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Uniform Ultimate Boundedness Analysis for Linear Systems with
Asymmetric Input Backlash and Dead-zone: A Piecewise Quadratic

Lyapunov Function Approach

A. Pierron1,2 J. Kreiss1 M. Jungers1 G. Millérioux1 J. Dupont2 M. Martig2

Abstract— This paper deals with the interconnection be-
tween a linear system and a nonlinear operator consisting
of asymmetric input backlash and asymmetric dead-zone.
The uniform ultimate boundedness of the system is studied.
A piecewise quadratic Lyapunov function, suitable with the
polyhedral description of the nonlinear operator is proposed.
The conservatism of existing results is therefore reduced. The
effectiveness and improvement of the results are assessed using
a numerical example.

Index Terms— Backlash, dead-zone, stability analysis, piece-
wise quadratic Lyapunov function, uniform ultimate bounded-
ness.

I. INTRODUCTION

The system investigated in this paper is a linear plant
whose input acts via a nonlinear operator exhibiting asym-
metric backlash and asymmetric deadzone. The presence of
a backlash operator (labelled also as a play operator [1]) is
motivated by a large range of nonlinear system applications
(see for instance [2]) and in particular when a cylinder is
used. Its intrinsic presence in the well known Hysteresis
phenomena and its relation to nonlinear memory effects (see
Prandtl-Ishlinkskii models [3], [4] for instance) makes it
essential in many applications. The deadzone is widespread
in mechanics to model solid/dry frictions for instance and
is closely associated with the saturation nonlinearity. These
two types of nonlinearities are nevertheless rarely studied
together, even if they can be coupled in real systems. A
main difficulty is that the backlash operator is only piecewise
differentiable. In addition and because of the memory effect,
such a phenomenon requires to be described by its time
derivative, when it exists. Various solutions propose to com-
pensate the backlash operator by an inversion. For instance,
[5] mimics the backlash by an hybrid system and proposes
a controller as an other hybrid system to compensate the
backlash operator. An other example is in [4], where its
inverse is constructed analytically and used as a feedforward
compensator. However, this requires an exact knowledge of
the nonlinearity.

Due to the structure of the studied system which may fail
to be stable, we are interested in providing guarantees of
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the Uniform Ultimately Boundedness (UUB) property, by
following [6]. The analysis is performed thanks to a UUB-
Lyapunov function which present the following properties:
(i) outside the unit level set (i.e. when its value is greater
than 1), it decreases along the trajectory of the system and
(ii) after reaching this level-set, the trajectory remains inside
it. The aim, here, is to provide tractable sufficient conditions
as parameterized Linear Matrix Inequalities (LMIs) and
an optimization problem, as a semidefinite program, that
minimizes (an estimate of the size) of the unit level-set of
this UUB-Lyapunov function.

In order to reduce the conservatism of considering only
common quadratic UUB-Lyapunov function to ensure the
UUB property [7], we propose here to investigate a piecewise
quadratic Lyapunov function. This kind of Lyapunov func-
tions has been introduced in the middle of the 90’s to deal
with piecewise affine systems, which are defined as affine
dynamics over regions corresponding to a polyhedral parti-
tion of the state-space (see for instance [8] and references
therein). Such a tool has been used successfully for specific
hybrid systems [9], [10] or systems with saturation or dead-
zone [11], [12], and even more complex nonlinearities [13].
To the best of our knowledge, such a tool has not been
considered for complex nonlinear operator with backlash, as
the one investigated here.

The paper is organized as follows. Section II introduces the
problem by describing the nonlinear operator and recalling
the definition of Uniform Ultimate Boundedness. Section III
details the preliminaries dealing with the structure of the
piecewise quadratic UUB-Lyapunov functions and the char-
acterization of the nonlinear operator. These preliminaries
are combined in the main result in Section IV to provide
sufficient conditions that ensure the UUB property. These
conditions are expressed as parameterized LMIs and an op-
timization problem to optimize the size of the resulting UUB-
set is provided. Section V demonstrates, on an example, the
effectiveness of our method and the providing improvement
with respect to the literature. We finally conclude in Sec-
tion VI.

