N

HAL

open science

Toward Partial Proofs of Vulnerabilities

Jonathan Brossard

» To cite this version:

Jonathan Brossard. Toward Partial Proofs of Vulnerabilities. 2024 IEEE Secure Development Confer-
ence (SecDev), Oct 2024, Pittsburgh, United States. pp.180-182, 10.1109/secdev61143.2024.00023 .

hal-04795578

HAL Id: hal-04795578
https://hal.science/hal-04795578v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04795578v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Toward Partial Proofs of Vulnerabilities

Jonathan Brossard
dept. CEDRIC
Conservatoire National des Arts et Métiers
Paris, FRANCE
jonathan.brossard @lecnam.net

Abstract—With the adoption of compelling legislation regu-
lating Product Security, quickly replicating or disproving the
presence of publicly known vulnerabilities is becoming an es-
sential part of the software life cycle. Moreover, third-party
code is often integrated and shipped in binary form rather than
source code. In this article, we present an original debugger
named the Witchcraft Shell (WSH), aiming at helping software
maintainers validate the existence of public vulnerabilities when
source code is unavailable. By making C/C++ dynamically linked
ELF executables scriptable and their internal functions callable
with no or little context, we open the way to new heuristics:
“partial proofs of vulnerabilities”. This tool is published under
a permissive dual BSD/MIT open-source license.

Index Terms—exploitability, decidability, libification, procedu-
ral debugging, proof of vulnerability

I. INTRODUCTION

The Executive Order on Improving the Nation’s Cyberse-
curity [2] in the US and the Cyber Resilience Act [10] [8] in
Europe render the creation and publication of Software Bills of
Materials [9] [27] (SBOMs) to customers compulsory. Since
they contain exact versions of all the software components,
SBOMs make version-based public vulnerability assessments
more transparent.

However, ensuring that a potential CVE actually affects a
piece of software typically involves writing an exploit for this
software [24] or, at the very least, triggering the vulnerability.
Unfortunately, even this first step is an undecidable problem in
general [14]. This creates a situation where Product Security
teams must solve undecidable problems repeatedly. Because
existing data suggest they make up to 70% of exploitable
vulnerabilities in C/C++ applications [15], we will focus on
memory corruption vulnerabilities [18] in the remainder of this
article.

To help tackle this issue, we offer a methodology to evaluate
the existence of CVEs in compiled ELF executables. Building
on our previous research [3] [4], we present an original de-
bugging technique that transforms executables into scriptable
programs and allows calling vulnerable functions directly and
without context, hereby avoiding the reachability problem
entirely when attempting to prove or disprove the presence
of CVEs within an application. We name this heuristic, our
main contribution, “partial proofs of vulnerabilities”.

To illustrate the benefits of this methodology, we publish
two WSH scripts that may be used to assess the presence of
CVE-2022-3602 and CVE-2022-3786 in compiled versions of
OpenSSL, without relying on source code.

II. PREVIOUS WORK

Fundamental control-flow techniques such as disassembly
[26] or decompilation [25] are undecidable in general. How-
ever, Duck et al. have managed to perform local modifications
of executables without control-flow recovery [13]; Shapiro et
al. by modifying only ELF metadata. [22]

To perform an intraprocedural analysis of a CVE within a
given function without facing the reachability problem [21],
it would be convenient to perform a simpler and deterministic
preliminary transformation of the binary to be analyzed into
a shared library. This way, its internal (non-static) functions
would be exposed and callable. Transforming static ELF
libraries into shared libraries, for instance, may be done using
the —whole-archive option of the GNU linker [23].

Capeletti [7] has described how to transform ELF exe-
cutables into object files, hence performing an “unlinking”
operation (undoing the work of a linker). Previous research has
also shown that loading Microsoft Windows libraries within
Linux executables [20] or transforming Windows Portable
Executables (PE) into (DLL) shared libraries [12] is practical.

