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We demonstrate that the time-averaged far-field thermal radiation between macroscopic bodies
can be different from Planck’s limit when their temperature difference is periodically modulated.
This difference arises from the nonlinear dependence of the radiative heat flux on temperature and
persists even for temperature-independent emissivities. By contrast, when the material emissivity
depends on temperature, the modulated thermal radiation is driven by the second temperature
derivative of emissivity and increases with the square of the temperature oscillations’ amplitude.
These temperature fluctuations generate thermal radiation even without a mean temperature differ-
ence. Our findings thus reveal a novel mechanism to control and modulate far-field radiation with
potential applications in thermal management and energy harvesting.

I. INTRODUCTION

Manipulation of the radiative heat currents is of pri-
mary interest to develop various technologies in ther-
mophotovoltaic energy conversion, radiative cooling,
thermal computing, and satellite management. The clas-
sical radiative heat transfer is described by Planck’s law
[1], which establishes an upper limit for the radiative heat
flux between two macroscopic bodies separated by a dis-
tance d much longer than the dominant radiation wave-
length λth(≈ 10 µm at room temperature). This Planck’s
limit can, however, be overcome by many orders of mag-
nitude in the near- (d < λth) and far-field (d ≫ λth)
regimes characterized by the transmission of evanescent
electromagnetic waves [2–8] and bodies with dimensions
smaller than λth [9–11], respectively. Further, Tachikawa
et al. [12] recently demonstrated that the Planck’s limit
can also be exceeded in the far-field radiation between
two silicon microplates coated with silica nanolayers. All
these previous works were conducted for stationary tem-
peratures and clearly show that the super Planckian ther-
mal radiation can be obtained when at least one of the
dimensions of the radiating bodies and/or their separa-
tion distance is comparable to or smaller than λth.

The thermal radiation driven by temperature fluctua-
tions periodically modulated in time has been explored
less, but it is attracting a increasing interest due to its
implications for radiative heat currents. By studying the
thermal radiation between two bodies with an oscillating
temperature difference, Latella et al. [13] demonstrated
the existence of a radiative heat shuttling, a supplemen-
tary flux able to enhance or reduce the one produced by
the mean temperature difference. These temperature os-
cillations were also exploited to amplify and control heat
currents via a far-field thermal transistor [14] and ther-
mal memristor [15], respectively. More recently, Yu and
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Fan [16] showed that the time modulation of permittivity
can also enhance, suppress, and reverse the near-field ra-
diation between two bodies at fixed temperatures. Con-
sidering the nonlinear dependence of the radiative heat
flux on both the temperature and permittivity, the peri-
odic modulation of these parameters can be used to mod-
ulate heat currents. In addition, the periodic tempera-
ture fluctuations of bodies with a temperature-dependent
emissivity generate a net radiative heat flux even in the
absence of a mean temperature gradient [13, 17]. The
first experimental observation of this latter shuttling ef-
fect was recently reported for the far-field radiation be-
tween two composites based on VO2 [18]. These theo-
retical and experimental results thus show that the tem-
perature fluctuations represent a promising mechanism
to amplify heat exchanges, cool down solids, and insu-
late them from each other. This radiative amplification
could lead to overcoming the Planck’s limit of far-field
radiation, however, it has not been explored yet.

In this work, we demonstrate that the classical Planck-
ian regime of far-field thermal radiation can become ef-
fective super Planckian in presence of a temperature dif-
ference periodically modulated in time. This radiation
enhancement increases with the amplitude of the tem-
perature oscillations and appears for macroscopic mate-
rials of arbitrary geometry, even when their emissivity is
independent of temperature. Our analytical results thus
uncover a general thermal radiation mechanism driven by
temperature fluctuations that could be useful to enhance
the radiative heat flux of systems out of equilibrium.

