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Abstract. Fractional crystallisation of a basal magma ocean (BMO) has been proposed to explain
the formation of large scale compositional variations in the mantle and the persistence of partially
molten patches in the lowermost mantle. We present a complete set of equations for the thermal and
compositional evolution of the BMO and show that it can be implemented in a mantle convection
code to solve the long term mantle evolution problem. The presence of the BMO modifies the
dynamics of the mantle in several ways. The phase equilibrium at the bottom of the solid mantle
implies a change of mechanical boundary condition, which helps solid state convection. The net
freezing of the BMO implies a change of computational domain, which is treated by mapping the radial
coordinate on a constant thickness domain. Fractional melting and freezing at the boundary makes
the composition of the BMO and the solid mantle evolve, which is treated using Lagrangian tracers.
A sample calculation shows that the persistence of the BMO and its long term evolution drastically
changes the dynamics of the solid mantle by promoting downwelling currents and large scale flow.
The gradual increase of the FeO content in the BMO and in the solid that crystallises from it leads
to the stabilisation of large scale thermo-compositional piles at the bottom of the mantle, possibly
explaining the observations from seismology.

Keywords. Thermal evolution, Mantle convection, Core cooling, Basal magma ocean.
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1. Introduction

The long term evolution of the Earth is paced by con-
vection in the solid mantle, which is much slower
than the dynamics of the underlying liquid core. The
present day structure of the mantle is rather well
constrained, thanks to the tremendous progress of
seismic tomography over the last few decades [e.g.
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Fichtner et al., 2024], and is generally well under-
stood in the context of mantle convection in a plate-
tectonic regime [e.g. Coltice et al., 2019]. Paleo-
geographic reconstructions have been used to con-
strain models of mantle convection going back 1 Gyr
[Flament et al., 2022] although, of course, the un-
certainties regarding paleogeography increase dras-
tically with ages larger than about 200 Myr, the age
of the oldest oceanic plate. These studies gen-
erally consider the presence of chemically denser
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material in the form of thermochemical piles at the
bottom of the mantle as a way to explain the seis-
mically imaged large low shear velocity provinces
(LLSVPs) [e.g. Hernlund and McNamara, 2015, for
a review].

If we accept the chemical interpretation of
LLSVPs, the question of their formation remains.
Several scenarios have been proposed. The forma-
tion of the Earth could make the mantle initially
chemically stratified in two layers and the slow ero-
sion of the stratification by mantle convection could
lead to the present state [e.g. Le Bars and Davaille,
2004]. Instead of gradually mixing an initial strati-
fication, dense material produced by the extraction
of the oceanic crust could accumulate at the bottom
of the mantle after being subducted [Christensen
and Hofmann, 1994, Nakagawa et al., 2010, Li and
McNamara, 2013]. A last scenario, which is the topic
of the present paper, proposes that the fractional
crystallisation of a basal magma ocean (BMO) can
lead to the stabilisation of chemically different piles
at the bottom of the mantle [Labrosse et al., 2007].

In addition to LLSVPs, seismological studies of
the deep mantle have uncovered regions of very re-
duced seismic velocity, on a much smaller scale than
LLSVPs, termed ultra low velocity zones (ULVZs).
These regions, that can be tens to hundreds of km
wide, have seismic velocities about 30% (for S) and
10% (for P) smaller than the surrounding mantle,
and a density a few percent larger [Rost et al., 2005],
while typical variations of the seismic velocities on
the large scale are of the order of a few percent. These
extreme velocity reductions, and the fact that the
velocity of S waves is more reduced than that of P
waves, has been used to imply the presence of par-
tial melt [Williams and Garnero, 1996]. If indeed the
mantle in contact with the core is currently partially
molten, more melt should have been present in the
past when the core was hotter. Indeed, we know
that the Earth has been cooling down [Jaupart et al.,
2015] and the possibility of the core to be cooling
faster than the mantle has been invoked [Driscoll and
Bercovici, 2014, Labrosse, 2016, Patočka et al., 2020]
to solve the long standing thermal catastrophe prob-
lem for the thermal evolution of the Earth [Chris-
tensen, 1985]. The rapid core cooling is also a conse-
quence of the necessity to maintain a convective dy-
namo with a large thermal conductivity of the core
[Labrosse, 2015, Patočka et al., 2020]. All these argu-

ments together led to the scenario of a basal magma
ocean [Labrosse et al., 2007].

The aim of this paper is to present a first step to-
ward including a basal magma ocean in a fully dy-
namical model of mantle evolution. Starting with a
mantle convection model, in this case StagYY [Tack-
ley, 2008], a first ingredient to add is the possibil-
ity of a solid-melt phase change at the boundary
with the underlying magma ocean. Compositional
changes associated with the phase change are also re-
quired. Both aspects have already been reported and
the implications of such a boundary have been ex-
plored [Labrosse et al., 2018, Agrusta et al., 2019, Bol-
rão et al., 2021, Lebec et al., 2023, 2024]. The possi-
bility of melting and freezing at one of the horizon-
tal boundaries helps convection in the solid. This ef-
fect is included by applying a phase change bound-
ary condition [Alboussière et al., 2010, Mizzon and
Monnereau, 2013, Deguen et al., 2013, Deguen, 2013,
Labrosse et al., 2018] controlled by a single dimen-
sionless parameter, the phase change numberΦ. For
small values of this parameter (Φ ≲ 10), the phase
change is fast and the critical Rayleigh number for
the onset of convection is reduced compared to the
situation without phase change or with a slow phase
change (Φ≳ 103). The heat and mass transfer is also
enhanced by the phase change at the boundary.

These previous studies on the effect of a solid–
liquid phase change at the boundary did not include
the net evolution of the planet, with the possibility
of volume change of the basal magma ocean. In-
cluding this effect requires several important mod-
ifications of the model, which are presented below.
Firstly, a numerical treatment of the moving bound-
ary at the bottom of the solid mantle is necessary and
this is the topic of Section 2.1. This requires knowing
the moving rate of the boundary, which can be deter-
mined from the energy balance of the BMO. The rel-
evant theory is presented in Section 2.2. An example
calculation is then presented in Section 3 before dis-
cussing the implications and limitations of the model
in Section 4.

