increasing num-
bers of leaves. The KF distance is widely used to compare phylogenies and captures
both topological and branch length reconstruction errors. Phyloformer achieved a per-
formance similar to ML methods. It is noteworthy that this performance was stable
across numbers of leaves, even though our network was trained on 50-leave phylo-
genies only. The performance was also stable when doing inference over a range of
sequence lengths, even though Phyloformer was trained only on alignments with 500
positions (Supplementary Figs. 13 and 14 ). The distance method was much less accu-
rate. Interestingly, the high accuracy of Phyloformer was achieved with the lowest
runtime among all benchmarked methods (Fig. 3). In particular, it was up to 135
times faster than the ML method IQTree, for a similar accuracy. FastTree—a faster
and supposedly less accurate heuristic for ML—also had similar accuracy on this
dataset, but remained one order of magnitude slower than Phyloformer. Phyloformer
was even twice as fast as FastME combined with LG distances. As Phyloformer itself
runs FastME to reconstruct a tree from its distance estimates, this difference indicates
that inferring distances that exploit the full MSA with a trained Phyloformer on a
GPU is actually faster than computing the ML distances independently for each pair.
Conversely, Phyloformer was the most memory intensive method, using up to 7.4GB
of GPU RAM (Supplementary Fig. 15), although this can be halved in some cases by
using automatic mixed precision.

Fig. 2b&c stratify the reconstruction error in terms of their topology (panel c,
using the normalized Robinson-Foulds (RF) metric [39]) and pairwise distances (panel
b, using the Mean Absolute Error (MAE) between true and estimated distances).
Regardless of the criterion, Phyloformer dominated FastME by being both faster and
more accurate. On the other hand, Phyloformer reconstructed topologies that were
less accurate than ML methods, and increasingly so for larger numbers of leaves, but
estimated distances as or more accurately. A possible explanation for this discrepancy
is that since we control the tree diameter in our simulation, larger trees have shorter
branches on average. As branch lengths decrease, the number of mis-predicted branches
increases leading to larger topological errors (see Supplementary Results 2.3 for an
in-depth explanation).

Finally, we investigated the ability of Phyloformer to handle gaps contained in
empirical MSAs because of insertion-deletion (indel) events that have occurred during
sequence evolution. Standard models of sequence evolution consider gaps as wildcard
‘X’ characters, and thus cannot benefit from the information they provide. Models
that account for insertion-deletion processes are more complicated to implement and
more costly to run [40], but can easily be included using our paradigm. We fine-tuned
the Phyloformer network previously trained on ungapped LG+GC data on a smaller
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Fig. 2: Performance measures for different tree reconstruction method.
a) Kuhner-Felsenstein (KF) distance, which takes into account both topology and branch
lengths of the compared trees; b) mean absolute error (MAE) on pairwise distances, which
ignores topology; c) normalized Robinson-Foulds (RF) distance, which only takes into
account tree topology. The alignments for which trees are inferred, were simulated under the
LG+GC sequence model and are all 500 amino acids long. For each measure, we show 95%
confidence intervals estimated with 1000 bootstrap samples.

dataset that includes indels, inserted through a model of insertion/deletion events in
Alisim [41], choosing parameters as in [42]. Fig. 4 shows that the accuracy of all meth-
ods dropped on alignments that include gaps compared to alignments that do not
(Fig. 2), probably because gaps remove information from the alignments. However the
difference between Phyloformer and ML methods shrinked, with Phyloformer outper-
forming ML methods according to the RF metric for 10 to 30-leaf trees. This is likely
due to Phyloformer’s ability to extract information from gaps, which are encoded as
a separate character and not as a wildcard character.
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Fig. 3: Execution time for different tree reconstruction methods on the LG+GC test set
with alignments of length 500. For IQTree ModelFinder (MF) times were measured on the
Cherry testing set (see Section 2.3). For all methods except Phyloformer, total wall time was
measured. For Phyloformer, the elapsed time is the sum of the time it takes to infer the
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Phyloformer weights to the GPU as we did that once before inferring distances for all the
testing alignments.
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Fig. 4: Tree comparison metrics for different tree reconstruction methods on the
LG+GC+indels test set (alignment length=500). Legend as in Fig. 2, with Phyloformer fine-
tuned on alignments with gaps named PFIndel+FastME and in cyan.
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2.3 Under more realistic models, Phyloformer outperforms all
other inference methods