II. THEORETICAL MODEL

Let us consider two macroscopic bodies of arbitrary
geometry exchanging heat by far-field thermal radiation
due to their temperature difference periodically modu-
lated in time t, as shown in Fig. 1(a). The emissiv-
ity εm of body m = 1 and 2 depends on its tempera-
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FIG. 1: Scheme of two bodies exchanging heat through
a vacuum gap due to their temperature difference

periodically modulated in time t. (b) VO2 emissivity
and its temperature derivatives as functions of

temperature. The points represent experimental data
[19, 20], while the black line stands for their best fitting

via Eq. (11).

ture Tm + ∆Tmgm(t), where ∆Tm > 0 and gm(t) is a
periodic function of time with period τ and magnitude
|gm(t)| ≤ 1. This temperature dependence of emissivity
is exhibited by solid-state phase-change materials, such
as VO2 (see Fig. 1(b)), and a broad variety of materi-
als in a wide enough temperature range. To ensure the
thermalization of the bodies, we consider that τ is much
longer than their thermalization time (time required to
reach the thermal equilibrium between its electrons and
phonons), which typically ranges from a few to 100 µs,
for the case of VO2 [21] used in this work. This condi-
tion is good enough to guarantee that the heating fre-
quency (τ−1 ≲ 1 MHz) is much smaller than the spectral
frequencies of the photons emitted by the two bodies,
which are in the order of THz for temperatures around
room temperature [22]. Under this quasi-steady state

and the assumption that T1 > T2, the far-field heat flux
q (thermal power per unit area A1) exchanged by the two
bodies is given by the Stefan-Boltzmann law, as follows
[22]

q = σε
[
(T1 +∆T1g1(t))

4 − (T2 +∆T2g2(t))
4
]
, (1a)

ε−1 = ε−1
1 − 1 +

A1

A2

(
ε−1
2 − 1

)
+ F−1

12 , (1b)

where σ is the Stefan-Boltzmann constant and F12 is the
view (geometrical) factor determining the fraction of ra-
diation that leaves surface A1 and strikes on surface A2.
For the sake of simplicity and clarity, we consider that
body 2 is a blackbody (ε2 = 1) with dimensions much
larger than its separation distance from body 1, such
that F12 ≈ 1. Under these conditions, ε = ε1 and Eq.
(1a) reduces to

q

σ
= ε1 (T1 + δT1(t))

[
(T1 + δT1(t))

4 − (T2 + δT2(t))
4
]
,

(2)
where δTm(t) = ∆Tmgm(t). Considering that the tempo-
ral temperature fluctuations are much smaller than their
corresponding steady-state counterparts (∆Tm ≪ Tm),
the left-hand side of Eq. (2) can be expanded in a Tay-

lor series. For an approximation up to (∆Tn/Tn)
2
, this

expansion yields

q

σ
= ε1 (T1) p0(t) + ε′1 (T1) p1(t) +

ε′′1 (T1)

2
p2(t), (3)

where the modulated coefficients pn(t) are defined by

p0 = T 4
1 − T 4

2 + 4
[
T 3
1 δT1(t)− T 3

2 δT2(t)
]
+

6
[
T 2
1 δT

2
1 (t)− T 2

2 δT
2
2 (t)

]
,

(4a)

p1 =
(
T 4
1 − T 4

2

)
δT1(t) + 4

[
T 3
1 δT

2
1 (t)− T 3

2 δT1(t)δT2(t)
]
,

(4b)

p2 =
(
T 4
1 − T 4

2

)
δT 2

1 (t). (4c)

The temporal fluctuations of the heat flux q are thus
driven by its nonlinear dependence on the temperature
oscillations δT1(t) and δT2(t). As gm(t) = δTm(t)/∆Tm

is a period function, it can be expressed as a sum of
trigonometric functions via the following Fourier’s series

gm(t) =

∞∑
n=1

[
amn cos

(
2πnt

τ

)
+ bmn sin

(
2πnt

τ

)]
,

(5)
where amn and bmn are the Fourier’s coefficients of gm(t)
with common period τ for m = 1 and 2. The combina-
tion of Eqs. (4) and (5) predicts the following average
coefficients p̄n = τ−1