Notation: In stands for the identity matrix of dimension
n and 0n×m stands for the null matrix of dimensions n×m,
with 0n = 0n×n. For a matrix M ∈ Rn×m, M⊤ denotes
its transpose. For a square matrix M ∈ Rn×n, He(M) =
M +M⊤ and M ≻ 0n (M ⪰ 0n) means that M is positive
(semi-)definite. For two symmetric matrices M1,M2 of same
dimension, M1 ≻ M2 (M1 ⪰ M2) means M1 − M2 ≻ 0



(M1 −M2 ⪰ 0). The same symbol is used for vectors: for
a vector z ∈ Rn, z ⪰ 0 means that all entries of the vector
z are non-negative. For a matrix M , M(j) M(i,j) denote
respectively its j-th row and its (i, j)-th entry. The symbol ⋆
denotes a symmetric block in symmetric matrices. For square
matrices W and Z, diag(W,Z) corresponds to the block-
diagonal matrix.

II. PROBLEM FORMULATION

A. System description

We consider in this paper the continuous-time system of
the form:

ẋ(t) = Ax(t) +BΦ[f ](t),
f(t) = Kx(t),

(1)

where we denote the state x ∈ Rn, with initial state x(0) =
x0 ∈ Rn, and the input f(t) ∈ R which is scalar for the
sake of simplicity. However, the same developments may be
applied to extend the study to the multiple input case, by
assuming a componentwise definition of the operator Φ. The
matrices A ∈ Rn×n, B ∈ Rn×1 and K ∈ R1×n are constant
and given. The nonlinear operator Φ gathers asymmetric
backlash and asymmetric dead-zone. It is the main source
of difficulty and its definition requires a special attention.

The nonlinear operator Φ[f ](·) exhibits an hysteresis
memory and is defined for continuous and piecewise dif-
ferentiable function f ∈ C1

pw([0,+∞);R). If the unbounded
sequence of times {tj}j∈N is such that f is differentiable
over ]tj , tj+1[, then we have the evolution of the nonlinearity
output given for all time t ∈]tj , tj+1[, ∀j ∈ N :

˙︷ ︸︸ ︷
Φ[f ](t) =



laḟ(t) if Φ[f ](t) ≥ 0 and
((

ḟ ≥ 0 and
Φ[f ](t) = la(f(t)− ρa − h)

)
or(

ḟ(t) ≤ 0 and Φ[f ](t) = la(f(t)− ρa)
))

lbḟ(t) if Φ[f ](t) ≤ 0 and
((

ḟ ≤ 0 and
Φ[f ](t) = lb(f(t) + ρb + h)

)
or(

ḟ(t) ≥ 0 and Φ[f ](t) = lb(f(t) + ρb)
))

0 otherwise
(2)

Remark 1: Equation (2) defines the three possible deriva-
tives of the nonlinear operator, depending on distinct and
asymmetric branches on Figure 1. That follows the definition
of the backlash in [6] but adapted to the backlash combines
with the asymmetric deadzone and the asymmetry related to
the sign of its input.

The parameters of the nonlinearity Φ are h, la, lb, ρa, ρb ∈
R>0 and are respectively called the backlash width, the
inclination and the threshold when f is positive and negative.
The characteristic of the Φ is depicted on Figure 1.

B. Activation of the non-linearity

The function t 7→ Φ[f ](t) is continuous. The evolution
of the output Φ[f ](t) is well defined by relation (2). Never-
theless, the initial condition Φ[f ](0) is not uniquely defined

f(t)ρa ρa + h

Φ[f ](t)

−ρb − h −ρb

la la

lb lb

Fig. 1. Characteristic of the non-linear operator Φ.

by the knowledge of the function f ∈ C1
pw([0,+∞);R) but

belongs to an interval depending on the initial value f(0):

Φ[f ](0)∈


[lb(f(0) + ρb);min(0, lb(f(0) + ρb + h)],

if f(0) ≤ −ρb;
{0}, if ρb ≤ f(0) ≤ ρa;
[max(0, la(f(0)− ρa − h)); la(f(0)− ρa)],

if ρa ≤ f(0).
(3)

It can be interpreted as a memory effect.
The following sets Σi, i ∈ I = {1, · · · , 4}, are introduced

for the formal developments and proofs given in the sequel.

Σ1={(x, ϕ) ∈ Rn+1, ϕ ≥ 0,

ϕ+ laρa ≤ laKx ≤ ϕ+ la(ρa + h)},
Σ2={(x, ϕ) ∈ Rn+1, 0 ≤ Kx ≤ ρa, ϕ = 0},
Σ3={(x, ϕ) ∈ Rn+1,−ρb ≤ Kx ≤ 0, ϕ = 0},
Σ4={(x, ϕ) ∈ Rn+1, ϕ ≤ 0,

ϕ− lb(ρb + h) ≤ lbKx ≤ ϕ− lbρb},
Σ=∪i∈IΣi.

