
HAL Id: hal-04795147
https://hal.science/hal-04795147v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

GemIMC: A Configurable HW Architecture for
Technology Agnostic IMC based NN Inference
Emilien Taly, Roberto Guizzetti, Pascal Urard, Ioana Vatajelu

To cite this version:
Emilien Taly, Roberto Guizzetti, Pascal Urard, Ioana Vatajelu. GemIMC: A Configurable HW Archi-
tecture for Technology Agnostic IMC based NN Inference. IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC 2024), Oct 2024, Tanger, Morocco. �hal-04795147�

https://hal.science/hal-04795147v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


GemIMC: A Configurable HW Architecture for
Technology Agnostic IMC based NN Inference

Emilien Taly∗†, Roberto Guizzetti∗, Pascal Urard∗ Elena-Ioana Vatajelu†
∗STMicroelectronics, Crolles, France

†Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France

Abstract—This paper presents GemIMC, a High Level Synthesis
(HLS) based configurable digital unit architecture for accelerating
Neural Networks (NN) at the edge using In Memory Computing
(IMC). The proposed architecture is capable of supporting any
type of memory technology, be it CMOS or resitive, with digital
or analog storage capabilities. GemIMC aims to facilitate design
space exploration among different IMC-related parameters and
provide a top architecture for prototyping. By taking as input
the IMC-tile parameters such as storage type (analog/digital),
size, latency, power and process variability, GemIMC provides
a an estimation of the full system’s latency, area, and power
consumption, taking into account the full digital control. The
Tensorflow-to-GemIMC environment flow allows for direct evalu-
ation of the ineference accuracy for any type of NN, considering
the variability associated with analog computation (when needed).
The proposed work provides a flexible and efficient solution for
IMC-based NN inference on the edge, along with a methodology
for writing the IMC tile model to ensure compatibility with the
top architecture.

I. INTRODUCTION

In recent years, Deep-Edge computing has become essential
in various systems by bringing computations close to the
sensors. This approach saves a significant amount of energy by
running only a wake-up system continuously in the background
[1] and it typically includes a Neural Network (NN) accelerator
to perform computations and make decisions. The Deep-Edge
environment is one of frugal resources, therefore, the notions
of energy and surface efficiency are critical. To comply with
energy constraints more and more architectures based on
In Memory Computing (IMC) for NN computations have
emerged. The current research focuses on the development
of the IMC-tile. An IMC-tile is a essentially a memory block
that has computation capabilities; it contains the memory array
and the periphery (address decoders and read/write drivers)
specifically designed to enable Multiplications ACcumulations
(MACs) directly in memory. Even though they are all designed
to perform the same computation, their operation mode,
performance and power efficiency depend strongly on the type
of memory employed, such as Static Random Access Memory
(SRAM) or Non Volatile Memory (NVM). Moreover, at the
architecture level, the digital control which encompasses the
tile, is also diverse and dependent on factors such as computing
parallelism, NN model mapping, or weights- and data-encoding
[2]–[10]. The state of the art presents numerous solutions of
NN inference accelerated by IMC but they are either build
from bottom-up, which means that the proposed architectures
are custom designed for a specific memory technology and

operation mode, or top-level only where the IMC-tile is seen as
a black box which outputs the MAC result. Besides many other
works are only focusing on the design and optimization of the
IMC-tile without considering the architecture-level implications,
despite the fact that the architecture view can play a crucial role
in evaluating performance based on the intended application. In
addition, several frameworks exist such as NeuroSim [11] [12],
which provide performance estimations of specific IMC-tile
accelerating NN inference without considering a top-down view,
while the framework proposed in [13] addresses this limitation
but it is limited to only two types of SRAM architecture.
Therefore, further research is needed to explore the potential
benefits of a comprehensive approach that considers both the
memory device specificity and the architecture level design.