Because ML and Bayesian inference approaches must compute the likelihood, in prac-
tice they can only be used under simple models such as LG+GC for which these
likelihood calculations are affordable. Phyloformer on the other hand can reconstruct
phylogenies under arbitrarily complex models of sequence evolution, as long as we can
efficiently sample training data from these models. We now illustrate this feature by
considering inference tasks under two substitution models that relax common sim-
plifying assumptions: independence between sites, and the homogeneity of selective
constraints across sites. The first model we used (Cherry, Supplementary Methods 1.2)
is derived from a model of sequence evolution that includes pairwise amino-acid inter-
actions [43]. ML inference under such a model would be very costly for two reasons:
the substitution matrix has size 400 × 400, and would need to be applied to pairs
of interacting sites, which would need to be identified with additional computations.
The second model (SelReg, Supplementary Methods 1.2) draws different selective
regimes for each site of the alignment: a site can evolve under neutral evolution, neg-
ative selection, or persistent positive selection. ML inference under such a model is
achievable with a mixture model [e.g., 44], but costly, because the SelReg mixture
includes 263 distinct amino acid profiles, plus a profile for neutral evolution, and a
different matrix for positively selected sites. We fine-tuned the Phyloformer network
previously trained under the LG+GC model on alignments sampled under the Cherry
or the SelReg model. We compared its performances against the same methods as
before, but allowing IQTree to search for the best evolution model available (with the
Model Finder option). Fig. 5 shows that under both the Cherry and SelReg models
all methods performed worse than under LG+GC, presumably because both models
decrease the information provided by a given number of sites, by including pairwise
correlations (Cherry), or positively selected sites that are likely to saturate (SelReg).
However, Phyloformer outperformed all other methods by a substantial margin, with
KF distances around 1 whereas others range between 2 and up to 10 for IQTree under
SelReg. Of note, the Model Finder option was costly, further increasing the compu-
tational edge of Phyloformer (Fig. 3). Not using this option markedly decreased the
accuracy of IQTree on the Cherry alignments (Supplementary Figs. 11 and 12). As we
observed under LG+GC, Phyloformer was better at estimating distances than topolo-
gies (Fig. 5), with the latter becoming more challenging for larger numbers of leaves.
Nonetheless, the RF distances of Phyloformer remained lower than for other methods,
except for SelReg on trees with more than 40 leaves where it was only outperformed
by IQTree—which in turn had the worst distance estimates among all benchmarked
methods.

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.17.599404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.17.599404
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e a)
Cherry

20 40 60 80 100

b)
SelReg

20 40 60 80 100
Number of leaves

0

2

4

6

8

10

K
hu

ne
r-

Fe
ls

en
st

ei
n 

di
st

an
ce

c)

20 40 60 80 100
Number of leaves

d)

FastME
FastTree

IQTree_MF
PF_Cherry+FastME

PF_SelReg+FastME

Fig. 5: Normalized Robinson-Foulds distance (above) and Kuhner-Felsenstein distance
(below) for different tree reconstruction methods on the Cherry (left) and SelReg (right) test
sets (alignment length=500).

2.4 Phyloformer performs on par with ML methods on
empirical data

We compared the performance of Phyloformer and other methods on 346 ortholo-
gous gene alignments from 36 Cyanobacteria [45], reasoning that good reconstruction
methods should more often infer trees that match the tree obtained on the concate-
nated gene alignments. We compared the LG+GC-with-indel version of Phyloformer
to the same three methods assessed in section 2.2. Fig. 6a shows that Phyloformer
performed as well as the other standard methods on empirical data, and did so faster.
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We conducted a similar analysis on gene-trees over many different species and
orders obtained from [46]. In this study the authors collected a large number of
sequence datasets and inferred gene-trees using IQTree and FastTree under the evo-
lutionary model found by IQTree’s ModelFinder for each alignment. For IQTree they
inferred 10 trees and only kept the one with the best likelihood. The authors also
reconstructed species trees from concatenated alignments for each dataset. We recon-
structed trees on the gene families where at least 80% of alignments were classified as
LG by IQTree using the LG+GC-with-indel version of Phyloformer with FastME. We
then compared our gene trees as well as the ones from [46] to the concatenate trees.
Here again, Fig. 6b shows that in most cases Phyloformer performed as well as the
best of 10 trees estimated with ML methods. Here the computational speed of Phylo-
former shines as we were able to infer about 12, 000 trees in under two hours with
one GPU. In [46], the authors measured execution times of only 10% of tree infer-
ence tasks, for which the total runtimes of IQTree and FastTree were approximately
10.5 days and 4 hours respectively. On the same subset of trees, we measured the
total runtime of Phyloformer+FastME and standalone FastME at approximately 11.5
and 15 minutes respectively. Furthermore, Phyloformer consistently produced trees
with a higher likelihood than FastME trees though still lower than pure ML methods
(Supplementary Fig. 7).