We have the following lemma, whose proof is developed
in [7] and inspired by [14].

Lemma 1: For any function f ∈ C1
pw([0,+∞);R), let

consider an initial condition for the output Φ[f ](0) such
that (f(0),Φ[f ](0)) ∈ Σ. Then, the function t 7→ Φ[f ](t)
is uniquely defined and (f(t),Φ[f ](t)) ∈ Σ, ∀t ∈ R≥0.

Hereafter, we will consider the following assumption.
Assumption 1: The initial condition Φ[Kx](0) is chosen

such that (Kx(0),Φ[Kx](0)) ∈ Σ.

C. Uniform Ultimate Boundedness property

The major concern of this study is in the neighborhood
of the origin. Indeed, because of the dead zone behavior
of Φ around zero, one can easily see that Φ[Kx](t) = 0
and the system (1) is in open-loop. The open-loop system
might present unstability (since no assumptions are made on
matrix A) for the origin, which prevent us to study stability
of System (1). Moreover, (1) may exhibit infinite number of
equilibrium points (this is the case when zero is an eigenvalue
of A).

For all these reasons, we are interested in a weaker
notion than stability which is known as Uniform Ultimate
Boundedness (UUB) for system (1), whose definition is as
follows.



Definition 1 (UUB): [15, Definition 4.6] The trajectory
of system (1) is uniformly ultimately bounded with ultimate
bound b if there exist positive constants b and c, independent
of t0 > 0, and for every a ∈ (0, c), there is T = T (a, b) ≥
0, independent of t0, such that ∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤
b, ∀t ≥ t0+T . A set of the state-space implying that ∥x∥ ≤ b
is called a UUB-set.

The nonlinear operator having affine branches with respect
to f(t) = Kx(t), we introduce the next assumption.

Assumption 2: The triplet (A,B,K) is such that the ma-
trices (A−BlkK), k ∈ {a, b}, are Hurwitz.

Assumption 2 allows to cope with possibly not Hurwitz
matrix A and will be a necessary condition for the feasability
of the LMIs in the main result (see Theorem 1 in Section IV
and also [6]).

Based on Definition 1, we investigate the following prob-
lem.

Problem 1 (Uniform Ultimate Boundedness analysis):
Given the system (1) and a gain K such that Assumptions 1
and 2 hold, minimize the size of the UUB-set of System (1),
for which the UUB property is guaranteed.

III. PRELIMINARIES AND TECHNICAL RESULTS

Our approach to solve Problem 1 is based on the idea
presented in [15, Theorem 4.18] using a Lyapunov-like
function (called in the following UUB-Lyapunov function)
that decreases along the trajectory outside its unit level set
and remains less than 1 inside.

Since the system is defined over a polyhedral partition (due
to the non-linear operator), and in order to fit as much as
possible the UUB-set, we will consider piecewise Lyapunov
functions over this partition. This is the main improvement
with respect to the result in [7].

In this case, we need to ensure continuous property of
the overall UUB-Lyapunov function on the borders of each
region. In the following, we will ensure, over each intersec-
tion between a region of the partition and the complementary
of the unit level set of the UUB-Lyapunov function, that
the regional Lyapunov function is decreasing. The associated
conditions will involve the state x, the nonlinearity Φ and
its time-derivative Φ̇.

Finally, since in [7], it is shown that the non-linearity Φ
satisfies quadratic sector conditions w.r.t. the state, Φ and
Φ̇, and since the sets Σi are compatible with intersection
of hyperplans depending only on the state, we focus on
Lyapunov functions that are quadratic with respect to x only.

Therefore, we are looking in this paper at continuous
piecewise quadratic UUB-Lyapunov function. This section
will provide the tools and notations to formalize Prob-
lem 1, before presenting the main result in Section IV.
Subsection III-A treats the structure of continuous piecewise
quadratic UUB-Lyapunov function. Subsection III-B offers
a background for the nonlinear operator.