This paper introduces GemIMC, a technology agnostic and
configurable hardware (HW) architecture to control an IMC-tile
for NN inference. The architecture is based on Gemini, a Neural
Processing Unit (NPU) for NN inference introduced in [14]
and [15]. Specifically, we consider small NN models and map
the entire model onto the tile without weights reloading. To
evaluate a IMC-tile, we propose a flow that takes the behavioral
model of the IMC-tile as input, including power consumption
estimation and analog variability for Analog IMC (AIMC) and
outputs the characteristics of the resulting NN implementation
such as inference accuracy, and estimation of the area, latency
and power consumption. The proposed flow also supports
Digital tile (DIMC).

The objective of this study is to understand the impact of
various IMC-tile parameters on digital HW cost and latency for
a given NN model. Additionally, we investigate the different
in term of parallelism and NN models mapping for our
architecture. The proposed configurable HW architecture is
designed in C++ using High-Level Synthesis (HLS) and can
be directly integrated with one or many tiles at the Register
Transfer Level (RTL). This paper is organized as follows.
Section II presents an overview of the current state-of-the-art
in IMC-tile design and existing frameworks for their evaluation.
Section III describes the various parameters of the proposed
architecture, their respective impacts on the design and the
dataflow for only single tile. Section IV explains the evaluation
metrics of the proposed architecture such as latency and
digital HW cost function of architectural and NN parameters.
Section V outlines the methodology for writing the IMC-tile
model and presents the results for one NN model. Section VI
concludes the paper.



II. RELATED WORK

The types of memories used for IMC range from SRAM
[2]–[5] to NVM with PCM [6] [7] or RRAM [8]–[10] cells.
This technology versatility leads to a large variety of IMC-
tile designs, each taking advantage of specific technology
characteristics - such as type of memory point (charge-based
or resistance-based), type of data storage (analog or digital)
and ability to access multiple memory cells simultaneously -
and implementing different strategies for performing the MAC
operations. The points of difference between existing IMC-tiles
can be classified into seven categories: input encoding (binary
[5] [7] [9] [10] or on multiple bits [2], [3] [4] [6] [8], physical
computation (current-based or charge-based [5]), memory cell
(SRAM or NVM with single [8] or multi level storage [6]
[7] [9] [10]), implementation of analog-to-digital converters
(ADC), parallelism (maximum number of WordLines (WL) and
BitLines (BL) that can be activated at the same time), weight
mapping scheme (the order in which the 3D filter weights will
be unrolled on a column, and the way in which the weight
bits will be mapped), and data/weights precision.

All these device-related differences between IMC-tiles
and the large spectrum of operation modes lead to unique
functionality of the digital control. This complexity also makes
it difficult to compare the effects of using different IMC
solutions at system level or even to comprehensively estimate
the performance and accuracy of an NN implemented using
IMC. To alleviate these issues, frameworks have been developed
in support to IMC-tile evaluation in the NN inference context,
such as Neurosim [11]. This C++ environment supports SRAM
or NVM tile (digital or analog), and accepts different levels of
abstraction, ranging from a cell-to array-level. DNN+Neurosim
[12] adds a circuit-level view with consideration of the
digital control architecture of the IMC-tile. It also includes an
algorithm-level view with a wrapper to interface NeuroSim
and Tensorflow (TF) for the software part of the NN.

The limitations of these frameworks lie in their configura-
bility. For input encoding, only binary is supported. In terms
of parallelism, the assumption is that all WLs can be and
are activated (even though some architectures [2] [7] [8] [9]
activate only a portion for calculations). This has an impact
on the digital HW part. Additionally, the user must provide a
tile size equal to the NN size, which can be limiting in cases
where a fixed tile size needs to be tested on different NN sizes
or if the technology does not allow for the fabrication of large
tiles (due to variability or other constraints). Reference [13]
focuses more specifically on the impact of the digital control on
the NN inference. However, they only focus on SRAM-based
IMC-tile with two types of architecture, supporting voltage or
pulse encoding. Parallelism is not taken into account, and only
one type of weight mapping is considered.

In this paper we propose GemIMC which goes beyond the
state of the art solutions by being flexible enough to allow the
use of any IMC-tile design and operation mode, the parallelism
at different levels and it includes the digital HW for realistic
cost and performance evaluations.