We have previously published [3] a tool to “libify” ELF [11]
binaries, id est: to transform dynamically linked ELF binaries
into shared libraries by modifying their metadata [4].

The steps to perform a libification are the follow-
ing: First of all, modify the e_type member of the
ELF header to match ET _DYN since all shared libraries
match this type (as opposed to ET_EXEC). Then, parse
the .dynamic section and replace DT_BIND_NOW en-
tries with DT_NULL. Remove the bits DF _1_PIE and
DF_1_NOOPEN in DT_FLAGS_1 if present. Finally, op-
tionally set DT_INIT_ARRAYSZ and DT_INIT_ARRAY,
DT_FINI_ARRAYSZ and DT_FINI_ARRAY in the .dynamic
section to zero, to prevent constructors and destructors from
being invoked at load time respectively.

This “libification” is realized by the wld tool (Witchcraft
Linker) and then allows loading arbitrary dynamically linked
ELF executables using the dlopen() function of the dynamic
linker [1]. The address of arbitrary functions loaded this way
in memory may be obtained via the dlsym() function of the
dynamic linker.

Now that the principle of transforming ELF binaries into
shared libraries that may be loaded in the address space of
other applications is established, let us discuss how to design
a more complex tool, the Witchcraft Shell (WSH), to help
study the exploitability of vulnerabilities in those binaries.



III. THE WITCHCRAFT SHELL: DESIGN OF A
PROCEDURAL DEBUGGER

A. Libification-Based Debugging

The Witchcraft Shell is a simple debugger, loading libified
binaries into its own address space via dlopen(). This defers
the intricate problems of recursively loading dependencies and
solving relocations to the dynamic linker, rendering debugging
simpler, less error-prone and ultimately more robust. This
also simplifies memory management: since the debugger and
the debuggee share the same address space, accessing the
debuggee’s memory does not require any system call, such
as ptrace(), nor any other Inter Process Communication (IPC).

B. Functions Enumeration without Control-Flow Analysis

The dynamic linker features a convenient way to traverse
all the binaries and libraries mapped in the address space of
a process via a linked list of structures named link_map. This
allows WSH to recursively find all the symbols [11], including
their types, scopes, and names, exported by all the ELF files
mapped in memory. The memory addresses of every function
can then be found via calls to dlsym().

C. Arbitrary, Contextless, Function Calls

The calling convention of Linux C/C++ x86-64 userland
applications is documented in the System V application binary
interface and its AMDG64 architecture processor supplement
[19]. The stack frame, parameters passing (via general regis-
ters for the most part'), and order of arguments being known,
it becomes possible to create a minimal “context” (stack
frame) to call an arbitrary function in memory by transferring
execution to the address returned by dlsym() for the desired
function.

It is worth noticing that setting extra arguments, corre-
sponding to extra registers, has no impact on execution. As
such, knowing the exact number of arguments to a function
is, in fact, not mandatory when performing a function call.
Argument types also do not matter, general registers may be
understood as untyped 64bits quantities (akin to a void* for
higher level C/C++ developers) in all generality. Examining
the return value of this function is then performed by reading
the content of register RAX.

D. Scripting Binaries with the Witchcraft Shell

To enable interactive debugging, a lightweight Lua [17]
interpreter has been embedded within WSH. Lua has been
chosen for of its minimal footprint while offering a fully
object-oriented, functional programming language under a
permissive MIT license. Every function discovered within the
address space is made visible to the Lua interpreter. They may
then be called with any number of arguments, directly from
Lua.

Users may subsequently write Lua scripts within WSH, but
also invoke any function within the address space directly from

Via in order RDI, RSI, RDX, RCX, R8, R9 for integers or pointers, and
XMMO, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6 and XMM7 for
floating-point arguments.

their scripts or the Lua prompt. As a result, ELF executables
loaded within WSH become entirely scriptable.

E. Avoiding Reachability Problems via Procedural Debugging

Finally, the Witchcraft Shell may perform calls to arbitrary
functions in isolation, without having to craft an input from
the entry point of the debugged program, hence liberating
the analysis from the reachability problem. We name this
technique “procedural debugging”.