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

a)

ShenA9 WhelA7 BoroA6 NagyA1 StruA5
Dataset

b) Tree inference
method

FastTree
IQTree
PF_Indel+FastME
FastME

Fig. 6: Comparison of topology reconstruction accuracy between Phyloformer and
other methods on empirical data. In both panels, we show the normalized Robinson-
Foulds distance between reconstructed gene trees and the corresponding concatenate
tree. In a) inferred gene trees on alignments from [45] using the same pipeline as in
Section 2.2 and with the gap-aware version of Phyloformer shown in Fig. 4. In b) gene-
alignments, species trees and some gene trees were obtained from [46]. We inferred
gene-trees using the gap-aware version of Phyloformer and FastME as in panel a).
The IQTree predictions were made in [46] under the evolutionary model found by
IQTree-ModelFinder, then 10 predictions were done and only the one with the best
likelihood was kept. The datasets shown here, have ≥ 80% of alignments detected as
LG by IQTree.
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3 Discussion

Drawing on recent breakthroughs in likelihood-free inference and geometric deep learn-
ing, we have demonstrated that Phyloformer achieves rapid and precise phylogenetic
inference. The likelihood-free paradigm only requires samples from the probabilistic
model of sequence evolution, which allows inference under much more complex mod-
els than ML or Bayesian inference. Furthermore we exploited an amortized form of
this paradigm, requiring a single training of a neural network that takes an MSA as
input and outputs evolutionary distances between pairs of sequences—as opposed to
approaches like ABC [47] that require a new sampling step at each inference. We based
our neural network on axial self-attention, an expressive mechanism that accounts for
the symmetries of the MSA and seamlessly handles arbitrary numbers of sequences of
any length.

Phyloformer was faster and as accurate as ML inference methods on data sampled
under the standard LG+GC model. Computing likelihoods under LG+GC is expen-
sive but possible, making ML inference the gold standard: reaching the same accuracy
faster was the best outcome one could hope for. On the other hand, computing like-
lihoods under more complex models accounting for local dependencies (Cherry) or
heterogeneous selective pressures (SelReg) is too costly, forcing ML methods to work
under misspecified models whereas Phyloformer can still perform inference under the
correct model, without any effect on its speed. As a result, Phyloformer yields the most
accurate inference by a substantial margin while retaining its computational edge.

More generally, we stress that likelihood-free inference using neural networks has
a model-based nature identical to ML or Bayesian methods. It formally estimates the
posterior distribution defined by the prior and probabilistic model used to simulate
training data, accessing this model through sampling instead of likelihood evaluations.
As such, it is not immune to model misspecification: we observed for example that
Phyloformer trained on LG+GC underperformed on data simulated under Cherry or
SelReg and vice-versa (Supplementary Figs. 11, 12 and 16 ). Rather than replacing
model choice, we believe that the crucial contribution of a likelihood-free method like
Phyloformer is to offer a way to work under more realistic models of sequence evolution
that were so far not amenable to inference.

It is noteworthy that the inference speed that we report for Phyloformer was
recorded on a GPU, a less widespread hardware than the CPU used for other meth-
ods, which may limit its interest for analysing a single gene alignment under models
amenable to ML. However, we expect Phyloformer to have a significant impact in
experiments where many reconstructions are necessary, e.g. for bootstrapping, recon-
structing several gene trees from whole genomes or transcriptomes, or where more
complex models are warranted. Another current limitation of Phyloformer is its scal-
ability. The current bottleneck is on its memory usage, mostly driven by applying
self-attention to pairs of sequences. A better scaling version could be obtained by
working at the sequence level— attempts to do so have so far led to lower accuracies.