2. Physical and numerical model

2.1. Convection in the solid mantle

We start with a mantle convection numerical code,
StagYY, which can solve the equations for mass,
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composition, energy and momentum balances in an
infinite-Prandtl-number fluid, like planetary man-
tles, in various geometries and with many complex-
ities [Tackley, 2008]. This code is widely used in the
geodynamics community and needs not be detailed
here; only features directly relevant to the present
study are presented. The code uses a finite vol-
ume approach for the mass, energy and momen-
tum balances and a particle-in-a-cell (PIC) approach
for composition [Tackley and King, 2003, Gerya and
Yuen, 2003, Ismail-Zadeh and Tackley, 2012]. In the
present study, we use the spherical annulus geome-
try [Hernlund and Tackley, 2008] since the spheric-
ity is important for a proper surface to volume scal-
ing in an evolving planet. In order to keep the study
as simple as possible, we consider an incompressible
mantle using the Boussinesq approximation, with all
physical quantities uniform. With these assump-
tions, the solid part of the model is controlled by
three dimensionless numbers, the Rayleigh number
Ra, the internal heating rate H and the buoyancy
number B , their usual definition being,

Ra = αg∆T d 3

κν
, H = ρhd 2

k∆T
, B = β

α∆T
, (1)

with α and β the thermal and compositional (FeO)
expansion coefficients, respectively, g the gravity, κ
the thermal diffusivity, ν the kinematic viscosity, ∆T
the temperature scale, d the thickness of the whole
mantle (solid and BMO), ρ the density and h the
time-evolving radioactive heating rate. Among the
parameters entering the definition of the dimension-
less numbers, ∆T and d deserve a special discus-
sion since the actual temperature drop across the
solid mantle and its thickness, which are normally
used as scales to define the dimensionless numbers,
vary with the progressive crystallisation of the BMO.
We use fixed values (see Appendix) and take into ac-
count the variations of the actual values as time-
varying factors in the balance equations emerging
from our way of dealing with the moving bound-
ary, which is the main modification of the numeri-
cal model as presented in previous studies. The solid
mantle shell is bounded by two spheres, the basal
ocean-mantle boundary (BOMB) with dimensionless
radius rBOMB(t ), and the Earth surface with dimen-
sionless radius RE. We can map the time-varying

spherical shell to a constant one, between rescaled
radii 1 and 2, by using as radial coordinate

z = 1+ r − rBOMB

RE − rBOMB
. (2)

This change of radial coordinate implies a change of
both radial and temporal derivatives, obtained us-
ing the chain rule. Considering a function f (r, t ) =
f̃ (z, t ), we get

∂ f

∂r
= ∂z

∂r

∂ f̃

∂z
= 1

RE − rBOMB

∂ f̃

∂z
, (3)

and so on for higher order derivatives. Consider now
the time derivative,

∂ f

∂t
= ∂ f̃

∂t
+ ∂z

∂t

∂ f̃

∂z
= ∂ f̃

∂t
− ṙBOMB

RE − r

(RE − rBOMB)2

∂ f̃

∂z
,

(4)
the overdot standing for time derivative. Therefore,
the change of BMO radius implies an additional ad-
vection term in the equation of energy balance when
mapping the domain to a constant one. This addi-
tional advection is also applied to tracers. Introduc-
ing the time-dependent scaled solid mantle thick-
ness, Γ = RE − rBOMB, the dimensionless balance
equations for mass, momentum, energy, FeO mass
fraction ξ and concentration cHPE of heat producing
elements (HPE) become

0 =∇·u, (5)

0 =−∇p +∇2u

+RaΓ3 [(T −Bξ)−〈T −Bξ〉]ez , (6)

Γ2 ∂T

∂t
=−u ·∇T − Γ̇Γ(2− z)

∂T

∂z
+∇2T

+HcHPEΓ
2 exp

(
− t ln2

τHPE

)
, (7)

Γ2 ∂ξ

∂t
=−u ·∇ξ, (8)

Γ2 ∂cHPE

∂t
=−u ·∇cHPE, (9)

with u the flow velocity, T the temperature, p the dy-
namical pressure. For simplicity, we consider only
one heat producing element with a unique half life
parameter τHPE that represents a mean of the four
main ones in the Earth, 235U, 238U, 232Th and 40K. The
time derivative Γ̇BOMB is computed from the balance
equations for the BMO, which are explained in the
next section. This calculation requires knowing the
fluxes of heat and FeO, which are directly computed
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in StagYY from the temperature field and tracers, re-
spectively. The change with time of bottom tempera-
ture, TBOMB(t ), does not appear directly in the equa-
tions above but is applied as boundary condition at
the bottom of the solid mantle. Therefore, the ef-
fective Rayleigh and buoyancy numbers at any given
time are

Raeff = RaΓ3TBOMB, Beff = B
(〈ξbot〉−〈ξtop〉)

TBOMB
,

(10)
where the actual FeO mass fraction difference across
the layer is introduced in the definition of the effec-
tive buoyancy number.

An important feature of the model, already in-
cluded in StagYY for a few previous studies [Agrusta
et al., 2019, Bolrão et al., 2021, Lebec et al., 2023,
2024], is the solid–liquid phase change bound-
ary condition at the bottom of the solid shell [e.g.
Labrosse et al., 2018],

2
∂ur

∂r
−p −Φur = 0, (11)

ur being the radial velocity, p the dynamic pressure
andΦ the phase change number. This dimensionless
parameter is the ratio of two timescales, Φ = τφ/τη,
with τη the timescale to create a topography from
viscous stress in the mantle and τφ the timescale to
erase it by convection in the liquid layer. The bound-
ary condition, initially derived for the dynamics of
the inner core [Deguen et al., 2013], expresses the
competition between the generation of a topogra-
phy by viscous stress in the solid and its removal by
melting and freezing. With this equation, the bound-
ary condition can be the classical no-penetrative one
for Φ → ∞, in which case the phase change is ef-
fectively prohibited (ur = 0), or of the flow-through
type for small values of Φ. This boundary condi-
tion strongly affects convection: for small values ofΦ,
convection is easier to start [i.e. the critical Rayleigh
number for the onset of convection is reduced, see
Deguen, 2013, Labrosse et al., 2018, Morison et al.,
2024], heat and mass transfer are increased and the
wavelength of convection is increased compared to
the situation usually considered in mantle convec-
tion [Agrusta et al., 2019]. For a purely thermal prob-
lem [Deguen et al., 2013], the phase change number
can be expressed as

