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¹ ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France.

mael.godard@ensta-bretagne.org, luc.jaulin@ensta-bretagne.fr
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Abstract. In engineering, models are often used to represent the behavior of a system. Estimators
are then needed to approximate the values of the model’s parameters based on observations. This
approximation implies a difference between the values predicted by the model and the observations
that have been made. It creates an uncertainty that can lead to dangerous decision making. Interval
analysis tools can be used to guarantee some properties of an estimator, even when the estimator
itself doesn’t rely on interval analysis (Adam, 2019) (Adam, 2015). This paper contributes to this
dynamic by proposing an interval-based and guaranteed method to validate a nonlinear estimator.
It is based on the Moore-Skelboe algorithm (van Emden, 2004). This method returns a guaranteed
maximum error that the estimator will never exceed. We will show that we can guarantee properties
even when working with non-guaranteed estimators such as neural networks.
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1. Introduction

Before using any system it is important to have a model of it to predict it’s behaviour. Once the
modelization has been done, it is necessary to fit the model’s parameter to the studied system.
Estimators are used to approximate the value of these parameters based on observations made on
the system. This approximation results in an error that can have a significant impact on the model
if it gets too important. It can then be useful to characterise this error to validate if the estimator
can be used or not.

One way to characterise it is to maximise it, i.e. to give a maximum error made by the estimator
in a given context. In the case of Linear Parameter Estimation problems (LPE), many methods
such as least squares have proven to be both efficient and easy to use (Lakshmi, 2021). These
methods can be extended to solve NonLinear Parameter Estimation problems (NLPE) (Chavent,
2010) (Hartley, 1965), but they tend to be both less efficient and non-guaranteed, or guaranteed
only in a specific context.

To overcome this problem, estimators based on Interval Analysis (Jaulin, 1993) have been devel-
oped to solve NLPE problems. They provide a set that is guaranteed to contain the true value of the
parameters, rather than trying to provide their exact value. However, their use requires knowledge
of Interval Analysis tools, which is not always relevant depending on the application. It is therefore
important to be able to validate non-interval based estimators also in NLPE problems.
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2 NOTATIONS AND DEFINITIONS

To do so, Interval Analysis tools can be applied to nonlinear and non-interval based estimators
to guarantee some of their properties. For example, neural networks are often used as estimators
but they fail to give a guaranteed result. Some works have already presented applications of the
Interval Analysis tools to neural networks to guarantee some of their properties, for example to
evaluate their generalization (Adam, 2019) and domain of validity (Adam, 2015).

This paper contributes to this dynamic by presenting a method to provide the maximum er-
ror made by any nonlinear estimator, including neural networks. This method is able to give a
guaranteed result even when the estimator itself is not guaranteed. It relies on the Moore-Skelboe
algorithm (van Emden, 2004) to provide a guaranteed result. Section 2 describes the notations that
will later be used to formalise the problem and the method in Section 3. Finally, Section 4 presents
an application with the validation of a gradient descent based estimator and a neural network
estimator.

2. Notations and definitions

2.1. Estimator

An estimator is a function that approximates a quantity, or parameter, based on observed data.
An estimate of a quantity q is commonly denoted q̂.

Let X0 ⊆ Rn be the set of possible parameters and E ⊆ Rm the noise set. If g : X0 → Rm is the
observation function and ψ : Rm → X0 is the estimator to validate, the estimation problem can be
defined for all x ∈ X0 and e ∈ E by :

y = g(x) + e (1)

x̂ = ψ (y) (2)

Where (1) is the Noisy observation and (2) is the estimation.
We also define the error function ϵ : X0 × E → R which gives the error of the estimator for a

given parameter vector x and a given noise e.

ϵ(x, e) = ∥x− x̂∥ = ∥x− ψ (g (x) + e) ∥ (3)

Figure 1 represents these notions in two different spaces: the parameter space and the observation
space. Starting from the real value x, an observation y is made. It can be decomposed into a
perfect observation g(x) and a noise e. The estimator finally relies on this observation to provide
the estimated value x̂. The error ϵ represents the distance between x and its estimate x̂.
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Figure 1. Estimation problem

To validate an estimator we want to evaluate the maximum of its error function on X0 × E,
noted ϵ̄. The problem can written as below:

ϵ̄ = max ϵ(x, e) (4)

x ∈ X0 (5)

e ∈ E (6)

2.2. Intervals and boxes

Intervals are used to represent a range of value instead of a single one. An interval can be defined
by two of the following:

− Its lower bound, or left bound, noted lb

− Its upper bound, or right bound, noted ub or rb

− Its width, noted w

For a given interval I, the parameters described above are linked by the relation :

rb (I) = lb (I) + w (I) (7)

The cartesian product of two or more intervals is called a box, and the set of n-dimensionnal boxes
is denoted IRn for n ⩾ 1. For any function f : Rn → Rm, its definition can be extended to IRn and
we also call f : IRn → IRm its natural inclusion function.

These boxes can for example be used to form a cover of a subset of Rn. A cover of a set X is a
family of subsets of X whose union is all of X. If C = {Uα : α ∈ A} is an indexed family of subsets
Uα ⊂ X, then C is a cover of X if

S
α∈A Uα = X (Gamelin, 1999).
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2 NOTATIONS AND DEFINITIONS

2.3. Optimization

An Optimization problem, also called mimization problem, aims to find the minimum of a given
function. It is defined by :

− An objective function to minimize f : Rn → R

− A domain X0 ⊆ Rn

− In the case of a constraint optimization problem, a set of conditions gi {x1, . . . , xn} ≤ 0 for
i ∈ {1, . . . ,m} where gi are functions of type Rn → R.