An important extension of Phyloformer will be to train with a topological loss
function, e.g. directly minimizing the RF metric rather than a distance metric. Such
a version would address the gap that we observed between accuracies in distance
and topological reconstruction, and could also lead to a more scalable method by
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working around the need for all pairwise distances—of quadratic size in the number
of sequences whereas the tree itself has linear numbers of nodes and edges. We also
believe that extending Phyloformer to unaligned sequences will be of interest, both
because multiple alignments are computationally intensive, and because they are error-
prone. This could be addressed by including the alignment step in the network [48,
49]. Alternatively, one could forego alignment altogether, e.g. by producing a length-
independent representation early in the neural network.

We expect that Phyloformer will have its largest impact on phylogenetic inference
after versions are trained on a collection of more realistic models of sequence evolution
which could include nucleotides, variations along the sequence or between branches
and position-specific dependencies among sites [7, 50, 51]. Our self-attention network
could exploit these latter dependencies via the addition of positional encodings—a
standard approach in the transformers literature. Beyond phylogenetic reconstruction,
our network can be trained to infer other parameters of the simulation model. This
would provide an efficient and flexible way to study phylodynamics, phylogeography,
and selective pressures operating on the sequences, for instance.

4 Online methods

The Phyloformer neural network

Phyloformer is a parameterized function FΦ that takes as input an MSA of n sequences
of length L and outputs an estimate of the N =

(
n
2

)
distances between all pairs of

sequences. Φ denotes the set of learnable parameters of FΦ. We then input these
distances to FastME [14] to obtain a phylogenetic tree (Fig. 1).

The Phyloformer network starts with a one-hot encoding of the aligned sequences:
every sequence x is represented as a matrix φ(0)(x) ∈ {0, 1}22×L in which column

j contains a single non-zero element φ
(0)
ij (x) = 1, whose coordinate i ∈ {1, . . . , 22}

denotes the amino acid or gap present in sequence x at position j. It then represents
each pair (x, x′) of sequences in the MSA by the average of their individual represen-
tations i.e., with a slight abuse of notation, φ(0)(x, x′) = 1

2

(
φ(0)(x) + φ(0)(x′)

)
. Of

note, φ(0)(x, x′) does not depend on the order of sequences x and x′. At this stage,
the network represents each site within each pair independently of all others, encoding
information such as “at site 4, sequences x and x′ contain a Leucine and an Isoleucine”.
The whole purpose of Fϕ is to account for relevant information about the evolutionary
distance between x and x′ contained in other sequences from the alignment. To extract
this information, Fϕ uses r = 6 self-attention layers [28] that iteratively build updated
φ(l)(x, x′) ∈ d×L representations of each pair using all others in the MSA. More pre-
cisely, we use axial attention [16, Fig. 1, central panel] and successively update each
pair (resp. site) separately by sharing information across sites (resp. pairs). Along each
axis, we rely on a modified linear attention [52, see Scalable self-attention], with h = 4
attention heads and embeddings of dimension 64 for the value matrix and only 1 for
the query and key matrices. The r axial attention blocks of Phyloformer output for
every pair of sequences a tensor φ(r)(x, x′) ∈ Rd×L informed by all other pairs in the
same MSA. We convert this representation into a single estimate of the evolutionary
distance between x and x′ by applying an Rd → R fully connected layer to each site
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of each pair, followed by an average over the sites. We provide more details on the FΦ

architecture in Supplementary Section 1.3.

Accounting for symmetries

It is now well understood that accounting for known symmetries is key to the success
of deep learning, as formalized in geometric deep learning [53]. Following this principle,
we parameterize the function FΦ by a neural network that exploits two symmetries of
the estimation task: the estimated evolutionary distances should not depend on the
order of the n sequences or L sites in the MSA. More precisely, we want FΦ to be
equivariant by permutations of the sequences: if it returns values dab, dac, dbc when
presented with sequences (a, b, c), it should return dac, dbc, dab when given (c, a, b) as
input. On the other hand, FΦ should be invariant to permutations of the sites—any
such permutation should lead to the same FΦ distances. This last point may seem
counterintuitive as the order of residues in a protein matters for its function, and
it is known that close residues do not evolve independently. Nonetheless in all our
experiments we train—or pre-train—FΦ on data generated under the LG+GC model,
which is site-independent. The self-attention updates act on the Rd representations
of a site within a pair of sequences regardless of their order, yielding the desired
equivariances. Enforcing these equivariances would be more difficult if the updates
were general functions acting on entire MSAs represented by Rd×N×L tensors. The
final average across sites within each pair makes FΦ invariant rather than equivariant
by permutation of these sites. In addition because none of the operations in FΦ depend
on the number of sites or pairs, we can use the same FΦ seamlessly on MSAs with an
arbitrary number of sequences of arbitrary length.