Φ= ρs(ρl −ρs)Ld

ρ2
l Cpl(mad −mp )ulηs

, (12)

with ρs and ρl the density of the solid and the liq-
uid, respectively, L the latent heat of fusion, Cpl the
heat capacity of the liquid, ul the typical flow veloc-
ity in the magma ocean, ηs the viscosity of the solid
and (mad −mp ) the difference between the adiabatic
gradient in the liquid and the Clapeyron slope. Sev-
eral parameters are rather uncertain but reasonable
estimates give Φ ∼ 10−8 (see Appendix). With such a
very small value, we are clearly in the flow-through
regime. In that regime, down-welling currents reach-
ing the boundary do not turn and, instead, melt to
reach the BMO. For this to happen, the temperature
has to reach the boundary temperature, which hap-
pens on a short length-scale. Resolving that thin
boundary layer can be challenging at large Rayleigh
number and we use here the technique introduced
by Agrusta et al. [2019]: the fixed temperature bound-
ary condition is replaced by a laterally varying Robin
boundary condition representing the behaviour on
the inner edge of the boundary layer:

Hs(ur +u0)θ+ [1−Hs(ur +u0)]
∂θ

∂r
= 0, (13)

with Hs a smooth approximation of the Heaviside
function, θ the temperature anomaly, and u0 the
reference velocity at which the boundary condition
switches behaviour. For ur <−u0, in downwelling re-
gions, the outflow of solid material toward the BMO
makes Hs = 0 and therefore leads to an imposed zero
gradient. Conversely, where ur >−u0, Hs = 1 and the
value of the temperature is set to the freezing one. See
Agrusta et al. [2019] for more details and benchmark
comparisons.

The PIC method consists of using Lagrangian trac-
ers in the domain to carry various quantities as they
are transported by the flow, and averaging the rele-
vant quantities on the finite volume grid to compute
the flow solution. In the context of the present study,
we use a unique compositional information, repre-
senting the FeO content of the mineral assemblage.
A complexity added to this approach by the phase
change boundary condition and already treated by
Bolrão et al. [2021] comes from the fact that the
flow crossing the phase change boundary implies ex-
change of FeO with the BMO. In practice, when solid
material crosses the boundary by melting, the as-
sociated tracers are removed while new tracers are
added to regions where crystallisation occurs. These
new tracers are given the information associated with
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their FeO content according to a simple phase dia-
gram model (Equation (19)) [Bolrão et al., 2021]. The
net flux of FeO is computed by compiling the infor-
mation carried by both removed and added tracers.
The composition acts on the density through a lin-
earised equation of state to give the last term on the
right-hand-side of the momentum equation (6). The
buoyancy number B measures the tendency of FeO
entering from the BMO to stabilise against entrain-
ment by thermal convection.

Note that this approach assumes a spherical
boundary between the solid mantle and the BMO,
i.e. a negligible topography of that boundary. The
dynamic topography associated to convection in
the solid mantle is in fact included in the theory
that leads to the phase change boundary condition
Equation (11) [see Labrosse et al., 2018, for a full
development], which assumes it to be small. This as-
sumption is consistent with the fact that it is limited
by convection in the liquid ocean that tends to erase
it by mixing laterally solute and energy.

In addition to the phase change at the bottom
boundary of the solid mantle, partial melting could
in principle occur anywhere in the bulk, depending
on the local temperature and the solidus of the local
composition. This possibility is already implemented
in StagYY [e.g. Nakagawa and Tackley, 2012], the melt
being then extracted to the surface to form a crust,
but has not been used in the present paper to focus
on the phase change at the bottom boundary.

2.2. Evolution of the BMO

The flow of heat and FeO across the boundary be-
tween the solid mantle and the BMO makes the
boundary move by melting or freezing according to
the phase diagram and the conservation of heat and
solute in the BMO. The phase diagram prescribes
the temperature of the liquidus, TL, and the solidus,
Ts, as function of composition and pressure. At the
boundary between the solid and the liquid, the tem-
perature equals the solidus of the solid composition
and the liquidus of the liquid composition. This de-
pendence on composition makes this evolution de-
pend also on the net flux of FeO between the solid
and the liquid, which is due to the partitioning be-
tween the two phases upon crystallisation and melt-
ing. The heat flow out of the BMO controls the rate
of cooling and crystallisation of the BMO to form the

solid mantle and the rate of cooling and crystallisa-
tion of core. The evolution of the BMO follows from
the global energy balance in much the same way as
the evolution of the core. The equations are there-
fore similar and we follow the theory presented by
Labrosse [2015].

2.2.1. Evolving reference state

We consider the BMO to be composed of an en-
tirely liquid magma, whose composition can evolve
between two end-members, an MgO-rich one and an
FeO-rich one. The composition is quantified by the
mass fraction of FeO, ξl, the corresponding one in the
solid mantle being ξs.

Fractional crystallisation at the top of the BMO
releases FeO at the top, which drives compositional
convection. Cooling from the top and heating by the
underlying core also favor convection. Since both
temperature and composition promote convection,
we assume that the BMO stays well mixed at all times,
such that ∂ξl/∂r = 0, and that it is also isentropic
on average. Alternatively, the BMO could start stably
stratified [Laneuville et al., 2018] but we neglect this
possibility in the present study.

We therefore consider a well-mixed isentropic
magma ocean whose reference profile of density,
temperature, chemical potential, mass fraction of
FeO, etc., are linked by the phase equilibrium occur-
ring at the top of the layer. The system is charac-
terised by three state variables, the specific entropy
s, the mass fraction of FeO in the magma ξl and pres-
sure P . The reference state is well mixed, ∂ξl/∂r = 0,
isentropic, ∂s/∂r = 0, and hydrostatic, ∂P/∂r = −ρg .
For the sake of simplicity, the density ρ is kept con-
stant, and so is the gravitational acceleration g . In
the reference state, the radial derivatives of the tem-
perature T and chemical potential µ come only from
the pressure variation. The chemical potential can be
obtained using thermodynamic identities by integra-
tion of [e.g. Braginsky and Roberts, 1995, Lister and
Buffett, 1995, Labrosse, 2015]

∂µ

∂r
=

(
∂µ

∂P

)
s,ξ

dP

dr
=−βg , (14)

β being the coefficient of chemical contraction

β≡− 1

ρ

(
∂ρ

∂ξl

)
P,s

= ρ
(
∂µ

∂P

)
s,ξ

. (15)

Note that for FeO in a magma, β here defined is
negative. This is opposite to the case of light elements
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in the core. Assuming, for simplicity, β and g to be
constant, Equation (14) can readily be integrated to
give

µ=µBOMB +βg (rBOMB − r ) ≡µBOMB +µ′ (16)

with µBOMB the chemical potential at the top of the
BMO and µ′ the deviation from that value in the
BMO.