∫ τ

0
pn(t)dt over one period

p̄2 =
c1
2

(
T 4
1 − T 4

2

)
∆T 2

1 , (6a)

p̄1 = 2∆T1

(
c1T

3
1∆T1 − cT 3

2∆T2

)
, (6b)

p̄0 = T 4
1 − T 4

2 + 3
(
c1T

2
1∆T 2

1 − c2T
2
2∆T 2

2

)
. (6c)
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where the parameters cm =
∑∞

n=1

(
a2mn + b2mn

)
and

c =
∑∞

n=1 (a1na2n + b1nb2n) results from the quadratic
dependence on δTm(t), while the contribution of the lin-
ear one vanishes. According to Eqs. (3) and (6), the net
heat flux q̄ is hence generated by its nonlinear depen-
dence on the amplitudes of the temperature fluctuations,
as follows

q̄

σ
= εeff

(
T 4
1 − T 4

2

)
+ 2ε′1∆T1

(
c1T

3
1∆T1 − cT 3

2∆T2

)
+ 3ε1

(
c1T

2
1∆T 2

1 − c2T
2
2∆T 2

2

)
.

(7)

where εeff = ε1(T1) + ε′′1(T1)c1 (∆T1/2)
2
is the effec-

tive emissivity of body 1, when its temperature oscil-
lates with an amplitude ∆T1. Taking into account that
c1 > 0, these oscillations can be used as an emissivity
enhancer of materials with ε′′1 > 0. In particular, accord-
ing to the leading first term in Eq. (7), this condition
ε′′1 > 0 can generate effective super Planckian far-field
radiation (εeff > 1) for a high enough amplitude ∆T1.
This key feature of macroscopic time-dependent systems
is expected to appear for any material with an emissiv-
ity ε1 > εmin, where (∆T1/2)

2
ε′′min(T1) + εmin(T1) = 1.

The minimum material emissivity supporting the effec-
tive super Planckian radiation is thus given by εmin =
1 + A cos (2T1/∆T1) + B sin (2T1/∆T1), with A and B
being non-zero arbitrary constants. The far-field ther-
mal radiation driven by a temperature difference peri-
odically modulated in time thus becomes effective super
Planckian with an effective emissivity εeff that increases
with the square of the amplitude of the temperature os-
cillations and the second temperature derivative of the
material emissivity, as defined in Eq. (7). Note that this
definition of effective super Planckian regime is only valid
for the time-averaged heat flux, as its unaveraged coun-
terpart is still given by the Planck’s law at each instant
of time, as established by Eq. (1a). Besides ∆T1, the
amplitude ∆T2 of the blackbody temperature oscillations
represents another degree of freedom to modulate q. This
latter modulation can be seen clearer for the sinusoidal
temperature oscillations gm(t) = cos(2πt/τ + αm) =
cos(αm) cos(2πt/τ)−sin(αm) sin(2πt/τ), which indicates
that amn = cos(αm)δn1 and bmn = − sin(αm)δn1, with
δn1 = 1 for n = 1, and δn1 = 0 for n = 2, 3, ....
These Fourier’s coefficients yield c1 = c2 = 1 and
c = cos(α1 − α2), for which Eq. (7) takes the form

q̄

σ
= εeff

(
T 4
1 − T 4

2

)
+ 3ε1

(
T 2
1∆T 2

1 − T 2
2∆T 2

2

)
+

2ε′1∆T1

[
T 3
1∆T1 − T 3

2∆T2 cos(α1 − α2)
]
.

(8)

The in-phase modulation (α1 = α2) of the bodies’ tem-
peratures thus enhance the impact of ∆T2 on q̄, while
the out-of-phase modulation (α1 − α2 = ±π/2) weakens
it. The magnitude of q̄ can thus be tuned through the
phase delay α1 −α2 of the oscillating temperatures, pro-
vided that ∆T2 > 0. For ∆T2 = 0, the phase delay effect

disappears and Eq. (8) simplifies to

q̄

σ
= εeff

(
T 4
1 − T 4

2

)
+ (3ε1 + 2T1ε

′
1)T

2
1∆T 2

1 . (9)

The temperature modulation of only body 1 thus gen-
erates a net heat flux that increases with ∆T 2

1 , even if
its emissivity does not change with temperature (ε′1 =
0 = ε′′1). In this latter case, Eq. (9) becomes q̄ =
σε1

(
T 4
1 − T 4

2 + 3T 2
1∆T 2

1

)
, which, applied to our planet,

explicitly shows that the daily temperature fluctuations
on Earth around T1 enhance its thermal radiation with
outer space. This enhancement keeps up even when both
bodies are at the same mean temperature (T1 = T2 = T ).
In this latter instance, the effect of εeff disappears and Eq.
(8) reduces to

q̄

σ
= 3ε1T

2
(
∆T 2

1 −∆T 2
2

)
+

2ε′1T
3∆T1 (∆T1 −∆T2 cos(α1 − α2)) .