Scalable self-attention

Naive implementations of self-attention over M elements scale quadratically in M—in
our case, both the number of sites and pairs of sequences. Indeed, softmax atten-
tion as introduced by [28] is parameterized by three matrices Q,K, V ∈ RM×d for
some embedding dimension d, respectively called Queries, Keys and Values, and every

update for an element i computes attention weights (si,1, . . . , si,M ) = softmax
(

q⊤i K√
d

)
.

We resorted to the linear attention of [52], who exploited the fact that sij =
⟨ϕ(qi),ϕ(kj)⟩∑M

h=1⟨ϕ(qi),ϕ(kh)⟩
for some non-linear infinite-dimensional mapping ϕ : Rd → H to

a Hilbert space H [54] and proposed to replace ϕ by some other non-linear, finite-
dimensional mappings ϕ̃ : Rd → Rt. We can then re-write the self-attention updates
z′i =

∑M
j=1 si,jvj as

z′i =

∑M
j=1 ϕ̃(qi)

⊤ϕ̃(kj)vj∑M
h=1 ϕ̃(qi)

⊤ϕ̃(kh)
=

ϕ̃(qi)
⊤ ∑M

j=1 ϕ̃(kj)vj

ϕ̃(qi)⊤
∑M

h=1 ϕ̃(kh)
. (1)

Because we can pre-compute each of the two sums and re-use it for every query, this
simple factorization reduces both the number of operations and memory usage from
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O(M2 · L · d) to O(M · L · d · t). Following [52] we used an ELU-based mapping [55]

ϕ̃(x) =

{
x+ 1, if x > 0
exp (x) if x ≤ 0,

where the operation is applied entrywise, yielding ϕ̃(x) ∈ Rd vectors for x ∈ Rd.
In our experiments, we used d = 64 for the Values matrix, but noticed that using
d = 1 for Queries and Keys led to slightly lower training-loss values (Supplementary
Fig. 20a), while substantially reducing the memory footprint of the self-attention layers
(Supplementary Fig. 20b). This observation is consistent with recent research showing
that Transformers and other neural networks learn through gradual rank increase [56,
57]. However, applying (1) with queries and keys of dimension 1 leads to identical
updates z′i for all elements. To work around this issue, we normalized each update
by the average of queries and the sum of keys instead of the usual sum of attention
weights, leading to

z′i =
ϕ̃(qi)

M−1
∑M

g=1 ϕ̃(qg)
·
∑M

j=1 ϕ̃(kj)vj∑M
h=1 ϕ̃(kh)

. (2)

Training Phyloformer

We trained FΦ using 6 NVIDIA A100 80GB GPUs on simulated examples through
a loss function (see Metrics) comparing the estimated and true evolutionary distance
(Fig. 1). We used the Adam optimizer [58], batches of size 4 and a maximum learning
rate of 10−3 with 3000 linear warmup steps followed by a linear decrease of 213,270
steps, corresponding to 30 epochs. We also implemented an early stopping criterion
that stopped training when the validation loss did not decrease over 5 successive 3000
step intervals.

We first trained an F pre
Φ function that served as a starting point for all the func-

tions used in our experiments, by optimizing Φ with respect to the MAE loss for
20 epochs (≈ 79 hours) over the 170,616 examples (see Section 4) simulated under
LG+GC, saving a model every 3000 steps, and eventually retaining the one with low-
est Robinson-Foulds error (see Metrics) over the validation dataset (17016 examples).
For the results in Fig. 2, we further optimized the parameters of F pre

Φ for 4 epochs
(20 hours) with respect to the MRE loss leading to a slightly improved error over
small distances (Supplementary Fig. 17) and on the overall Robinson-Foulds metric
(Supplementary Fig. 10). For the results in Figs. 4 and 5 we further optimized the
parameters of F pre

Φ for the MAE loss on gapped MSAs and MSAs generated under
the Cherry or SelReg substitution models respectively (see Datasets).

