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Anomaly detection

FAULT DETECTION

DATA QUALI

Identify
symptoms

Caus by Are there intruders ?

Guaranty “faults”

correctness

of test data

wrt training
data

e an instance from a distinct distribution
Anomaly * a rare or low-probability instance




Data quality

Training data
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Al systems reliability is based on inputs lying in ANITI S
the training distribution




Fault detection

ANITI ﬁ/

DIAGNOSIS

Anomalies




Anomaly detection In data streams
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Data stream
requirements

Detection on the fly

Incremental update = speed
Low complexity = frugality
Concept drift = non stationarity

Note that these requirements exclude
deep learning methods



State of the Art
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» Adaptation of time series methods

» Prediction models, e.g. based on exponential smoothing
* Do not account for concept drift

» Dynamic clustering
» Qutliers do not belong to clusters or are in low density clusters

» Methods relying on KNN

« Based on number of neighbours, e.g., MCOD
» Based on local density (LOF and variants)

» Statistical methods

« Parametric methods, e.g., based on GMM (Smatrtsifter)
* Non parametric methods, e.g., on line Multiple Kernel Density Estimation (MKDE)

Many methods deal with transiency, concept drift, infinity and time dependency,
mostly through the use of windows
But no rapid model update and retain no memory of previously acquired
knowledge, window size dependency 2
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A hybrid Al anomaly detection method for data streams that:

» |everages the Christoffel function

» related to the Christoffel-Darboux kernel borrowed from the theory of approximation and
orthogonal polynomials
» advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)

» benefits from a clean algebraic framework
» fulfils all data stream requirements
» needs little tuning or no tuning at all
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A hybrid Al anomaly detection method for data streams that:

» leverages the Christoffel function

» related to the Christoffel-Darboux kernel borrowed from the theory of approximation and

orthogonal polynomials
» advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)

» benefits from a clean algebraic framework
» fulfils all data stream requirements

» needs little tuning
A collaboration between two ANITI chairs:
» Polynomial Optimization for Machine Learning and Data Analysis
(Jean-Bernard Lasserre)
» Synergistic Transformations in Model Based and Data Based Diagnosis
(Louise Travé-Massuyes)

PhD thesis of Kévin Ducharlet

Détection d'anomalies dans les flux de données pour une application dans les réseaux
de capteurs (in french), PhD thesis, Computer science & Control, INSA, defended on
Septembre 28, 2023.
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Capturing the shape of a cloud of points

LAAS
Consider a cloud of data points
(x(i))ien C RP

The red curve is the level set:
Ly ={x:Qu(x) <7}y ERy

of a certain polynomial Q4 €R[x1, x2] of
degree 2d.

Notice that £, captures the shape of the
cloud.
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Capturing the shape of a cloud of points (2)

Level sets obtained for a multi-density two disks dataset

CF level sets (d=6)

1.0

0.5 1

0.0 1

_10_

v The red level set nicely captures the two @
clusters
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Capturing the shape of a cloud of points (2)

LAAS
AN 1T 5%
Level sets obtained for a multi-density two disks dataset with CF and MKDE gaussian kernel -

CF Igyel sets (d=6) MKDE level sets

1.0

0.5 1

0.0 1

_10_

Method AUROC AFP
[alp. CF 0.9745 0.7050

MKDE  0.9645  0.6648 @
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The Christoffel function
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» Let ;. be a Borel measure on a compact set 2 C RP with nonempty interior,
» Form the vector vy(x) from a basis of p-variate polynomials of degree at most d:

p+d)
b )

v4(x) is the vector of all monomials of degree less than or equal to d in the graded
lexicographic order

= QY(x) = va(x)" Mg(p)'vge(x), VxeRP

vy(x) = (P1(x),...,Ps@a)(x))" of size s(d) = (

Moment matrix of 1

The Christoffel function A : R° — R, is defined by:
Ag(x)™ = Qy(x)

A, encodes properties of the underlying measure /.
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Empirical measure

LAAS
ANITI

In our case
1
= Z x0)

is the EMPIRICAL measure associated with the cloud of data points (x(/))i<, sampled
from an unknown measure ;. on ).