Similarly, for the temperature we get the classical
isentropic gradient:

∂T

∂r
=

(
∂T

∂P

)
s,ξ

dP

dr
=−αg T

Cp
, (17)

with α the thermal expansion coefficient and Cp the
heat capacity at constant pressure. We know that
α generally decreases with pressure and therefore
depth [Anderson et al., 1992, Chopelas and Boehler,
1992, Duffy and Ahrens, 1993, Ricard, 2007, Ricard
et al., 2022] but since we consider here a magma
ocean whose total thickness is a few 100 km only, we
consider the assumption of a constantα as sufficient.
Therefore, Equation (17) can be integrated to give

T = T BOMB exp

[
αg (rBOMB − r )

Cp

]
, (18)

with T BOMB the temperature at the top of the BMO.
This equation can be safely linearised if that simpli-
fies the expressions. T BOMB is equal to the liquidus
corresponding to the composition of the magma
ocean, which evolves with time. The liquidus also
depends on pressure and, for simplicity, we assume
a linear dependence of the liquidus on both pressure
and mass fraction of FeO, yielding

T BOMB = TL(rBOMB) = TL(r0)− ∂TL

∂P
ρg (rBOMB − r0)

+ ∂TL

∂ξ
(ξl −ξl0) , (19)

with r0 the initial position of the freezing front, ξl 0

the initial FeO mass fraction of the magma ocean
and TL(r0) the corresponding liquidus value. This
equation can be time differentiated to give

dT BOMB

dt
=−∂TL

∂P
ρg

drBOMB

dt
+ ∂TL

∂ξ

dξl

dt
. (20)

The two time derivatives on the right-hand-side can
be related to each other using the equation for FeO
conservation. This and other balance equations are
derived in the next subsection.

The different profiles obtained above are only
strictly valid in the well mixed isentropic bulk of the
magma ocean and are complemented by boundary

layers on both top and bottom. However, as soon
as the magma ocean is unstably stratified, which we
assume here from the start, the Rayleigh number
is enormous and convection is very efficient, which
makes the super-isentropic temperature difference
across the BMO very small [Labrosse et al., 2007, Ul-
vrová et al., 2012]. Therefore, we neglect the thick-
ness of boundary layers and their associated temper-
ature, composition and chemical potential jumps.

2.2.2. Balance equations

The mass fraction ξl of FeO in the BMO is assumed
to be uniform, owing to the high efficiency of con-
vective stirring in the liquid. However, it evolves with
time due to interaction with the solid mantle due to
fractional crystallisation at the boundary, and pos-
sibly exchange by diffusion through the core man-
tle boundary. The equations describing the evolu-
tion of ξl are derived for their introduction in StagYY.
The integrated fluxes over the CMB and top surface of
the BMO are denoted I CMB and I BOMB, respectively,
and are counted positive upward. The global balance
equation for the FeO content is

dMBMOξl

dt
= I CMB − I BOMB, (21)

MBMO being the mass of the BMO in the ξl = 0 limit.
For the time being, we will neglect I CMB since its
treatment would require constraints on the partition-
ing between the liquid metal and the liquid silicate at
the relevant pressure and temperature and a model
for the vertical transfer of light elements at the top of
the core. This could be a target for future develop-
ments.

With this assumption, Equation (21) can be devel-
oped to give

MBMO
dξl

dt
+4πr 2

BOMBρ0ξlṙBOMB =−I BOMB. (22)

The flux to the solid mantle, I BOMB, is due to the
phase change happening at the boundary, with a
crystallisation mass rate w associated with the solid
radial velocity ur at the boundary as computed in
StagYY, ur, by w = ur − ṙBOMB since, in StagYY, the
boundary is kept fixed by a continuous adjustment of
the computation domain thickness (Section 2.1). We
get

I BOMB =
∫
ΩBOMB

ρ0ξs (ur − ṙBOMB)dΩ, (23)
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with ΩBOMB the surface of the boundary and ξs the
mass fraction of FeO on the solid side of the bound-
ary:

ξs =
{

Dξl, ur ≥ 0

ξs, ur < 0.
(24)

In regions of solid upwelling, fractional crystalli-
sation occurs, producing a solid with a mass fraction
ξs = Dξl with D < 1 the partition coefficient of FeO
between the solid and the liquid. Note that D de-
pends on the composition and is related to the distri-
bution coefficient K of the phase change, as detailed
by Bolrão et al. [2021]. In regions of downwelling, the
solid with a mass fraction ξs arrives in contact with
the liquid and melts. Note that the composition of
this solid may be different from that for equilibrium
with the liquid at its liquidus temperature but melt-
ing can still proceed by pumping FeO from the liquid,
which acts to reduce the mass fraction FeO in the liq-
uid. This effect is balanced by the release of FeO in
regions of crystallisation. The lateral transfer of FeO
in the liquid occurs on a timescale, τφ, much shorter
than the timescale for convection in the solid and the
same timescale applies to the transfer of latent heat
from regions of freezing to regions of melting. This
is taken into account in the dimensionless number
Φ= τφ/τη which parameterises the boundary condi-
tion applied for convection in the solid, τη being the
viscous timescale on which a topography is built as
a result of viscous stress in the solid [Labrosse et al.,
2018].

Combining Equations (22) and (23) gives, after re-
arrangement:(

4πr 2
BOMBρ0ξl −

∫
ΩBOMB

ρ0ξsdΩ

)
ṙBOMB

+ 4π

3
ρ0

(
r 3

BOMB − r 3
CMB

)
ξ̇l

=−
∫
ΩBOMB

ρ0ξsurdΩ. (25)

The two integrals in Equation (25) are computed in
StagYY at each time-step and that gives the relation-
ship between ṙBOMB and ξ̇l. Equation (20) then allows
us to express the rate of change of T BOMB as a func-
tion of ṙBOMB only.