(10)

In the absence of a mean temperature difference (T1 =
T2 = T ) and for a temperature independent emissivity
(ε′ = 0), the net heat flux increases with the differ-
ence of the modulation amplitudes to the second power
(q̄ ∝ T 2

(
∆T 2

1 −∆T 2
2

)
). This proportionality shows that

the temperature oscillations of common materials with an
emissivity nearly independent of temperature, give rise to
a thermal radiation regime different to the classical one
driven by the fourth power of temperatures. The tem-
perature dependence of emissivity (ε′1 ̸= 0), on the other
hand, represents another degree of freedom to modulate
the radiative heat flux, as established by Eq. (10). This
modulation exists even if ∆T1 = ∆T2 = ∆T , for which
q̄ = 2ε′1T

3∆T 2 [1− cos(α1 − α2)] is strongly driven by
the phase delay α1−α2. The in-phase temperature mod-
ulation (α1 = α2) thus eliminates q̄, while the out-of
phase oscillations (α1 − α2 = ±π) maximize it. For an
arbitrary phase delay, the direction of the net heat flux is
no longer determined by the temperature difference, but
rather by the sign of the permittivity slope ε′1(T ). For
ε′1(T ) > 0, q̄ > 0 and hence flows from body 1 to body 2,
while it reverses its direction for ε′1(T ) < 0. In any case,
the fact that q̄ ̸= 0, for T1 = T2 = T , indicates that the
temperature fluctuations could also enhance the far-field
thermal radiation beyond the blackbody limit, for a rela-
tively small temperature difference T1−T2. Equation (7)
and its particular cases in Eqs. (8)-(10) thus reveals the
great potential of oscillating temperatures to enhance,
suppress, and reverse the net heat flux of far-field radia-
tion.

III. RESULTS AND DISCUSSION

We now illustrate the predictions of our theory for
the time-modulated far-field thermal radiation between
a blackbody (ε2 = 1) and VO2, a phase-change material
undergoing a metal-insulation transition around the tem-
perature T0 = 342.5 K [23, 24]. This transition triggers



4

a steep emissivity variation in a narrow temperature in-
terval, which could be exploited to enhance the radiative
heat transfer. The measured VO2 emissivity is shown in
Fig. 1(a) and is well described by

ε1(T ) = εi +
εm − εi

1 + e−β(T−T0)
, (11)

where εi = 0.79 and εm = 0.22 are the emissivities of
VO2 in its insulating and metallic phases, respectively,
and β = 1.57 K−1. Equation (11) predicts that the VO2

emissivity is bound between its values for the metallic
and insulating phases (εm ≤ ε1 ≤ εi), whose ratio is
εi/εm = 3.59. According to Fig. 1(a), this significant
emissivity contrast appears in a relatively small temper-
ature interval (∼ 345−340 = 5 K) and allows to modulate
the radiative heat flux for temperatures across the VO2

phase transition, in which ε′1 and ε′′1 are not zero.
Figure 2 shows the heat flux q, temperature difference

δT1 = ∆T1 cos(2πt/τ), and VO2 emissivity ε1 as func-
tions of time, when both the VO2 and the blackbody
are at the same average temperature T1 = T2 = T .
For δT1 > 0 (green zone in 0 < t/τ < 0.25), VO2

is hotter than the blackbody and mainly keeps in its
low-emissivity metallic phase that generate a relatively
small heat flux q > 0. For δT1 < 0 (yellow zone in
0.25 < t/τ < 0.75), the VO2 temperature decreases and
triggers its high-emissivity insulating phase, for which
the heat flux magnitude increases and changes its direc-
tion to flow from the blackbody to VO2. The subsequent
variations of δT1 > 0 (light blue zone in 0.75 < t/τ < 1)
increase again the VO2 temperature, which induces its
insulator-to-metal transition characterized by a low emis-
sivity and hence low heat flux q > 0. This reversal in
the heat flux direction occurs because the VO2 emissiv-
ity decreases more rapidly than the increase in its tem-
perature, resulting in a net reduction of radiated power
from VO2 despite its higher temperature. The combined
time oscillations of δT1 and ε1 thus generate a heat flux
with a strong nonlinear dependence on the temperature
difference, despite the fact that 10 K = ∆T1 ≪ T0 =
342.5 K. The phase transition of VO2 excited with rel-
atively small and smooth temperature fluctuations thus
triggers sizable variations of the heat flux to generate
a mean (net) heat flux q̄, even when the average tem-
perature of both bodies is the same (T1 = T2 = T ), as
shown in Fig. 2(b). For temperatures inside the inter-
val T0 − ∆T1 ≲ T ≲ T0 + ∆T1 spanning over the VO2