Empirical moment matrix of 1.,,:

Ma(p) = fop va(Va(®) T du(x)  —  Ma(pn) = 2 Sren va(@)ve(x)

Property: The samples belonging to the support (2 of the empirical measure ., are
confined by a specific level set 2., , where v, , = Cd®*/2 and C a problem-related
constant (cf. (Lasserre et al. 2022), Theorem 7.3. 3).
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Specific level set
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CF level sets (d=6)

1.0 4

0.5 A

0.0 1

—-1.0 -

The red level set corresponds to the set dep with the
threshold y,,=d*?/? as dictated by the CF theory (C=1)
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In summary
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In our case
1 n
HUn = n ;5)((!')
1=

is the EMPIRICAL measure associated with the cloud of data points (x(/));<, sampled
from an unknown measure 1 on (.

I .. and quite remarkably

The level sets of AL"(x)~! match In particular, the level set
the density variations of the cloud of
points (x(i))i<n {xeRP: Ay (x)7! < qgp = Cd*/?}
identifies the support (2 of 1, even for
— AL"(x)~! is a good scoring moderate values of d.
function for anomaly detection
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Dealing with data streams: DyCF method
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The inverse CF AL"(x)~! does not depend on the number of points n, but only on the
number of dimensions p and the degree d

1) Low memory: My(1,)~! can be seen as en encoding of the whole data
set

2) Low computation: incremental update of A/"(x)~! with rank-one update
of the inverse My(j1,) !

When a point ¢ is added to the cloud of ¢

points, I.e., I¥" The Sherman-Morrisson-Woodbury
. 1 (M4 6.) formula allows for a simple RANK-ONE
pn = (M UPDATE of the inverse My(,) !

— a new cloud with n+1 points
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Incremental update
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Incremental inversion of a matrix A with the Sherman-Morrison-Woodbury formula:

A lyvTA-1
14+ viA-1uy

(A+uv)t=A"1_

The moment matrix My (1,) ! can be rewritten with the incremental formula:

1
n+1 [gMd(ﬂnl + Vd (Xn+121’d (Xn—l—l)i]

Tt Y Y

Md(ﬂ'n+1) =

A u vl

(MM (1))~ Va (Xn+1)Va (Xn1) " (MM (120))

= (0 DMo(pn)) ™ = (M) = e S Mg () V(s 1)
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Incremental update
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(”Md(ﬂn))_lvd (Xn+1)Va(Xnt1) T(”Md (1en)) -1

—  ((n+ I)Md(ﬂnJrl))_l — (nMd(u”))_l B 1+ vg(Xne1) T (Mg (pn)) "1 vg(Xne1)

T T
15 20 25
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Christoffel function score
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DyCF requires only one parameter to be fixed: d

The theory dictates to use the level set defined by (2., ,, where v, = Cd3/2.

ﬂ;’*(x)_l

Normalized scoring function : Sy p(x) = os

If C=1, a point x is defined as an outlier if Sy p(x) > 1.

Now, can we achieve no tuning at all ?

22



everaging the growth properties of CF

As d grows, AL (x)~! has:
POLYNOMIAL growth  INSIDE €
EXPONENTIAL growth OUTSIDE 2

dr+ 2

0

¢

Cf. (Lasserre et al. 2022), Lemmas 4.3.1 and 4.3.2) .