A. Structure of a continuous piecewise quadratic UUB-
Lyapunov function

From the definitions of Σi, i ∈ I, we can divide the
state space Rn in 4 regions bounded by the three parallel

hyperplans f(t) = Kx(t) ∈ {−ρb; 0; ρa}. Figure 1 shows
the relevance of such a decomposition. In order to highlight
the polyhedral partition, we introduce the notation x̄ =(
x⊤ 1

)⊤ ∈ Rn+1 and the following polyhedral partition
(see [8, Definition A.8]) of the state-space Rn related to
the definition of sets Σi, i ∈ I. Let us define Xi = {x ∈
Rn, Xix̄ ⪰ 0}, i ∈ I, with Xi ∈ Rni×(n+1),

X1 =
[
K −ρa

]
, X4 =

[
−K −ρb

]
,

X2 =

[
−K ρa
K 0

]
, X3 =

[
K ρb
−K 0

]
.

We can check that ∪i∈IXi = Rn and that only the
intersections between consecutive sets are not empty, such
that only Xi ∩ Xi+1 ̸= ∅, i ∈ {1, 2, 3}. In addition the
sets Xi are closed and the intersections of their interiors are
empty. The origin belongs only to X2 and X3. We introduce
I0 = {2, 3} ⊂ I, the set of indices i such that 0 ∈ Xi. The
projection of Σi on its n-first components belongs to Xi,
i ∈ I.

By following the method detailed in [8, Appendix A], we
can build the continuity matrices F̄i ∈ R(n+3)×(n+1), i ∈ I,
based on the three halfplanes {x ∈ Rn, Kx − ρa ⪰ 0},
{x ∈ Rn, Kx+ 0 ⪰ 0} and {x ∈ Rn, −Kx− ρb ⪰ 0} as

F̄1 =


K −ρa
K 0

01×n 0
In 0n×1

 , F̄2 =


01×n 0
K 0

01×n 0
In 0n×1

 ,

F̄3 =


01×n 0
01×n 0
01×n 0
In 0n×1

 , F̄4 =


01×n 0
01×n 0
−K −ρb
In 0n×1

 .

By construction, the origin belonging in X2 and X3, the
last column of F̄2 and F̄3 are trivial. For i ∈ I0, we denote
Fi ∈ R(n+3)×n, the extraction of the first n columns of F̄i.
This choice allows to impose

F̄ix̄ = F̄i+1x̄, ∀x ∈ Xi ∩ Xi+1, i ∈ {1, 2, 3}. (4)

The last block rows in F̄i, i.e.
[
In 0n×1

]
, translates

the continuity of the state in Rn.
This polyhedral partition {Xi}i∈I of Rn, compatible with

the sets Σi, i ∈ I, depends only on the state x. For
this reason, we focus on regional UUB-Lyapunov functions
that are quadratic forms with respect to the state. As a
consequence, we can look for a UUB-Lyapunov function in
the class of continuous piecewise quadratic functions, defined
by

V (x) = Vi(x), x ∈ Xi, (5)

where the regional quadratic functions Vi(x) are given by

Vi(x) =

{
x̄⊤P̄ix̄ = x̄⊤F̄⊤

i T F̄ix̄, ∀i ∈ I/I0,
x̄⊤P̄ix̄ = x⊤Pix = x⊤F⊤

i TFix, ∀i ∈ I0,
(6)

with T = T⊤ ∈ R(n+3)×(n+3), a weighting matrix.
Lemma 2 ( [9]): The function V (·) defined by (5) and

(6) is continuous over Rn, irrespectively to the weighting
matrix T .



Proof: The regional quadratic function (6) are continu-
ous. To prove the continuity property, we have to check the
continuity of V on the non-empty intersections of the regions
Xi. Thanks to the relation (4), we have ∀x ∈ Xi ∩ Xi+1,
i ∈ {1, · · · , 3}

Vi(x) = x̄⊤F̄⊤
i T F̄ix̄ = x̄⊤F̄⊤

i+1T F̄i+1x̄ = Vi+1(x).

The piecewise quadratic function V is thus continuous
over Rn, without constraint about the weighting matrix T .

In order to obtain other required properties of V via Lem-
mas 3 and 4, let us describe the building of the polyhedral
cell bounding related to the polyhedral partition of Rn [8,
Algorithm A.1]:

• If i ∈ I0, Ēi is obtained by deleting all rows of Xi

whose last entry is non-zero. Ei is then obtained by
extracting the n first columns of the resulting Ēi.

• If i ∈ I \ I0, Xi is unbounded and Ēi is obtained by
augmenting Xi with the row

[
01×n 1

]
.