Baselines

IQTree LG+GC [59, v2.2.0] reconstructs phylogenies in the Maximum Likelihood
framework. It first estimates several parsimony trees along with one reconstructed
through a distance method, then optimizes branch lengths and other parameters of
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the model of sequence evolution, while performing local topological rearrangements
(Nearest Neighbor Interchanges, NNIs) to maximize the likelihood. We ran it with
the LG model of amino acid substitution [18] combined with a continuous gamma
distribution to model rate heterogeneity across site [60]. In our experiments we did 5
rounds of NNIs since we observed that optimizing for more rounds rarely improved
the topology of the final tree while substantially adding to the running time. The
software was run with iqtree2 -T 1 -m LG+GC -n 5.

IQTree MF uses the Model finder (MF) mode of IQTree [61], in which likelihoods
of an initial tree are computed for a large set of substitution models and models of
rate-heterogeneity accross sites. The best fitting model is selected using BIC. The
rest of the tree search is done as above but using the selected model for likelihood
estimations. The software was run with iqtree2 -T 1 -n 5.

FastTree [62, v2.1.11 SSE3] reconstructs a starting tree using an algorithm inspired
from Neighbor-Joining [12] which is subsequently refined with topological rearrange-
ments to optimize the minimum evolution criterion. The tree is then improved using
maximum likelihood with NNIs. It was run under the LG+G4 model of sequence
evolution. The software was run with fasttree -lg -gamma.

FastME [14, v2.1.6.4] computes a distance matrix using Maximum Likelihood, then
reconstructs a tree topology using BioNJ [63] and further refines it via topological
rearrangements which seek to optimize the Balanced Minimum Evolution score. In
virtually all performed experiments we observed that the FastME tree search algo-
rithm led to slightly better performances than the neighbor joining algorithm [12].
We didn’t resort to the --gamma option as in our experiments we observed that
this lead to worse performances. Using FastME as our baseline distance method
makes the comparison with Phyloformer insightful, as the only difference between
the two methods is the distance matrix used as input. The software was run with
fastme --nni --spr --protein=LG to reconstruct trees using the inbuilt evolution-
ary distance estimation and simply with fastme --nni --spr when Phyloformer’s
predicted distance matrix was provided.

All methods were run on a single CPU thread (Intel Xeon E5-2660 2.20GHz) except
for Phyloformer distance prediction which was run on a single GPU (NVIDIA V100
32GB).

Datasets

We generated ultrametric phylogenies under a birth-death process. We used 50-leaf
trees for training, and 10-leaf to 100-leaf trees for testing. We rescaled branch lengths
as in [35] to yield non-ultrametric trees. Finally, we rescaled each tree to resemble
trees found in public empirical databases. We used each rescaled phylogeny to simu-
late one MSA with AliSim [41] for the LG+GC model, or in-house code for Cherry,
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or Pastek [64] for SelReg. For LG+GC, we sampled the parameter of the gamma dis-
tribution to match values estimated on empirical data. We provide more details in
Supplementary Methods 1.

Metrics

We now describe the metrics used throughout this article to compare phylogenies or
optimize our network.

Let di be the i
th of N true evolutionary distances in a phylogeny, and d̂i the corre-

sponding estimate output by a given tree inference method. Then the mean absolute
error (MAE) and mean relative error (MRE) are defined as

ℓMAE =
1

N

N∑
i=1

|di − d̂i| and ℓMRE =
1

N

N∑
i=1

|di − d̂i|
di

.

When used to compute the loss during Phyloformer training, d̂i values correspond
to distance estimates directly output by FΦ. When used as a metric (e.g. in Fig. 2) we

use d̂i values extracted from the reconstructed tree, by summing all branch lengths
on the paths between each pair of leaves—even for Phyloformer— in order to fairly
compare different methods.

In phylogenetic trees, each branch describes a bipartition of the set of leaves, paired
with a weight (i.e., the branch length). Let A and B be the sets of leaf-bipartitions
describing trees TA and TB , and we,T the weight of a bipartition e in tree T . Then, the
Normalized Robinson-Foulds distances and the Kuhner-Felsenstein distance between
TA and TB can be written

RFnorm(TA, TB) = (|A|+ |B|)−1
(|A ∪B| − |A ∩B|)

and KF (TA, TB)
2 =

∑
e∈A∩B

(we,TA
− we,TB

)2 +
∑

e∈A\B

w2
e,TA

+
∑

e∈B\A

w2
e,TB

.

Code and data availability. The code for Phyloformer, the pretrained models,
and all the datasets analyzed in this work can be found at
https://github.com/lucanest/Phyloformer.
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