CF growth property
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DyCG: Dynamic CF Growth method
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DyCG : two DyCF models of degrees dp,j, and dpax

: : Sdmax .0 (X) =S, .p(X)
" ! — max P m;n!p
DyCG scoring function: S|, , (x) =  —

QOutlierness threshold is 0:

Inliers — Sy, p(X) < Sy, p(x) — S

max -pdmr'n P

(x) <0

Outliers —s Sg,, p(X) > Sapnp(X) — [ S 4 (%) >0

dmin @and dnax are fixed at 2 and 8 once and for all: DyCG is tuning free.
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Evaluation
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Two moons data stream (tm)
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2 x 2500 samples building two moons
(500 for initial training)

+
20 outliers uniformly distributed




Http data stream (http)
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From the Outlier Detection Data Streams ODDS library (https://odds.cs.stonybrook.edu/)
3 variables, 567498 observations (50000 for initial training), 2211 outliers (=0,4%)

labels m——) - o l
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https://odds.cs.stonybrook.edu/

Industrial luggage conveyor data stream (Ic)
Carl Berger-Levrault project ANITIECS

Multimode system, 2 variables, 166926 observations (15000 for initial training), 17 introduced outliers

- Normal running mode
0.8 - -
wavy luggage
26 3 ;
'c <
] ‘
)
o :-
m < . P 3
s Stopping transitions :
0.4 4 x
x
X
0.2 LY
X
x . .
x| Stop mode Startup transitions
001 @) > p
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Intensity
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Methods

Sliding window Multivariable
Kernel Density Estimation

Based on a Gaussian
Mixture Model

Based on the number (parameter k)

of neighboring points laying at a
given distance

(parameter R)

KNN based method that

contrasts sample local density
with that of its neighbors

No deep learning method because no frugality, no fast update, no low tuning.
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Method Parameters Range Wim — Wile  Whitp
threshold (not informed) - - - -
Sliding . : {100, 200, 500, 1000, -
MKDE window size W 2000, 5000} 200 5000 5000
kernel (fixed) gaussian - - -
bandwidth (fixed) Scott’s rule - - -
threshold (not informed) - - - -
nb of gaussians k {2,5,10,15,20} 15 10 2
SmartSifter disounting param r {0.001,0.005,0.01} 0.01 0.01 0.001
stability param a {1,1.5,2} 1.5 1 2
nb of neighbors k (not informed) - - - -
0SCOD radius R {01,02,051 1o g9 05
1.2,1.5)
. : {100, 200, 500, 1000, .
window size W 2000, 5000} 200 100 5000
threshold (not informed) - - - -
ILOF nb of neighbors k {5,10, 15,20, 25,30} 5 25 30
window size W {100, 200, 500} 200 100 200
DyCF degree d {2,4,6,8} 6 8 2
DyCG no need - - - -

30
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» AUROC (Area Under the ROC Sensitivity-Specificity curve)

* The higher the better (a value of 0.5 is not better than a random classifier)

» AUPRC (Area Under the Precision-Recall Curve) estimated as AP (Average
Precision)

* Higher value indicates better precision-recall performance
* Relevant for imbalanced data sets

» Computation time for one iteration
» Memory size

31
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*  DyCF and DyCG are globally positioned at the top
* Best scores for the industrial data stream

* DyCG and ILOF are bad for the http data stream

(p=3, d=8)

worse

better
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10—1 E

10—2 -

1073 4

1074 5

1putation time (s/iteration)

107 A
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10° 4

10* 4
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worse

better

worse

32



Industrial luggage conveyor data stream (Ic)

Carl Berger-Levrault project

ANITI

Entrainement

Anomalies

33



Conclusions

LAAS
Dy-CF and Dy-CG are simple and easy-to-use methods with little or no tuning at all

They achieve excellent results compared to other more tricky anomaly detection
methods

The Christoffel function provides interesting theoretical foundations
» It nicely deals with data streams thanks to the moment matrix encoding and its
incremental update
» Future work:
» adding forgetting ability
scaling up to high dimensions

extend to abnormal trajectory detection
integrate with other tasks.
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(Lasserre et al. 2022) Lasserre JB, Pauwels E, Putinar M (2022) The Christoffel-Darboux Kernel for Data Analysis. Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press, https://doi.org/10.1017/9781108937078

(Ducharlet et al. 2022) Ducharlet, K., Travé-Massuyes, L., Lasserre, J. B., Le Lann, M. V., & Miloudi, Y., Leveraging the
Christoffel-Darboux kernel for online outlier detection. 2022. URL https://hal.science/hal-03562614. 34
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