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Are there intruders ?

Anomaly detection
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Data quality

Training data AI systems reliability is based on inputs lying in 

the training distribution 
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Fault detection 

Symptoms

Anomalies

Root cause

DIAGNOSIS
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Anomaly detection in data streams

7

• Detection on the fly
• Incremental update → speed
• Low complexity → frugality
• Concept drift → non stationarity

Note that these requirements exclude 
deep learning methods



State of the Art

►Adaptation of time series methods
• Prediction models, e.g. based on exponential smoothing

• Do not account for concept drift

►Dynamic clustering
• Outliers do not belong to clusters or are in low density clusters

►Methods relying on KNN
• Based on number of neighbours, e.g., MCOD

• Based on local density (LOF and variants)

►Statistical methods
• Parametric methods, e.g., based on GMM (Smartsifter)

• Non parametric methods, e.g., on line Multiple Kernel Density Estimation (MKDE) 

Many methods deal with transiency, concept drift, infinity and time dependency, 

mostly through the use of windows

But no rapid model update and retain no memory of previously acquired 

knowledge, window size dependency 8



This work
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This work

PhD thesis of Kévin Ducharlet
Détection d'anomalies dans les flux de données pour une application dans les réseaux 
de capteurs (in french), PhD thesis, Computer science & Control, INSA, defended on 
Septembre 28, 2023.
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Capturing the shape of a cloud of points

11



Capturing the shape of a cloud of points (2)

Level sets obtained for a multi-density two disks dataset

• MKDE level sets are much less smooth (overfitting 
problem)

• The dense cluster is not captured precisely by any 

level set

• The yellow level set is the best for the dense cluster 

but it rejects half of the points of the other cluster. 

✓ The red level set nicely captures the two 
clusters

CF level sets (d=6) MKDE level sets
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Capturing the shape of a cloud of points (2)

Level sets obtained for a multi-density two disks dataset with CF and MKDE gaussian kernel

CF level sets (d=6) MKDE level sets
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The Christoffel function
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Empirical measure
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Specific level set

The red level set corresponds to the set Ω𝛾𝑑,𝑝 with the 

threshold 𝛾𝑑,𝑝=𝑑3𝑝/2 as dictated by the CF theory (C=1) 
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In summary
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Dealing with data streams: DyCF method
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Incremental update
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Incremental update

21



Christoffel function score
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Now, can we achieve no tuning at all ? 
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Leveraging the growth properties of CF

Cf. (Lasserre et al. 2022), Lemmas 4.3.1 and 4.3.2)
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CF growth property

d

Normalized score:

+

+

+
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DyCG: Dynamic CF Growth method
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Evaluation
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Two moons data stream (tm)

2 x 2500 samples building two moons 
(500 for initial training)  

+ 

20 outliers uniformly distributed
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Http data stream (http)

t

labels

From the Outlier Detection Data Streams ODDS library (https://odds.cs.stonybrook.edu/)
3 variables, 567498 observations (50000 for initial training), 2211 outliers (≃0,4%)
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Stopping transitions

Industrial luggage conveyor data stream (lc)

Carl Berger-Levrault project

Multimode system, 2 variables, 166926 observations (15000 for initial training), 17 introduced outliers 
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Methods

No deep learning method because no frugality, no fast update, no low tuning. 

KNN based method that 
contrasts sample local density 

with that of its neighbors

Based on the number (parameter k)

of neighboring points laying at a 
given distance

(parameter R)

Sliding window Multivariable 
Kernel Density Estimation 

Based on a Gaussian 
Mixture Model
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Metrics

►AUROC (Area Under the ROC Sensitivity-Specificity curve)
• The higher the better (a value of 0.5 is not better than a random classifier)

►AUPRC (Area Under the Precision-Recall Curve) estimated as AP (Average 
Precision)
• Higher value indicates better precision-recall performance
• Relevant for imbalanced data sets 

►Computation time for one iteration
►Memory size
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Results

d=2
d=6

d=8

d=2
d=6

d=8

Computation time (s/iteration)

Memory size (bytes)

AUROC score

AP score

2

2

2

• DyCF and DyCG are globally positioned at the top
• Best scores for the industrial data stream

• DyCG and ILOF are bad for the http data stream
(p= 3, d=8) 
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Industrial luggage conveyor data stream (lc)

Carl Berger-Levrault project

Anomalies
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Conclusions
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(Ducharlet et al. 2022) Ducharlet, K., Travé-Massuyès, L., Lasserre, J. B., Le Lann, M. V., & Miloudi, Y., Leveraging the 

Christoffel-Darboux kernel for online outlier detection. 2022. URL https://hal.science/hal-03562614.
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