III. ARCHITECTURE DESCRIPTION

The GemIMC environment consists of a Python wrapper,
the technology-agnostic GemIMC core in C++, and a metrics
calculation block, as shown in Figure 1. The Python wrapper
describes the NN model and performs the training taking into
account TF quantization using Quantization Aware Training
(QAT). The GemIMC core includes the HLS of the digital
HW architecture which to controls the IMC-tile and performs
the calculations that are not IMC compatible. The IMC tile
model provides the MACs result at each cycle. Metrics such
as inference accuracy, latency, power, and surface are then
calculated.

Moreover, the IMC performance and usability is evaluated
on a the single-tile architecture. The latter allows for higher
parallelism and it could be the optimal choice depending on
the latency requirements of the application.

Fig. 1: General overview of GemIMC

A. Configurable parameters

The implemented architecture is user-configurable according
to the parameters list shown in Table 1. Where the first column
contains the parameter notation, the second column indicates
to which type of IMC this parameter is applicable: AIMC
(A), DIMC (D), or both (A/D), while the third column briefly
describes the parameter. These parameters can be divided into
2 categories: (1) parameters that define the IMC-tile and (2)
parameters related to the parallelism.

The parameters that define the IMC-tile are: the tile size (Tx,
Ty), the number of states a memory cell can store: Level Cells
(LC), the data precision (Dn), the weights precision (Wn), the
number of data bits which can be processed simultaneously
(DP), the number of Activated WordLines (AWL) and the
number of Activated BitLines (ABL), the precision of ADC
and of DAC (ADCn, DACn).

The LC parameter allows to support Single or Multi-Level
Cell (SLC, MLC). It should be noted that the parameter is
represented in terms of the bits number per cell. To enable
encoding of a weight precision (Wn) on cells with a different
number of levels, the value of LC can vary across the same tile
(as described, for instance, in [7]). The DP parameter supports
any type of input data encoding. Regarding the ADCs, their



precision may be lower than the maximum output range given
by :

ADCnmax
= ⌈log2(2LC−1 · 2DP−1 ·AWL+ 1)⌉

Their number may also be lower than ABL depending on the
IMC-tile architecture. The maximum number of ADCs per tile
is equal to ABL.

The parameters related to the parallelism are: MPAR,
MACPAR, and BITPAR. MPAR parallelism refers to the
calculation of pixels on multiple filters simultaneously. MAC-
PAR parallelism refers to the calculation of multiple MACs
operations of the same convolution simultaneously. BITPAR
parallelism refers to the calculation of multiple data bits
simultaneously. The maximum value of BITPAR is equal to
the data precision (Dn).

The different parallelisms are illustrated in Fig. 2(a) on a
convolution layer, while Fig. 2(b) shows the parameters for
AIMC- and DIMC-tile as well as the differences between them.
AIMC is based on analog computation through the activation
of multiple WLs with a multiplication that can be on multiple
bits. DIMC is based on deterministic computation through
the activation of a single WL with binary multiplication and
accumulation via an adder tree in the tile. Generally, for AIMC,
the filter coefficients are placed on the different columns and
the 3D filters are unrolled on the rows. Conversely, for DIMC,
the filters are placed on the different rows and the 3D filters
are unrolled on the columns. The parameters ADCn/DACn, LC,
DP, and AWL are specific to AIMC. For a single-tile AIMC,
the parameters AWL and DP are equivalent to MACPAR and
BITPAR respectively. The filter parallelism, noted MPAR, is
define by :

MPAR =
ABL

CellperWn

with CellperWn
= ⌈Wn

LC
⌉

For DIMC, the parameters AWL and DP are equal to 1,
while ABL defines the MACPAR parallelism on a single tile.

The rest of this chapter includes a detailed description of
the single-tile architecture.