This procedure leads to

Ē1 =

[
K −ρa

01×n 1

]
, Ē4 =

[
−K −ρb
01×n 1

]
,

E2 = K, E3 = −K,

and ensures the implications

∀i ∈ I0, x ∈ Xi ⇒ Eix ⪰ 0, (7)
∀i ∈ I \ I0, x ∈ Xi ⇒ Ēix̄ ⪰ 0. (8)

Lemma 3: Assume that V obeys Equations (6), then there
exists a scalar β > 0 such that V (x) ≤ β∥x∥2, ∀x ∈ Rn.

Proof: The idea of the proof can be found in the
appendix of [9]. The main argument is that in an open
neighborhood of the origin, V is piecewise quadratic with
respect to the state x (instead of x̄, there is no affine term
in x or constant term). For i ∈ I0, there exists βi > 0 such
that Vi(x) ≤ βi∥x∥2. By construction, there exists ϵ > 0
small enough such that ∥x∥2 ≤ ϵ implies that x ∈ ∪i∈I0

Xi.
Contraposing this statement implies, x ∈ ∪i∈I\I0

induces
∥x∥2/ϵ ≥ 1. For each i ∈ I\I0, there exists β̃i > 0 such that
Vi(x) ≤ β̃i∥x̄∥2 ≤ β̃i(1 + 1/ϵ)∥x∥2 = βi∥x∥2, with βi =
β̃i(1+1/ϵ). The proof ends by selecting β = maxi∈I βi.

Lemma 4: If there exist a symmetric matrix T ∈
R(n+3)×(n+3) and matrices Ui, i ∈ I of adequate dimensions
with nonnegative entries, such that the LMIs

F⊤
i TFi − E⊤

i UiEi ≻ 0n, i ∈ I0 (9)

F̄⊤
i T F̄i − Ē⊤

i UiĒi ≻ 0n+1, i ∈ I \ I0, (10)

hold, then there exists α > 0 such that V (x) ≥ α∥x∥2.
Proof: The strict inequalities (9) allow the existence of

αi > 0 small enough such that 0n can be replaced in (9) by
αiIn. Multiplying left and right the resulting inequalities by
x⊤ and x respectively leads to i ∈ I0

Vi(x)− αi∥x∥2 ≥
∑
j,k

Ui,(j,k)(Ei,(j)x)(Ei,(k)x) ≥ 0.

The latter inequality comes from implication (7). We proceed
in the same way for inequalities (10) by replacing 0n+1 by
diag(αiIn, 0) and multiplying the result by x̄⊤ and x̄, i ∈
I \ I0:

Vi(x)− αi∥x∥2 ≥
∑
j,k

Ui,(j,k)(Ēi,(j)x̄)(Ēi,(k)x̄) ≥ 0.

The latter inequality is a consequence of implication (8).
Selecting α = mini∈I αi completes the proof.

Due to Lemmas 2 3 and 4, V can act as a candidate
continuous UUB-Lyapunov function.

B. Characteristics of the nonlinear operator

This subsection aims at providing sufficient conditions en-
suring that the UUB-Lyapunov function V decreases outside
its unit level set, (that is on {x ∈ Rn, V (x) ≥ 1}), by taking
advantage of the characteristics of the nonlinear operator Φ.

To use Assumption 2, we consider an adaptation of the
dual nonlinear operator Ψ related to the nonlinear operator
Φ, (see [6] and [7]) by:

Ψ[Kx](t) = Φ[Kx](t)− liKx(t), ∀x ∈ Xi, (11)

with l1 = l2 = la and l3 = l4 = lb. The characteristic of the
nonlinear operator Ψ is depicted in Figure 2. The interest is
that for Ψ is bounded, in particular when x ∈ Σ1 ∪ Σ4.

f(t)

Ψ[f ](t)
lb(ρb + h)

lbρb

−laρa

−la(ρa + h)

−lb

ρa−ρb

−la

Fig. 2. Characteristic of the dual nonlinear operator Ψ.

In order to express compactly the dynamics and the
quadratic sector conditions related to Φ, we consider the
augmented vectors

z =
(
x⊤ Ψ Ψ̇ 1

)⊤ ∈ Rn+3,

y =
(
x⊤ Φ Φ̇ 1

)⊤ ∈ Rn+3,

that are related one another by y = Niz over x ∈ Xi, where

Ni =

 In 0 0 0
liK 1 0 0

liK (A+BliK) liKB 1 0
0 0 0 1

, i ∈ I.

In addition, we have x̄ = N0z, with

N0 =

(
In 0n×1 0n×1 0n×1

01×n 0 0 1

)
.