Note that in the case ur = 0, which is obtained for
Φ =∞, ξs = Dξl is uniform and the mass flux of FeO
to the solid mantle is I BOMB =−4πr 2

BOMBDξlρ0ṙBOMB.

This flux is positive for ṙBOMB < 0, i.e. when crystalli-
sation occurs. Equation (25) leads to

ξ̇l =− 3r 2
BOMB∆ξ

r 3
BOMB − r 3

CMB

ṙBOMB (26)

with ∆ξ = ξl − ξs. This equation was used in the
original BMO paper [Labrosse et al., 2007] but the
general Equation (25) accounting for flow through
the boundary is used in the present study.

The flux i of FeO across both boundaries con-
tributes to the total heat flux density q as

q =−k∇T +µi (27)

and we note the thermal part as

qT ≡−k∇T. (28)

Integrated over a surfaceΩ (BOMB or CMB), we get

QΩ =QΩ
T +µΩIΩ (29)

with µΩ the average value of µ over the surfaceΩ.
The long term thermal evolution of the BMO is

controlled by the integrated energy balance equa-
tion, which is written as [e.g. Braginsky and Roberts,
1995, Lister and Buffett, 1995]∫

VBMO

ρ

(
T
∂sl

∂t
+µ∂ξl

∂t

)
dV

=
∫
ΩBOMB

ρL(ur − ṙBOMB)dΩ

+QR +QCMB −QBOMB, (30)

with QR the radiogenic heat production in the BMO
and L the latent heat of melting, which contains two
contributions:

L = TL∆s +µ∆ξ (31)

∆s = sl − ss being the entropy of melting. The sur-
face integral on the right-hand-side of Equation (30)
is the total latent released or consumed by phase
change at the boundary and is related to the crys-
tallisation change rate ur − ṙBOMB. The entropy con-
tribution to the latent heat, TL∆s, is uniform along
the phase change boundary and, since ρur averages
to 0 at the interface, only the net crystallisation rate
ṙBOMB contributes to that part. Combining Equa-
tion (30) with the global balance in FeO Equation (21)
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and the expressions for the BOMB and CMB fluxes
Equation (29) gives

QBOMB
T =−

∫
VBMO

ρT
∂s

∂t
dV

−TL(rBOMB)∆s4πr 2
BOMBṙBOMB +QR +QCMB

T

+ (
µCMB −µBOMB)

I CMB − dξl

dt

∫
VBMO

ρµ′dV

+
∫
ΩBOMB

ρµBOMB (∆ξur +ξsṙBOMB)dΩ. (32)

This equation has a simple interpretation: the heat
flow out of the BMO has contributions from secular
cooling, latent heat of freezing (positive for ṙBOMB <
0), radiogenic heating, heat flow at the CMB, the flux
of compositional energy due to the chemical flux at
the CMB and the change of compositional energy
content in the BMO. Note that the CMB flux term
has a sign opposite to I CMB, which is expected since
mixing any dense component from the core would
require energy.

This equation can be used to compute the ther-
mal and compositional evolution of the BMO and the
core for a given heat flow at the bottom of the solid
mantle. Each term of the equation needs to be ex-
pressed as function of a minimum number of param-
eters, which is the next task here.

As stated above, we will neglect I CMB, for now.
QBOMB

T is provided at each time step by the convec-
tion model of the solid mantle, StagYY. Computing
QR is straightforward for a given value of the parti-
tion coefficient of heat producing elements at the top
of the BMO and their decay constants. The compo-
sitional energy term, the one involving µ′ in Equa-
tion (32), is easily related to rate of change of rBOMB

using Equations (16):

Eχ1 ≡−dξl

dt

∫
VBMO

ρµ′dV =−ρ0βg
[
rBOMBVBMO

−π
(
r 4

BOMB − r 4
CMB

)] dξl

dt
. (33)

Using Equation (25), this term can be related to
ṙBOMB.

The second compositional term (last on the right-
hand-side of Equation (32)) can be simplified assum-
ing µBOMB, ρ and ξl to be constant and using the fact
that ur is 0 on average on the boundary. This gives

Eχ2 = ρ0µ
BOMB

∫
ΩBOMB

ξs (ṙBOMB −ur)dΩ. (34)

The secular cooling term is expressed as

QC ≡−
∫

VBMO

ρT
∂s

∂t
dV =−

∫
VBMO

ρCp
∂T

∂t
dV , (35)

which can be computed using the Equations (18) and
(20):

QC =−4πρ0CP L3
M

[
dT BOMB

dt
+ αg T BOMB

Cp
ṙBOMB

]
×

∫ rBOMB/LM

rCMB/LM

x2 exp

[
αg LM

CP

(
rBOMB

LM
−x

)]
dx.

(36)

Using Equation (20) and (26), this term can be ex-
pressed as an afine function of ṙBOMB.

The last term to deal with is the CMB heat flow.
The thermal evolution of the core can be parame-
terised using the CMB temperature [Labrosse, 2015]
and we therefore have all the equations needed to
solve the coupled evolution of the solid mantle, the
BMO and the core. For a liquid core (only situation
implemented for the moment), the core cooling term
is related to the rate of change of the CMB tempera-
ture by

QCMB
T =−4π

3
ρN CpN L3

ρ

fC

(
rCMB

Lρ
,γ

)
(
1− r 2

CMB

L2
ρ

− Aρ
r 4

CMB

L4
ρ

)γ dT CMB

dt
,

(37)
with ρN the density at the center of the core, CpN the
assumed constant heat capacity of the core, Lρ and
Aρ the structure parameters describing the density
variation with radius in the core, γ the Grüneisen
parameter of the core and

fC (r,γ) = 3
∫ r

0
x2 (

1−x2 − Aρx4)1+γ
dx

= r 3
[

1− 3

5
(γ+1)r 2

− 3

14
(γ+1)(2Aρ −γ)r 4 +O(r 6)

]
. (38)

The boundary layers on both sides of the CMB are
tiny, with temperature differences across them that
are negligible compared to the temperature differ-
ences across the whole layers due to compressibility
effects. Therefore, the cooling of the core must fol-
low that of the BMO. More precisely, the CMB tem-
perature is related to that at the top of the BMO using
Equation (18):

T CMB = T BOMB exp

[
αg

Cp
(rBOMB − rCMB)

]
. (39)
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Therefore, the rate of change of T CMB is

dT CMB

dt
=

[
dT BOMB

dt
+ αg T BOMB

Cp
ṙBOMB

]
× exp

[
αg

Cp
(rBOMB − rCMB)

]
. (40)

The equations for the evolution of the BMO and
the core presented in this section have been made
dimensionless (see Appendix) and implemented in
StagYY. In practice, at each time step, the tempera-
ture and composition fields in the solid mantle are
used to compute the body force responsible for con-
vection. The velocity and pressure fields resulting
from the momentum balance are computed, which
permits to compute the evolution of the temperature
and composition fields, using tracers for the latter.
The heat flow at the bottom of the solid mantle is also
used to compute the evolution of the BMO and core.