phase transition, the net heat flux flows from the black-
body to VO2 (q̄ < 0) due of the negative temperature
derivative of the VO2 emissivity (ε′(T ) < 0), as pre-
dicted by Eqs. (9) and (11). The minimum of the heat
flux (q̄min = −σT 2

0∆T 2
1 [βT0(εi − εm)− 3(εi + εm)] /2)

occurs at the temperature T ≈ T0, for which ε′(T ) takes
its negative minimum value (−(εi − εm)β/4). This ex-
pression for q̄min can be used to optimize the extraction
of radiative heat flux from the blackbody to VO2. Out-
side of the temperature range T0 −∆T ≲ T ≲ T0 +∆T ,
q̄ becomes positive, independent of T , and proportional
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FIG. 2: (a) Time evolution of the heat flux,
temperature difference δT1 = ∆T1 cos(2πt/τ), and VO2

emissivity driving the far-field thermal radiation
between VO2 and a blackbody. (b) Net heat flux as a

function of temperature T1 = T2 = T for four
temperature amplitudes ∆T1. The green and blue zones

stand for δT1 > 0, while the yellow zone represents
δT1 < 0. Calculations were done with Eq. (2) for

∆T2 = 0 and (T,∆T1) = (T0, 10) K in (a).

to ∆T 2
1 (see Eq. (9)). At high temperature (metallic

phase), q̄ is lower than at low temperature (insulating
phase), as dictated by the VO2 emissivity (εm < εi).
Further, the fact that q̄ = 0 at T ≈ T0 ±∆T , indicates
that the oscillating temperature difference of the bodies
can also be used to thermally insulate them from each
other. The dynamical modulation of the radiating bod-
ies’ temperatures thus provides a new channel of thermal
radiation that exists even in the absence of a stationary
temperature difference.

Figure 3 shows the net heat flux q̄ as a function of
the mean temperature T1 of VO2 exchanging heat with
a blackbody at temperature T2 = T0. Note that q̄ takes
negative values for temperatures around T1 = T2 in which
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the VO2 permittivity slope ε′(T1) < 0 (see Fig. 1(b)),
as predicted by Eq. (9). The magnitude of q̄ can be
greater than the blackbody limit qBB (black solid line),
as revealed by their ratio q̄/qBB increasing with the tem-
perature amplitude ∆T1. This effective super Planckian
radiation (|q̄/qBB |> 1) appears in the vicinity of T1 = T2,
in which q̄ can be greater than twice qBB . The temper-
ature fluctuations are thus expected to significantly en-
hance the far-field thermal radiation beyond the black-
body limit for a relatively small mean temperature dif-

ference T1 − T2 of the radiating bodies.

IV. CONCLUSIONS

We have demonstrated that the far-field thermal radi-
ation between two macroscopic bodies can become effec-
tive super Planckian when their temperature difference
is periodically modulated in time. These temperature
oscillations allow to control the magnitude and direction
of the net heat flux, which exists even in the absence of
a mean temperature difference. Unlike far-field thermal
radiation driven by stationary temperatures, that excited
by an oscillating temperature difference is determined
by the temperature derivatives of the radiating bodies’
emissivity and the oscillations’ amplitude. For a VO2

body exchanging heat with a blackbody, we have found
a higher effective super Planckian heat flux for smaller
temperature differences and larger amplitudes of the tem-
perature fluctuations. Our findings thus uncover the po-
tential of temperature oscillations to enhance the far-field
thermal radiation beyond the Planck’s limit, without go-
ing to the regime of near-field radiation.
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