It is thus possible to rewrite the dynamics (1) as:

˙̄x(t) = Γiz(t), x ∈ Xi, (12)

where, i ∈ I,

Γi =

(
A+BliK B 0n×1 0n×1

01×n 0 0 0

)
∈ R(n+1)×(n+3).

Let us now focus on the characteristics of the nonlinear
operator. We can distinguish two kinds of conditions:

• Several conditions can be expressed as polyhedral con-
straints related to x, Ψ and also Ψ̇. They correspond
to a reformulation of the sets Σi ∈ Rn+1, i ∈ I,
and furthermore to the fact that in Σ2 and Σ3, we
have Φ̇ = 0. It results to the polyhedral constraints
{z ∈ Rn+3, Ḡiz ⪰ 0}, with

Ḡ1 =

 l1K 1 0 0
01×n −1 0 −l1ρa
01×n 1 0 l1(ρa + h)

 ,

Ḡ4 =

 −l4K −1 0 0
01×n −1 0 l4(ρb + h)
01×n 1 0 −l4ρb

 ,

and for i ∈ I0,

Ḡi =


K 0 0 (i− 2)ρb
−K 0 0 (3− i)ρa
liK 1 0 0
−liK −1 0 0

liK(A+BliK) liKB 1 0
−liK(A+BliK) −liKB −1 0

 .

• Equation (2) allows sector conditions in Σ1 and Σ4.
They are gathered in Lemma 5 which is proven in [7].

Lemma 5: In Σ1, we have the following quadratic sector
conditions, for any α1 ≥ 1:

Φ̇ (Ψ + l1 (ρa + h/2)) ≤ 0, (13)

Φ̇
(
Φ̇− α1l1Kẋ

)
≤ 0, (14)

which imply that the quadratic forms in z satisfy respectively
z⊤M1,1z ≤ 0 and z⊤M2,1z ≤ 0, with

M1,1 = N⊤
1


0 0 −K⊤l1 0
⋆ 0 1 0
⋆ ⋆ 0 l1

(
ρa +

h
2

)
⋆ ⋆ ⋆ 0

N1,

M2,1 = N⊤
1

0 0 − (α1l1KA)⊤ 0

⋆ 0 − (α1l1KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N1.

In Σ4, we have the following quadratic sector conditions,
for any α4 ≥ 1:

Φ̇ (Ψ− l4 (ρb + h/2)) ≤ 0, (15)

Φ̇
(
Φ̇− α4l4Kẋ

)
≤ 0, (16)

which imply that the quadratic forms in z satisfy respectively
z⊤M1,4z ≤ 0 and z⊤M2,4z ≤ 0, with

M1,4 = N⊤
4

0 0 −K⊤l2 0
⋆ 0 1 0
⋆ ⋆ 0 −l2

(
ρb +

h
2

)
⋆ ⋆ ⋆ 0

N4,

M2,4 = N⊤
4

0 0 − (α4l4KA)⊤ 0

⋆ 0 − (α4l4KB)⊤ 0
⋆ ⋆ 2 0
⋆ ⋆ ⋆ 0

N4.

Proof: The proof can be found in the Lemmas in [7].

IV. MAIN RESULT

This section provides sufficient conditions, expressed in
terms of parameterized Linear Matrix Inequalities, in order
to obtain a solution to Problem 1. Theorem 1 gathers these
sufficient conditions and finally an optimization problem is
presented to select a solution optimizing the size of the UUB-
set.

Theorem 1: Consider the system (1) that verifies Assump-
tion 1. Assume that there exist a symmetric matrix T ∈
R(n+3)×(n+3), matrices Ui and Wi, i ∈ I with suitable
dimensions and nonnegative components, positive scalars
τ0,i, τ1,1, τ2,1, τ1,4, τ2,4, such that the inequalities (9), (10)
and

Πi + Ḡ⊤
i WiḠi ≺ 0, i ∈ I0, (17)

Πi − τ1,iM1,i − τ2,iM2,i + Ḡ⊤
i WiḠi ≺ 0, i ∈ I \ I0,(18)

where

Πi = He
(
Γ⊤
i P̄iN0

)
− τ0,i

(
diag(0n, 0, 0, 1)−N⊤

0 P̄iN0

)
, i ∈ I,

hold. Then, for any initial choice of initial conditions
(Kx(0),Φ[Kx](0)) satisfying Assymption 2, the system (1)
is UUB with the UUB-Lyapunov function V given by (5)–(6)
and the UUB-set

LV = {x ∈ Rn, V (x) ≤ 1}. (19)

Proof: Let us consider the function V having the struc-
ture detailed in (6). V is continuous over Rn. The unit level
set LV , defined by (19) is then closed. The inequalities (9)
and (10) being satisfied, Lemmas 3 and 4 apply and thus V is
a UUB-Lyapunov function candidate. Consider the structure
of matrices Πi, we have

z⊤Πiz = 2 ˙̄x⊤P̄ix̄− τ0,i(1− x̄⊤P̄ix̄),

= V̇ (x)− τ0,i(1− V (x)), ∀i ∈ I.