TABLE I: List and description of architectural parameters

Name Memory Description
Tx, Ty A/D Tile size (columns, row)

LC A Number of weights bits encoded on one cell
Dn, Wn A/D Data and Weights precision

DP A Number of data bits processed at same time
AWL A Activated Wordline per tile
ABL A/D Activated Bitline per tile

ADCn, DACn A ADC and DAC precision
MPAR A/D Filter parallelism

MACPAR A/D MAC parallelism
BITPAR A/D Data bits parallelism

B. Single-tile

Figure 3 shows a block diagram of the single-tile architecture.
It consists of two SRAM blocks (Param SRAM and Data
SRAM), the IMC-tile, the control and the digital post-tile
computation. The Param SRAM stores the parameters of each
layer of the NN as well as the biases of the filters. The

Fig. 2: Parameters for AIMC and DIMC : (a) a convolution layer with
parallelism description. R, S, and C represent the 3D filter, and M the filters
number. D11 and O11 respectively represent the first input data and output
data pixel. The arrows indicate the directions of parallelism, (b) Difference
between AIMC and DIMC with the activated area. depending on the parameters

Data SRAM stores the input image of the NN as well as
the intermediate computation data.

The AWL parameter defines the sizing of a memory word and
the number of data processed at same time. For convolution and
maxpool layers, the AWL parallelism prioritize the channels.
For depthwise layers, where there is only one input channel
(C) the parallelism is done by rows and the filter is traversed
column by column. The number of consecutive words in a
channel block is equal to MPAR

AWL . This placement allows for
easy management of the dataflow and ensures that the necessary
data is available at each cycle.

The AWL data read is then placed in registers for processing.
Depending on the DP parameter, the row controller, consisting
of multiplexers, will place the current DP bits in the correct
location in the Ty-sized bus. They will be placed according
to the current sequencing of the NN, which is dependent
on the NN mapping. The column controller will generate
a mask (0/1) of Tx bits to activate the necessary columns
according to ABL and the NN mapping. Figure 4 illustrates the
row and column controller module. Four inputs data channels
(AWL=4) are read from the DATA SRAM. Multiple stages
of multiplexers are employed to select the appropriate DP
bits from each input data based on the bits to be processed.
Subsequently, additional multiplexer stages direct the bits into
the row controller registers at the correct positions depending
on the IMC tile memory area to be activated. This activation
is determined by the inference sequencing. Any remaining
registers are set to zero. At the output of the architecture, the
number of wires matches the number of rows in the IMC tile
(Ty), facilitating direct connection to the WLs or the DAC
inputs. Decoding is performed externally to the IMC tile. This
method is highly efficient for serial computation (DP=1) or
temporal PWM modulation of input data due to the low DAC
cost. Requiring one DAC per row, which would be inefficient



for voltage modulation. Similarly, columns are activated in the
same manner using column controller registers. The number of
registers equal the number of columns in the IMC tile. These
registers are set to 1 or 0 based on the filters to be activated
according to the NN sequencing. The NN mapping in the
IMC-tile is performed by the compiler to optimize IMC-tile
space. The layers can be placed on the same column or on
different columns.

The digital post-tile component consists of several blocks,
including constant shifters and an adder for summing the
different bits of the weights placed on the Wn column. This
block can be removed if the sum is performed in the IMC-tile,
as in [5]. Additionally, there is a shifter block followed by an
accumulator to manage the Dn bits, as well as a number of
MACs greater than AWL. A quantization block is included
to return to a real value between each layer, based on the TF
quantization. Finally, there is the activation function component,
where only ReLU is supported. The number of digital post-tile
and quantization blocks depends on parallelism and will be
discussed in the next subsection.

The storing stage block manages the writing of intermediate
images to the data SRAM. The maxpool stage block manages
the case of maxpool layers where the IMC-tile is bypassed.
The registers of the post-tile blocks are reused to perform
comparison operations. The architecture supports convolutional,
depthwise, dense, and maxpool layers.