3. Example of dynamical evolution

The model is controlled by many input parameters,
the classical ones for mantle convection using StagYY
[Tackley, 2008] and the additional ones for the BMO
evolution, so that the parameter space is effectively
enormous. Although we have run many cases, the
goal of the present paper is not to provide a com-
prehensive study of this complex system but to show
with one example a possible evolution of the Earth
with a basal magma ocean. As will appear clearly,
the model results are in some ways encouraging, in
the sense that we obtain some of the expected fea-
tures, in particular thermo-chemical structures that
might explain some of the current seismological ob-
servations. On the other hand, some of the outcomes
point toward strong limitations of this model, at least
with the choice of parameters of this specific calcula-
tion. Future developments to solve these issues will
then be discussed. Even though all the complexities
of mantle convection that are included in the numer-
ical code StagYY are also accessible with the BMO
model, we restrict ourselves here to the simplest case,
notably with a constant viscosity and compositional
variations only due to the fractional crystallisation of
the BMO.

The parameters specific to the basal magma ocean
and its evolution are as follows: the initial thickness
is taken to be 30% of the total mantle, the partition
coefficients for FeO and the heat producing element

are KFeO = 0.3, KHPE = 10−2, respectively and the
phase change parameter is Φ = 3 × 10−2. The ini-
tial composition of the solid mantle and the BMO
are uniform in both FeO and HPE and in equilibrium
with each other according to these partition coeffi-
cients. The mean mass fraction of FeO is 0.1 while
that for HPE makes the mean dimensionless internal
heating rate equal to 5, which is somewhat smaller
than the expected value for the bulk silicate Earth.
The internal heating rate decays exponentially with
a dimensionless half-life time of 10−2. The nomi-
nal Rayleigh and buoyancy numbers are Ra = 3×107,
B = 5, respectively. These are defined using, as a
temperature scale, ∆Tm, an estimate for the melting
temperature difference between the top and the bot-
tom of the mantle, so that the dimensionless tem-
perature accross the solid ∆T /∆TM is of order one.
The chosen value is ∆TM = 4000 K. The composi-
tional range implied by the definition of B is 1, which
corresponds to the density difference between the
MgO and FeO end-members. Since the range of tem-
perature and composition actually encountered in
the model are different from these defining values,
a rescaling needs to be performed after the calcula-
tions, as discussed below. Other parameters are de-
tailed in the Appendix.

Figure 1 shows the evolution of several key fields
with time, the temperature (top row), mass fraction
of FeO (middle row) and HPE (bottom row). The
time of each snapshot is written at the top of each
column. The BMO is depicted by a uniform pink
layer to visualise its shrinking by crystallisation. The
total duration of this calculation, which lasts until
nearly full crystallisation of the BMO, is about t =
6.4 × 10−3 (dimensionless), which is nearly half the
dimensionless age of the Earth. This duration clearly
depends on the value of several input parameters,
and, in particular, is expected to decrease with an
increase of the Rayleigh number, since this makes the
heat flow increase, and decrease with the buoyancy
number, since FeO buoyancy goes against thermal
convection.

Convection first sets in at large scale (Figure 1),
which is usual for convection with a phase change
at the bottom boundary [Labrosse et al., 2018, Mori-
son et al., 2019, 2024]. Starting from a composition-
ally uniform mantle, variations of concentrations in
FeO and HPEs soon develop from fractional crys-
tallisation of the BMO. In the first three snapshots
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Figure 1. Evolution of the temperature (top row), FeO content (middle row) and concentration in heat
producing elements (bottom row) as function of time, as indicated on the top. Note that the colorbar is
adapted to each snapshot for maximum lisibility.

of Figure 1, variations in FeO content do not seem
to affect the dynamics, which is controlled by cold
plumes that reach the bottom boundary with the
BMO and melt, as expected from previous studies
of purely thermal convection with solid–liquid phase
change [Agrusta et al., 2019, Lebec et al., 2023]. In the
last two snapshots, FeO-enriched regions start form-
ing dome-like structures from which hot plumes de-
part. This behaviour, that was predicted in the origi-
nal BMO model [Labrosse et al., 2007], happens when
the FeO concentration contrasts become sufficient to
compete with the thermal buoyancy.

To better understand the evolution, it is useful to
study the mean temperature and composition pro-
files, as shown on Figure 2. The radius is scaled with
the total thickness of the mantle (solid and magma
ocean) so that the figure shows the crystallisation of
the magma ocean with time.

The FeO mass fraction profiles show a gradual
increase with time and, more importantly for the
dynamics, an increase of radial contrast. As the
BMO concentration in FeO becomes larger, the solids
that form from it become enriched and therefore
denser, which leads to the partial stratification ob-
served on Figure 1. Figure 3 shows the evolution
of the minimum FeO mass fraction at the upper

boundary, min(ξFeO,top), and the maximum at the
bottom boundary, max(ξFeO,bot). The minimum
value is stable, expressing the fact that no diffusion is
allowed in this model, while the maximum value, af-
ter a rapid increase in the early evolution, increases
with an almost constant time rate. The Buoyancy
number in this calculation is set to a nominal value
of B = 5 but this corresponds to a change of com-
position between the MgO and FeO end-members
and a dimensionless temperature change between 0
and 1. Since the model is evolving with time with
fixed temperature and composition scales, the effec-
tive buoyancy number at each time is given by Equa-
tion (10). The value obtained is also shown on Fig-
ure 3. Comparison with the snapshots of Figure 1
suggests that a critical value of Beff ∼ 0.5 makes the
convective regime transition between the well mixed
situation to the stratified one. Determining the de-
pendence of that number on other parameters of
the problem, in particular the Rayleigh number, falls
beyond the scope of the present paper. It is how-
ever grossly consistent with the value of the buoy-
ancy number needed to get partial entrainment or
a doming regime in convection with a composition-
ally layered initial condition [Tackley, 1998, Davaille,
1999, Le Bars and Davaille, 2004].
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Figure 2. Temperature (left) and composition (right) mean profiles for the time steps corresponding to
those of Figure 1. The radial position reflects the crystallisation of the BMO with time.