For i ∈ I0, thanks to the strict inequality (17), there exists
δi > 0 such that

V̇ (x)− τ0,i(1− V (x)) + δi∥x∥2

≤ −
∑
j,k

Wi,(j,k)(Ḡi,(j)z)(Ḡi,(k)z),



leading to V̇ (x) ≤ − δi
α V (x) in Xi \ LV , i ∈ I0, due to the

S-procedure.
For i ∈ I \ I0, the strict inequality (18) implies that there

exists δi > 0 such that

V̇ (x)− τ0,i(1− V (x))− τ1,iz
⊤M1,iz − τ2,iz

⊤M2,iz

+ δi∥x∥2 ≤ −
∑
j,k

Wi,(j,k)(Ḡi,(j)z)(Ḡi,(k)z),

leading to V̇ (x) ≤ − δi
α V (x) in Xi \LV , i ∈ I \ I0. Finally

denoting δ = mini∈I δi, we have

V̇ (x) ≤ − δ

α
V (x), ∀x ̸∈ LV .

The latter inequality guarantees that, outside LV , the function
V decreases exponentially to reach (in finite time) the value
1 and moreover remains below the value 1 for all future time
(see [15]). In other words, the set LV is positively invariant
by the dynamics (1).

Remark 2: It is noteworthy that the use of the S-procedure
with matrices Wi in (17) and (18) is not the only way
to consider the polyhedral constraints. Other structures are
proposed in [16] for instance. One may also use a more
general cone sector conditions in Σ2 and Σ3 to take into
account the case when Φ = 0 and Φ̇ = 0, as in [7]. Finally
it should be underlined that the nonlinear operator is not the
unique one satisfying the sector bounded conditions in zones
1 and 4.

Among all the solutions of Theorem 1, we would like to
select the one minimizing the size of the level set LV (19).
The difficulty is to have a cost function of an optimization
problem that is related to the size of a level set of a
piecewise quadratic positive function and also that depends
only in the variables of the constraints in Theorem 1. By
following the discussion in [8, Section 7.1], the level set of a
piecewise quadratic positive function consists in a collection
of ellipsoids parts. We suggest to consider the average of the
size of these ellipsoids as an approximation of the size of
the level set LV . In other words, we would like to minimize
Tr(Q), where Q = Q⊤ such that

Q In · · · In
In P1 0n
...

. . .
In 0n P4

 ≻ 0, (20)

which is equivalent, due to a Schur complement, to Q ≻∑
i∈I P−1

i .
Remark 3: Other choices may be possible to approximate

the size of LV . Furthermore, it is possible to weight the
matrices Pi in (20) to take into account the ratio of the
fragments of ellipsoids composing LV . The size of each
ellipsoid is related to Pi and not P̄i, that contains also a
shift of the ellipsoid center.

Let us provide the optimization problem that offers a
solution to Problem 1.

min
T,Q,Ui,Wi,τ0,i,τ1,1,τ2,1,τ1,4,τ2,4

Tr(Q),

under (9), (10), (18), (17).

Notice that the constraints in the optimization problem are
LMIs if the parameters τ0,i are given.

V. NUMERICAL ILLUSTRATION

In order to illustrate our result and compare it with the
available results in the literature, we consider the example
coming from [7]. The linear system is a double integrator
and the gain K satisfies Assumption 2.

A =

(
0 1
0 0

)
, B =

(
0
1

)
, K =

(
−2 −3

)
.

la = 1, lb = 1.2, ρa = 0.1, ρb = 0.2, h = 0.2.