Algorithms to solve this kind of problem are called Optimization algorithms. Among them,
Global Optimization algorithms focus on finding the global minimum of the objective function,
noted µ below.

2.4. Moore-Skelboe Algorithm

A classical Global Optimization algorithm is the Moore-Skelboe algorithm. This algorithm takes
as inputs the objective function f , its domain X0 and a stopping criterion δ. It returns an interval
containing the global minimum of the objective function, which bounds are an optimistic and a
pessimistic approximation of the global minimum. Multiple variations of the algorithm exist (van
Emden, 2004), Algorithm 1 displays its basic implementation.

Algorithm 1 Moore-Skelboe algorithm (MS0)

Let {B0} be a cover of X0

while w (f (B0)) > δ do ▷ stopping criterion to choose
Remove B0 from the cover
Split B0

Insert the result into the cover in increasing order
of lb (f (Bi)), for i = {0, . . . , N − 1}

end while
return f (B0) ▷ µ ∈ f(B0)

When implementing this algorithm it is also possible to return the last B0 to obtain a box
containing an antecedent of a value between µ and µ+ δ.

The logic behind this algorithm is that at each iteration the box B0 is chosen so that the interval
f(B0) is the f(Bi)i≥0 interval with the lower left bound. As {B0, B1, ..., BN−1} covers the domain
X0:

∀x ∈ X0, lb(f(B0)) ≤ f(x) (8)

From this relation we deduce:

lb(f(B0)) ≤ µ (9)
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As B0 is not an empty box, f(B0) always contains at least one value. By definition of the global
minimum of a function:

µ ≤ rb(f(B0)) (10)

Finally from 9 and 10:
µ ∈ f(B0) (11)

This result is illustrated Figure 2.

Figure 2. Moore-Skelboe algorithm example

3. Problem Formulation and method

To validate an estimator, we want to estimate the maximum error that it commits on a given set
of possible parameters. This maximisation problem on the function ϵ can also be interpreted as a
Optimization problem on the function −ϵ.

The Moore-Skelboe algorithm can then be applied with the objective function f = −ϵ and with
{B0 = X0 × E} as the initial cover.

Upon splitting B0, only its component belonging to X0 will be splitted. By doing so the algo-
rithm can also give the information of which parameter value is the most sensitive to noise when
performing the estimation.

Given the context, we want to ensure that our estimation of the maximum error is pessimistic
if not exact, so the focus will be on −lb(f(B0)).
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4 APPLICATION

4. Application

4.1. Application case

To illustrate an application of this method the case described Figure 3 will be considered. In this
case the parameter to estimate is the 2-Dimensional position noted x, and the observation is the
distances between x and three landmarks noted a, b and c. The observation function is then
g : R2 → R3, defined by :

g (x) =




da
db
dc


 =




∥a− x∥
∥b− x∥
∥c− x∥


 (12)

Figure 3. Application example

The norm used below to calculate the distances is the Euclidian norm. For numerical applications,
we will take :

− X0 = [5, 25]2

− E = [−0.2, 0.2]3

− a = (10,−9) ; b = (5, 12) ; c = (−15, 0)

4.2. Neural network estimator

Neural networks are a common example of non-guaranteed estimator. To prove the efficiency of our
method, we created a neural network estimator represented Figure 4. It is composed of :
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An Input layer of 3 neurones for the three noisy distances.

Two Denses Hidden layers of 32 neurones with relu activation.

A Dense Ouput layer of 2 neurones with relu activation for the two components of x̂

The relu function can be defined on R by relu(x) = max(0, x), x ∈ R. The relu activation means
that in each layer the relu function will be applied on the output, making the neural network
estimator nonlinear.

Figure 4. Neural network estimator

This neural network has then been trained on noisy data. The estimation is finally obtained by
making a prediction with the resulting trained neural network.

4.3. Numerical application

The maximum error given by the Moore-Skelboe algorithm in this case is ϵ̄ = 1.7. A small
simulation, shown in Figure 5, allows us to visualise this ϵ̄.

For this simulation, noisy measurements are generated and then passed to the estimator. The
result, in red, can then be compared to the expected value, in green. As ϵ̄ represents the maximum
distance between x and x̂, the green dot representing x should always be in the purple circle of
radius ϵ̄ centered at x̂.
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5 CONCLUSION

Figure 5. Simulation to visualise ϵ̄

Depending on the accuracy required by the application, we can then either use the neural network
as it is or train it again, possibly by modifying its structure.

Using this method, we were able to find a guaranteed property for a neural network estimator
that is both non-guaranteed and nonlinear. As the neural network presented here was simple the
basic implementation of the Moore-Skelboe algorithm was sufficient. For more complex estimator
variants of the algorithm may prove more efficient as the one presented here gives an increasingly
pessimistic result as the estimator becomes complex.

5. Conclusion

This paper proposes an interval-based and guaranteed method to validate a nonlinear estimator
thanks to the Moore-Skelboe algorithm. It allows us to find a guaranteed property in the form
of a maximum error even when working with non-guaranteed estimators such as neural networks.
Variants of the Moore-Skelboe algorithm presented in (van Emden, 2004) could be implemented to
make this method more efficient in terms of time and computational complexity, but the application
presented here shows that the basic implementation of the Moore-Skelboe algorithm is sufficient in
simple cases.
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