Figure 3. Time evolution of the minimum
FeO mass fraction at the upper boundary,
min(ξFeO,top), the maximum at the bottom
boundary, max(ξFeO,bot) (left axis) and the ef-
fective buoyancy number Beff, right axis. Empty
circles on the black line gives the position of the
snapshots presented on Figure 1.

The bottom temperature, equal to the liquidus,
also varies with time because of the combined effect

of the pressure (depth) and composition of the
magma. With the choice of parameters made for this
calculation, the pressure effect dominates over that
of FeO mass fraction, which implies an increase of
the liquidus with time. At the end of the calculation,
the mass fraction of FeO increases faster than pres-
sure at the BMO boundary (BOMB) which makes the
liquidus decrease with time. Other choice of parame-
ters would change this evolution and a more realistic
phase diagram could be implemented in the future.

A striking feature of the temperature profiles
shown on Figure 2 is that, for the long early period
where the solid stays well mixed, the mean temper-
ature is nearly independent of the radius and varies
significantly only in the upper boundary. Therefore,
no boundary layer exists at the bottom and, conse-
quently, no focused hot plumes. This behaviour has
already been observed from both linear and non-
linear models [Labrosse et al., 2018, Agrusta et al.,
2019] in cartesian geometry and results from the
phase change boundary condition. In this scenario,
hot plumes can only develop once the basal magma
ocean gets crystallised enough to get Φ ≳ 103 or, as
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in the present case, when a compositional stratifi-
cation separates the phase change boundary from
the bulk of the convecting mantle. It is worth recall-
ing here that this model assumes an incompressible
solid mantle within the Boussinesq approximation
and the development with time of a significant tem-
perature gradient at the bottom of the solid shell is
due here solely to the stabilisation of dense thermo-
chemical piles, not to any compressibility effect. To
convert these temperature profiles to realistic ones
for the Earth requires to add an isentropic tempera-
ture gradient.

The concentration in HPE, depicted on the bot-
tom row of Figure 1, is somewhat similar to that of
FeO since both come from fractional crystallisation
of the BMO. However, because the partition coeffi-
cient is much smaller, the enrichment is slower and
the mean concentration becomes significant only at
the very end of the crystallisation process. Moreover,
comparing the various FeO-enriched domes, we can
see that their concentrations are not uniform: at the
latest stages of their formation, small differences in
crystallisation time result in large concentration vari-
ations, a phenomenon much less visible for the con-
centration in FeO which increases in a more grad-
ual manner. Finally, the enrichment in HPEs of the
domes makes them warm up and, in some calcula-
tions (not shown here), they become unstable at the
end of the calculation.

4. Discussion and the way ahead

The model presented in the previous section is the
first application of the complete set of equations cou-
pling the evolution of a basal magma ocean to con-
vection in the solid mantle. As such, it provides some
interesting results but has some limitations when ap-
plication to Earth are considered.

First of all, this model is a proof of concept for
the possibility of forming large scale compositional
variations in the lower mantle from fractional crys-
tallisation of the BMO, as can be seen on Figure 1.
The fact that this situation arises at the end of this
calculation is linked to the shrinking of the BMO,
which is necessary to make its FeO mass fraction in-
crease sufficiently for solids that crystallise from it
to be dense enough. Our calculation stops when
the BMO crystallises almost entirely. In the present
model, the BMO is imposed to fully freeze when a

minimum thickness is reached, while it is assumed
to be fully liquid before. In reality, we expect that, at
some point, a transition should occur toward a two-
phase layer, the present interpretation of ULVZs as
partially molten being the last remnant pockets of it.
The present model does not include the physics nec-
essary to deal with this transition. This two-phase
situation could last quite a long time, the last melt
getting enriched in all the incompatible elements, in
particular volatiles, which significantly depress the
freezing point of the magma [Nomura et al., 2014].

On the other hand, the thermal structure shown in
Figures 1 and 2 may be difficult to reconcile with ob-
servations constraining the early Earth. Indeed, the
absence of boundary layer at the bottom of the solid
mantle implies that, except for thin downwelling
plumes, the whole solid mantle in our model is at
the same temperature as the bottom boundary. This
situation, which results from the presence of phase
change boundary condition at the bottom [Labrosse
et al., 2018, Agrusta et al., 2019, Lebec et al., 2023], is
difficult to sustain when applied to the mantle of the
Earth since it would lead to very high temperature be-
low the lithosphere, possibly making most of the up-
per mantle liquid. We expect that such a state would
lead to massive eruptions and the associated rapid
cooling would not allow it to persist for the length
of time implied here [Davies, 1990, Sleep, 2000]. One
way to avoid that problem is to increase the value of
the phase change parameter, Φ. Indeed, for Φ > 103,
the dynamics is similar to that obtained for a non-
penetrative boundary condition [Agrusta et al., 2019]
with a well-developed boundary layer on the solid
side. However, the value of Φ is expected to be on
the low side, similar to the value used here, although
it is difficult to estimate it precisely.

In the present model, the situation with a high up-
per mantle temperature persists as long as the solid
stays well mixed but once a compositional stratifica-
tion develops, the bulk of the mantle can cool down
compared to its bottom boundary (Figure 2). The
main problem therefore comes from the initial con-
dition of the calculation. The one shown here starts
from a compositionally uniform solid mantle and the
variations of composition only arise from fractional
crystallisation of the BMO, since testing the feasibility
of this mecanism is one of the goals of this paper. The
freezing of the surficial magma ocean is, however,
likely to produce a compositional stratification of the
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solid that could be included as initial condition of our
calculations. For example, models of fractional crys-
tallisation of the lunar or martian magma oceans [e.g.
Hess and Parmentier, 1995, Elkins-Tanton et al., 2003,
Elkins-Tanton, 2012] suggest a gradual densification
of the solid that make it prone to overturn and that
should produce a solid mantle that is initially stably
stratified. The degree of initial stratification can be
rather extreme if the overturn happens after full crys-
tallisation but several overturns are expected to occur
during crystallisation [Ballmer et al., 2017, Maurice
et al., 2017, Boukaré et al., 2018, Morison et al., 2019].
This initial stratification should therefore be consid-
ered as an input parameter whose effect should be
quantified in future studies.