We impose τ0,i = τ0, ∀i ∈ I, to have a single parameter
in the line search. The optimal value of Tr(Q) depends on
the parameter τ0. This dependency is depicted in Figure 3. In
order to numerically validate the fact that Tr(Q) approaches
the area of LV , we compute a posteriori the area of LV after
solving the optimization problem. We can see on Figure 3,
that the two curves have the same shape. We can explain the
curve as follows: for τ0,i equal to zero, our conditions are
not feasible because it is not possible with A not Hurwitz to
obtain stability of the origin. We need to take into account
the fact that V (t) decreases only outside LV . In addition, τ0,i
should be chosen such that (A−BlkK+ τ0

2 ) is Hurwitz, k ∈
{a, b}, that is τ0,i < maxk∈{a,b} −2Re(A−BlkK) = 1.76.
In other cases, the conditions are not feasible. We consider in
the following τ0,i = 0.6, which corresponds to the argument
of the minimimum in Figure 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

Fig. 3. Optimal value of Tr(Q) and numerical area of LV , depending on
τ0,i.

We consider the initial condition x0 =
(
0.8 0.4

)⊤
and we choose Φ[Kx](0) = −2.5, which verifies the
constraint (3).

We depict the time trajectory of the state x(t) on Figure 4.
It is shown that V (t) decreases piecewise exponentially
(faster than linearly in the semilogy scape) to reach 1 at
t = 2.7s and after remains below 1.

The value of the nonlinearity Φ[Kx](t) follows the chara-
teristic of the nonlinear operator as depicted in Figure 5.

Finally, we plot the state trajectory in the state plan x(t) ∈
R2 in Figure 6.

It is clear on Figure 6, that LV (in red solid line) is a
smaller set than the ellipsoid (in black solid line) generated
by the conditions in [7] and consequently provides a less



Fig. 4. Time-trajectory of the state x(t) and of the UUB-Lyapunov function
V (t).

Fig. 5. Characteristic of the nonlinear operator. The starting point
corresponds to (Kx0,Φ[Kx](0) = (−2.8,−2.5), depicted with a red
cross. The trajectory (Kx(t),Φ[Kx](t)) is in blue. The characteristic of
Figure 1 is recalled in back dashes.

conservative solution to Problem 1. LV is composed of arcs
of ellipsoids in the sets Xi, i ∈ I as expected.

By looking at the state trajectories on Figure 6, we can
exhibit several behaviors of the system inside the UUB-set: in
particular, we can show limit cycles and unstable equilibrium
points. For the initial condition x0 =

(
0.8 0.4

)⊤
, the

state-trajectory tends to the set LV and converges to a limit
cycle that lies into LV . Furthermore, zero is an eigenvalue
of A with associated eigenvector v0 =

(
1 0

)⊤
. The

horizontal segment

S = {µv0 ∈ Rn, − ρb ≤ µKv0 ≤ ρa},
= {

(
µ 0

)⊤
, µ ∈ [−0.05; 0.15]}

is a not empty continuum set of equilibrium points.
In Figure 6, two other trajectories are depicted starting

from x0 =
(
0.3 −0.5

)⊤
and x0 =

(
−0.1 0.5

)⊤
.

Fig. 6. Phase portrait of the system. The bounds of the polyhedral partition
Xi are depicted with dashed-dot lines. The black ellipsoid is the UUB-set
provided in [7] and the red curve depicted LV from Theorem 1. Several
trajectories are depicted starting from x0 =

(
0.8 0.4

)⊤ (in blue solid
lines) and from x0 =

(
0.3 −0.5

)⊤ and x0 =
(

−0.1 0.5
)⊤ (in

green solid lines).

They respectively belong to X4 and X1 and reach the end
points of the segment S, which are only attractive over
X4 and X1 but not on X3 and X2 and cannot be stable
equilibrium points.

Finally, we can emphasize that the trajectories may cross
each other. That is a consequence of the fact that the
dynamics (1) does not depend only on the state, but also on
the memory of the trajectory via the nonlinear operator Φ.

VI. CONCLUSION

A piecewise quadratic Lyapunov function approach has
been used to cope with the uniform ultimately bounded-
ness property of a system which is a linear plant that is
feedback interconnected with a nonlinear operator exhibiting
an asymmetric backlash and an asymmetric deadzone. The
requirements of a Lyapunov function candidate are imposed
thanks to linear matrix inequalities and the exponential
uniform ultimately boundedness property is ensured thanks
to parameterized linear matrix inequalities. The tractability
of our sufficient conditions and the fact that our solution is
less conservative than the results available in the literature
are discussed on an academic illustration. For future research,
we will be focused on the three following points: (i) extend
our result in the framework of control design, (ii) alleviate
the conservatism of the techniques and (iii) investigate the
feasibility of the proposed LMIs.
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