Fig. 3: Block diagram of single-tile architecture

Fig. 4: Operating principle of the IMC Tile control with the row and column
controllers registers and the wires directly connected to the WLs and BLs of
the IMC Tile

Figure 5 illustrates the scheduling of the architecture, where
different functions are pipelined to enable one processing of
the IMC-tile per cycle. The beginning of a layer involves
reading the parameters into param SRAM to initialize the

control registers. The bias registers are then updated in several
cycles, depending on the number of filters and param SRAM
width. During the last cycle of the bias update, a read of the
data SRAM is performed, and the IMC control ports (rows
and columns) are updated. The same data is processed for Dn

DP
cycles before starting the second wave of data. At the start
of a new convolution, the quantization of the outputs of the
previous convolution’s accumulator is done over several cycles
before writing the outputs to memory.

Fig. 5: Scheduling of the architecture for convolution layer starting from the
beginning of the layer up to the writing of one wave of results

IV. ARCHITECTURE EVALUATION

The digital HW architecture is evaluated based on the con-
figuration parameters described in Section III and is dependent
on the NN. The latency is accurately determined, while the
digital HW cost is determined by analyzing the number and
precision of the main digital blocks. An extrapolation can be
performed to obtain the power and area for a given technology.

A. Latency

The ideal latency for a convolution is defined by Equation
1. It is the ratio of the number of MACs required to perform a
convolution and the product of all parallelisms. The BITPAR
parallelism is considered to be well-chosen with 100% effi-
ciency, which is lower than BITPARmax (see III.b). For a
depthwise layer and maxpool, C is equal to 1 for the number
of required MACs. For a dense layer, it is the product of the
input and output neurons.

Latconvideal
= R·S·C·Wo·Ho·M

MPAR·AWL·MACPAR· · ⌈
Dn

DP ·BITPAR⌉ (1)

Equation 2 provides the real latency of the architecture
based on different parallelisms. The latency is based on the
number of cycles of the digital HW part. It is assumed that
the next DP bits are provided to the IMC-tile at each cycle,
and the actual number of cycles may vary depending on the
encoding type, such as PWM or pulse count. The ceil of each
parallelism indicates the loss of efficiency, i.e., the times when
all parallelisms are not used at 100%. For instance, when C=9
and AWL=8, the equivalent latency is C=18.

Latconvreel
= R · S ·Wo ·Ho · ⌈ C

AWL⌉ · ⌈
M

MPAR⌉ · ⌈ Dn
BITPAR⌉ (2)

Equation 3 shows the loss of efficiency, with the ratio of
the actual latency of the architecture to the total number of
MACs in the layer. The objective is to maximize efficiency
for each layer of a given NN, and to find the parallelisms that
optimize efficiency with a fixed architecture. A reconfigurable
architecture is the best-case scenario to have the adequate
parallelisms for each layer, but at the cost of the maximum



digital HW of each parallelism. The reconfigurability aspect is
not discussed in this paper.

Efficiencyconv(%) =
Latconvideal

Latconvreel
· 100 (3)

B. Digital HW cost

Figure 6 provides a detailed view of the HW implementation.
For the post-tile computation phase, the weights shift-add
component is responsible to aggregate the results into a single
weight value derived from multiple columns. The shifter adjusts
the result based on the specific bits being processed within
the data input. Finally, the accumulation unit aggregates these
results. In the quantization section, the final convolution result
is multiplied by the scaling factor over 16 bits, which is
executed in four cycles. The row controller section illustrates
the hierarchical levels of multiplexers used to initially select
the DP bits from among the Dn bits. Subsequently, it addresses
the Ty registers appropriately, ensuring that each data point
can be directed to any register as required.

Table II provides the operand precision for the input/output
modules of post-tile, quantization, and IMC tile control for a
single-tile. The number of post-tile and quantization modules
is equal to MPAR. The adder weights sub-module’s precision
is determined by the number of adder inputs (i), each with a
different precision. The constant shifter preceding the adder
varies for each weight bit position, ranging from MSB to LSB.
This sub-module is not present if the operation is performed
directly in the IMC-tile (Cf. II).

The register ACCU size of 24 bits for a single-tile was chosen
arbitrarily. It is dependent on Wn and Dn: RegACCU1tile

=
Dn ·Wn + 8.