Alternatively, it could be desirable to run a model
coupling the crystallisation of the surficial magma
ocean to convection in the solid in order for the
initial condition to result directly from this process.
This means writing a set of equations similar to the
one developed in Section 2.2 for the surficial magma
ocean and including phase change boundary condi-
tion. Some progress has been donc in that direction
[Morison, 2019] but a systematic exploitation of this
model is still needed and will be the topic of a future
study.

5. Conclusions

This paper presents, for the first time, a complete
set of equations for the evolution of a basal magma
ocean coupled to a convecting mantle and a cooling
core. This theory has been used to build a model,
starting from the mantle convection code StagYY
[Tackley, 2008], for the evolution of the whole Earth
that tracks the fractional crystallisation of the BMO
and the implied compositional evolution of the man-
tle. The BMO is treated as a well-mixed layer whose
evolution is controlled by general energy and compo-
sition balance equations. The solid mantle is treated
with a full convection model that includes the pos-
sibility of melting and freezing at its bottom bound-
ary as a phase change boundary condition [Labrosse
et al., 2018].

The parameter space for this model is very large
and, in this paper, we have only considered one typi-
cal case. It shows, for the first time in a self-consistent
dynamical model, the feasibility of the scenario for
the generation of large compositionally dense and

heterogenous anomalies proposed by Labrosse et al.
[2007].

The phase change boundary condition at the bot-
tom of the solid mantle has profound implications
on its dynamics and thermal structure: as long as it
is well mixed, its bulk temperature follows an isen-
tropic upward extrapolation of the BMO liquidus.
This would likely imply large amounts of melting in
the upper mantle although, of course, a more thor-
ough exploration of the parameter space is necessary
to confirm that implication. In any case, that points
toward the necessary discussion of the initial con-
ditions, in particular concerning the compositional
structure of the solid mantle, that results from the
crystallisation of a surficial magma ocean. Models in-
tegrating that aspect in the evolution would help de-
cipher this question.

Another interesting addition to this model would
be to include a treatment of volatiles, and in particu-
lar water. Assuming water to be incompatible at high
pressure, we can expect its concentration to increase
in the basal magma ocean as it crystallises, which
would help to maintain partial melt to the present
day by decreasing the solidus [Nomura et al., 2014].
The solid forming from it would gradually see its H
content increase, with important implication on its
viscosity and possibly on the melting and degassing
of the mantle near the surface.
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Appendix A. Dimensionless numbers and pa-
rameter values for the example
calculation

We use dimensionless variables in the whole model,
both for convection in the solid mantle and the
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Table 1. Dimensionless parameters for the Basal Magma Ocean evolution

Symbol Expression Description Run value

Γ−0
R−−Rc

d
Initial BMO thickness 0.3

TBOMB,0
TBOMB(t = 0)

∆T
Initial BOMB temperature 0.37

ξ0 ξ(t = 0) Initial FeO content 0.07

cHPE,0 cHPE(t = 0) Initial HPE content 5×10−3

B − β

α∆T
Compositional buoyancy 5

Di
αg LM

Cp
BMO dissipation number 1.74

TLP
ρg LM

∆TM

∂TL

∂P
Pressure dependence of melting
temperature

Depth-dependent from Fiquet
et al. [2010]

TLξ
1

∆TM

∂TL

∂ξ
Composition dependence of
melting temperature

−0.125

St
∆s

Cp
Stefan number 0.3

τhpe
τhpe,dκ

L2
M

HPE half-life 0.02

Pc
Pc,d

ρCp L3
M

Core cooling contribution 3.67

evolution of the BMO and core. The solid mantle part
is explained in Section 2.1. The value expected for
the phase change number Φ can be estimated using
its expression in Equation (12) using reasonable val-
ues for the various parameters: ρs ≃ 5×103 kg·m−3,
ρl ≃ 5.5 × 103 kg·m−3, Cpl ≃ 103 J·K−1·kg−1, ηs ≃
1022 Pa·s, d ≃ 3000 km. For the latent heat, we use L =
T∆S, with ∆S = 652 J·kg−1·K−1 the entropy of melt-
ing [Stixrude et al., 2009] and T ≃ 4000 K the melting
temperature. The slopes of the isentropic profile and
melting temperatures are estimated from Stixrude
et al. [2009]: mad ≃ 15 K·GPa−1, mp ≃ 4 K·GPa−1. The
least well constrained quantity is the flow velocity in
the BMO and we tentatively set it to a value simi-
lar to that in the present-day core, ul ∼ 10−4 m·s−1.
This gives Φ ∼ 4×10−8. For convection with a phase
change boundary condition at one of the horizontal
boundaries, the asymptotic limit of very small values
of the phase change number is reached for Φ≲ 10−1

[Labrosse et al., 2018, Agrusta et al., 2019, Morison
et al., 2024]. The value just estimated for the BOMB

puts it safely in that regime, irrespective of any pos-
sible overestimation of the flow velocity in the BMO.
We therefore set this value to 3×10−2, which is suffi-
ciently low to get the proper behaviour.

The magma ocean evolution equations are made
dimensionless with the following scales:

• d , the total thickness of the mantle (solid
and magma ocean), considered constant in
this study for simplicity. For the Earth, d =
2900 km.

• ∆T , an arbitrary reference temperature dif-
ference. In practice it is taken as an esti-
mate for the melting temperature difference
between the top and the bottom of the man-
tle, so that the dimensionless temperature
accross the solid is of order one. The chosen
value is ∆T = 4000 K.

• ρ, the reference density of the consid-
ered materials. For the Earth’s mantle,
ρ = 4000 kg/m3.
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• κ = k/(ρCp ), the diffusion coefficient κ =
10−6 m2/s, associated with the conductivity
k = 4 W/(mK) and the heat capacity Cp =
103 J·K−1·kg−1.

The dimensionless parameters arising from the
non-dimensionalization are shown in Table 1. More
detailed can be found in Morison [2019].
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