IV. PARTIAL PROOFS OF VULNERABILITIES

The most critical factor determined by Guo et al. [16] as
predicting the ease of fixing a vulnerability is the ability of
developers to replicate it, hence understanding its root cause
and being able to fully test fixes. As such, “partial proofs of
vulnerabilities” in the form of WSH scripts allowing devel-
opers to trigger bugs directly, experiment with the vulnerable
code, and use WSH scripts as unit tests for patches could help
fix bugs more efficiently.

Exploiting a memory corruption vulnerability may be split
into three stages: reaching the vulnerable function, triggering
the vulnerability, achieving arbitrary code execution [24].

The Witchcraft Shell may be seen as a tool to help Product
Security teams focus solely on triggering vulnerabilities.

It should be outlined, however, that a vulnerability may be
triggerable via WSH, but not in fact reachable. For instance, if
the vulnerable statement pertains to a function not connected
to the application call graph, such as dead code, then triggering
the vulnerability via WSH does not constitute sufficient proof
of vulnerability.

As such, we name the heuristic of being able to trigger a
vulnerability via WSH a “partial proof of vulnerability” in lieu
of a definitive one.

V. EVALUATION

Appendixes VIII.LA and VIII.B contain WSH scripts that
may be used to test if a given compiled software is vulnerable
to CVE-2022-3602 and CVE-2022-3786 respectively. A stable
DOI [6] has been created with a Dockerfile and instructions
to replicate evaluation against multiple versions of OpenSSL
with ease.

VI. CONCLUSION

In this article, we introduced the Witchcraft Shell (WSH), a
procedural debugger leveraging the libification of executables.
By making executable binaries scriptable, WSH scripts open
the way to “partial proofs of vulnerabilities”, heuristics able
to trigger vulnerabilities despite the reachability problem.

VII. AVAILABILITY

The Witchcraft Shell (WSH) detailed in this article is
part of the Witchcraft Compiler Collection (WCC) re-
verse engineering framework [5]. It is available from
https://github.com/endrazine/wcc, as well as via the package
managers of major GNU/Linux distributions, including De-
bian, Ubuntu or Arch Linux.



[1]

[2]
[3]
[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

REFERENCES

Ieee standard for ieee information technology - portable operating
system interface (posix(tm)). IEEE Std 1003.1-2001 (Revision of IEEE
Std 1003.1-1996 and IEEE Std 1003.2-1992), 2001.

Joseph R Biden. Executive order on improving the nation’s cybersecu-
rity. 2021.

Jonathan Brossard. Introduction to the witchcraft compiler collection.
Blackhat Conference, London, UK, 2016.

Jonathan Brossard. Introduction to procedural debugging through binary
libification. In 18th USENIX Workshop on Olffensive Technologies
(WOOT 24). USENIX Association, August 2024.

Jonathan Brossard. The witchcraft compiler collection. https://zenodo.
org/doi/10.5281/zenodo.11405214, May 2024.

Jonathan Brossard. The witchcraft compiler collection testsuite. https:
//zenodo.org/doi/10.5281/zenodo.11301409, May 2024.

Mauro Capeletti. Unlinker: an approach to identify original compilation
units in stripped binaries. 2016.

Polona Car and Stefano De Luca. Eu cyber-resilience act — briefing
eu legislation in progress — pe 739.259. EPRS, European Parliament,
November 2023.

Seth Carmody, Andrea Coravos, Ginny Fahs, Audra Hatch, Janine
Medina, Beau Woods, and Joshua Corman. Building resilient medical
technology supply chains with a software bill of materials. npj Digital
Medicine, 2021.

European Commission. Cyber resilience act - shaping europe’s digital
future. September 2022.

Tis Committee et al. Tool interface standard (tis) executable and linking
format (elf) specification version 1.2, 1995.
Aleksandra Doniec. Converts a exe into dll.
hasherezade/exe_to_dll, 2020.

Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewriting
without control flow recovery. In Proceedings of the 41st ACM SIGPLAN
conference on programming language design and implementation, 2020.
Thomas Dullien. Weird machines, exploitability, and provable unex-
ploitability. IEEE Transactions on Emerging Topics in Computing, 2017.
Tommaso Frassetto. Raising the bar: Advancing mitigations against
memory-corruption and side-channel attacks - doctoral dissertation,
technische universitit darmstadt. 2022.

Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Bren-
dan Murphy. ” not my bug!” and other reasons for software bug
report reassignments. In Proceedings of the ACM 2011 conference on
Computer supported cooperative work, pages 395—404, 2011.

Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar
Celes. A look at the design of lua. Communications of the ACM, 2018.
Mahmood Jasim Khalsan and Michael Opoku Agyeman. An overview of
prevention/mitigation against memory corruption attack. In Proceedings
of the 2nd International Symposium on Computer Science and Intelligent
Control, pages 1-6, 2018.

Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System
v application binary interface. AMDG64 Architecture Processor Supple-
ment, Draft, 2013.

Tavis Ormandy. Porting windows dynamic link libraries to linux. https:
/lgithub.com/taviso/loadlibrary, 2017.

Yanis Sellami, Guillaume Girol, Frédéric Recoules, Damien Couroussé,
and Sébastien Bardin. Inference of robust reachability constraints.
Proceedings of the ACM on Programming Languages, 2024.

Rebecca Shapiro, Sergey Bratus, and Sean W Smith. “weird machines”
in elf: A spotlight on the underappreciated metadata. In 7th USENIX
Workshop on Offensive Technologies (WOOT 13), 2013.

Milan Stevanovic and Milan Stevanovic. The impact of reusing concept.
Advanced C and C++ Compiling, 2014.

Yan Wang, Wei Wu, Chao Zhang, Xinyu Xing, Xiaorui Gong, and Wei
Zou. From proof-of-concept to exploitable. Cybersecurity, 2019.
Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
A brief survey of program slicing. ACM SIGSOFT Software Engineering
Notes, 2005.

Hui Xu, Yangfan Zhou, Jiang Ming, and Michael Lyu. Layered
obfuscation: a taxonomy of software obfuscation techniques for layered
security. Cybersecurity, 2020.

Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and
Laurie Williams. Software bills of materials are required. are we there
yet? IEEE Security & Privacy, 2023.

https://github.com/

VIII. APPENDIXES
A. Witchcraft Script to assess CVE-2022-3602 in OpenSSL

print(” [%] Testing for CVE-2022-3602")
—— Input Arguments

teststring = “hello! —gr25faaaaaaaaaaaaa”
decoded = calloc (80)

decodedlen = calloc (1,2)
memset(decodedlen, 0x14,1)

res = ossl_punycode_decode(teststring , 26, \
decoded, decodedlen)

if res > 0 then
free(res)

else
print(” [«] Not vulnerable to CVE-2022-3602")
exit (0)

end

B. Witchcraft Script to assess CVE-2022-3786 in OpenSSL

print(” [*] testing for CVE-2022-3786")
—— Input arguments:

teststring = ”"a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.\

XN——.XN——.XN——.X0——.XN——.X0——.XN——.X0——.Xn——.\
XN——.XN——.XN——.X0——.XN——.X0——.XN——.X0——.Xn——.\
XN——.XN——.XN——.XN——.XN——.XN——.XN——.XNn——.Xn——.\
XN——.XN——.XN——.XN——.XN——.XN——.XN——.XNn——.Xn—-—"
out = calloc(1,16)

outlen = calloc (1,2)
memset(outlen ,0x10,1)

— Trigger the stack overflow:

res = ossl_a2ulabel(teststring , \
out, outlen)
if res == 0 then
print(” [%] Not vulnerable to CVE-2022-3786")
exit (0)
end