Fig. 6: HW details : (a) Post-tile and quantization part (b) Row controller

V. METHODOLOGY AND RESULTS

To evaluate the digital HW architecture with an IMC model,
a methodology to write the IMC model is provided in Figure 7.
The digital HW provides control for the rows and columns to
be activated at each cycle. An architectural parameters file in
the form of defines is used to configure the environment, and
the compiler fills arrays with the mappings of weights on the
IMC-tile. The IMC model must include a method for mapping
numerical weight values onto the physical cell arrays, as well
as parameters such as current, operating voltage, and equations

related to uncertainties. The calculation core of the IMC-tile
array provides the results of the IMC-tile to the digital HW at
each cycle.

In this study, we will exclusively evaluate the digital
architecture component to compare it with Gemini, an internal
NPU at STMicroelectronics. This evaluation aims to determine
the hardware cost of the digital part within an IMC-based
architecture. For a fair comparison, the cost of the IMC
Tile should also be considered and can be included during
the evaluation process. The evaluation was performed on a
VGG-like neural network model, detailed in Figure 8. The
results presented in Table III are derived from a gate-level
simulation based on an inference of the VGG-like model.
The equivalent number of PEs corresponds to the maximum
number of MAC operations that can be performed in one cycle
with the associated hardware. For GemIMC, the architectural
parameters were set as follows: AWL=32, MPAR=32, DP=2,
LC=2, Tx=128, and Ty=256. The equivalent number of PEs is
calculated as MPAR×AWL

DP .
The number of cycles required for inference with a VGG-like

model does not follow a straightforward 2:1 ratio between the
two architectures. This discrepancy is due to GemIMC’s specific
efficiency of 75% with this neural network. Layers 1 through
4 lack a sufficient number of channels and filters relative to the
parallelization. The area cost is mainly driven by the SRAM
DATA cost, which varies based on the targeted application.
The standard cell portion of GemIMC is relatively small, being
4.5 times smaller than that of the NPU. The dynamic power
cost of the digital part in an IMC-based architecture is notable,
being 2.5 times lower than that of the NPU, excluding the
IMC tile power consumption.

Fig. 7: Block scheme of IMC model

Fig. 8: Details of VGG-like NN model for model evaluation



TABLE II: Digital HW operand precision function of architectural parameters

Module Sub-module Operand Precision (bits) Number

Post-tile

Adder weights
AddWeightsin(i)

= ADCn +Wn − (i · ⌈ Wn

⌈Wn
LC

⌉
⌉) with 1 ≤ i ≤ ⌈Wn

LC
⌉

MPAR

AddWeightsout = ADCn +Wn

Register ACCU 24 MPAR

Adder ACCU

AddACCUin1
= AdderWeightsout +Dn

AddACCUin2
= 24 MPAR

AddACCUout = 24

Register bias 16 MPAR

Quantization

Multiplier SF In = 24× 4 and Out = 28 MPAR

Register SF 16 MPAR

Register 24 2×MPAR

IMC tile controller

Mux row 2->1 AWL×Ty×DP

Mux column 2->1 Tx

Register row DP Ty

Register column 1 Tx

TABLE III: Comparative results between Gemini NPU and GemIMC architecture

18nm 0.68V 25° @200MHz PEs equivalent SRAMs (KB) Cycles (VGG-like) Area (mm²) Dynamic power (µW/MHz)

Gemini NPU 128
Weights: 128

4M
Logic : 0.1 Logic : 100

Data: 128 SRAM : 0.55 SRAM : 37

GemIMC (without IMC Tile) 256 Data: 128 3M
Logic : 0.023 Logic : 33

SRAM : 0.265 SRAM : 19.5

VI. CONCLUSIONS

In this paper, a configurable digital HW architecture for
technology-agnostic IMC-based neural network inference at the
edge has been proposed. This configurability takes into account
the IMC-tile parameters and provides a HW architecture that
can adapt to any IMC technology and the physics of the
MAC operation, it can be adapted to any type of NN and
can incorporate parallelism at different levels. In addition to
providing an RTL that can be directly integrated, it enables
an evaluation of the entire system in terms of latency, power,
and area by taking as input a variabilty-aware IMC model
(to guarantee a thorowgh evaluation of AIMC solutions). The
paper also presents a methodology to evaluate the resulting
architecture and highlights the impact of different parallelisms
on latency and digital HW cost.

REFERENCES

[1] Weiwei Shan et al. "a 510-nw wake-up keyword-spotting chip using
serial-fft-based mfcc and binarized depthwise separable cnn in 28-nm
cmos". IEEE Journal of Solid-State Circuits, 56(1):151–164, 2021.

[2] Qibang Zang et al. 4b/4b/8b precision charge-domain 8t-sram based
cim for cnn processing. 2023 IEEE 5th International Conference on
Artificial Intelligence Circuits and Systems (AICAS), pages 1–5, 2023.

[3] Kaili Zhang et al. A novel 9t1c-sram compute-in-memory macro with
count-less pulse-width modulation input and adc-less charge-integration-
count output. IEEE Transactions on Circuits and Systems I, 2023.

[4] Heng Zhang et al. Ssm-cim: An efficient cim macro featuring single-step
multi-bit mac computation for cnn edge inference. IEEE Transactions
on Circuits and Systems I: Regular Papers, pages 1–12, 2023.

[5] Yiming Chen et al. Samba: Single-adc multi-bit accumulation compute-
in-memory using nonlinearity- compensated fully parallel analog adder
tree. IEEE Transactions on Circuits and Systems I:, 70(7), 2023.

[6] Riduan Khaddam-Aljameh et al. Hermes-core—a 1.59-tops/mm2 pcm
on 14-nm cmos in-memory compute core using 300-ps/lsb linearized
cco-based adcs. IEEE Journal of Solid-State Circuits, 57(4), 2022.

[7] Win-San Khwa et al. A 40-nm, 2m-cell, 8b-precision, hybrid slc-mlc
pcm computing-in-memory macro with 20.5 - 65.0tops/w for tiny-al
edge devices. 2022 IEEE International Solid- State Circuits Conference.

[8] Hongwu Jiang, Shanshi Huang, Wantong Li, and Shimeng Yu. Enna: An
efficient neural network accelerator design based on adc-free compute-
in-memory subarrays. IEEE Tran. on Circuits and Systems I, 70(1).

[9] Jong-Hyeok Yoon et al. A 40-nm 118.44-tops/w voltage-sensing compute-
in-memory rram macro with write verification and multi-bit encoding.
IEEE Journal of Solid-State Circuits, 57(3):845–857, 2022.

[10] Dingbang Liu et al. An energy-efficient mixed-bit cnn accelerator
with column parallel readout for reram-based in-memory computing.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
12(4):821–834, 2022.

[11] Pai-Yu Chen, Xiaochen Peng, and Shimeng Yu. Neurosim: A circuit-level
macro model for benchmarking neuro-inspired architectures in online
learning. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(12):3067–3080, 2018.

[12] Xiaochen Peng et al. Dnn+neurosim: An end-to-end benchmarking
framework for compute-in-memory accelerators with versatile device
technologies. 2019 IEEE International Electron Devices Meeting (IEDM),
pages 32.5.1–32.5.4, 2019.

[13] Yimin Wang, Zhuo Zou, and Lirong Zheng. Design framework for
sram-based computing-in-memory edge cnn accelerators. 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 2021.

[14] Ali Oudrhiri et al. Performance modeling and estimation of a configurable
output stationary neural network accelerator. hal-04168803, 2023.

[15] Nathan Bain et al. Quantization modes for neural network inference:
Asic implementation trade-offs. 2023 International Joint Conference on
Neural Networks (IJCNN), pages 01–08, 2023.


	Introduction
	Related work
	Architecture description
	Configurable parameters
	Single-tile

	Architecture Evaluation
	Latency
	Digital HW cost

	Methodology and results
	Conclusions
	References

