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ABSTRACT

The field of General Game Playing (GGP) usually yearns to create agents that are able to win any game
as efficiently as possible. Utility functions are then easy to find: winning the game, or achieving a better
score, nets you better results. This resulted in game playing becoming a testbed for artificial intelligence.
New techniques are often tested on games such as Chess, Go or Checkers where the environments are
easy to formally define, while the task is still being tied closely to human intelligence. Superhuman-level
has been achieved in a great number of games past the 2010s. The first notable instance was Chess
world champion Garry Kasparov losing to DeepBlue, a chess playing computer, in 1997 during a six-game
match. Researchers became interested in games where heuristics were harder to encode, such as Go.
Only in 2016 did AlphaGo become the first computer Go program to beat a 9-dan professional player, Lee
Sedol. It did so using novel techniques, such as Deep Neural Networks (DNN) trained using self-play to
evaluate positions and Monte-Carlo Tree Search (MCTS) to search the game tree, which are now staples
of superhuman-level game playing agents. Such level of play was only achieved in agents playing specific
games. In such instances, an optimized game representation and evaluation functions can be built by
leveraging domain-specific knowledge. General Game Playing (GGP) aims to generalize game playing
agents so that they can pick up any game. In this more general setting, domain-specific knowledge can
only be used scarcely, leading to more polyvalent yet weaker a...
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The chess literature is for the most part of a purely technical nature. It deals with the play and
not with the player and his way of thinking; it treats the problem and not the problem solver.

Adriaan D. de Groot
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Summary

The field of General Game Playing (GGP) usually yearns to create agents that are able to
win any game as efficiently as possible. Utility functions are then easy to find: winning the
game, or achieving a better score, nets you better results. This resulted in game playing
becoming a testbed for artificial intelligence. New techniques are often tested on games
such as Chess, Go or Checkers where the environments are easy to formally define, while
the task is still being tied closely to human intelligence.

Superhuman-level has been achieved in a great number of games past the 2010s. The
first notable instance was Chess world champion Garry Kasparov losing to DeepBlue, a
chess playing computer, in 1997 during a six-game match. Researchers became interested
in games where heuristics were harder to encode, such as Go. Only in 2016 did AlphaGo
become the first computer Go program to beat a 9-dan professional player, Lee Sedol. It did
so using novel techniques, such as Deep Neural Networks (DNN) trained using self-play to
evaluate positions and Monte-Carlo Tree Search (MCTS) to search the game tree, which
are now staples of superhuman-level game playing agents.

Such level of play was only achieved in agents playing specific games. In such instances,
an optimized game representation and evaluation functions can be built by leveraging
domain-specific knowledge. General Game Playing (GGP) aims to generalize game
playing agents so that they can pick up any game. In this more general setting, domain-
specific knowledge can only be used scarcely, leading to more polyvalent yet weaker agents.
Research in the domain of GGP has been kicked off by Stanford’s GDL (Game Description
Language), a standard language based on first-order logic used to describe games.

While superhuman-level game playing is still a goal of GGP, this report investigates
another approach: agents that mimic human behavior in games. Game playing agents are
often described as "black boxes", human players cannot comprehend what their plans are
when playing against them. This makes such agents unable to provide:

• an enjoyable yet challenging experience for opponents

• realistic game playing data

• deeper understanding of games through studying their insights

The first point would be of interest to online platforms. While tentatives have been made
to limit the strength of AI opponents through artificial means, like limiting search depth.
This indeed reduces the overall strength of the agent, but does not make their playing less
convoluted. The second point would help game designers test their creations cheaply and
efficiently using human-like agents as gatherers of experience. The third point would be of
utmost importance to professional and competitive players trying to better understand the
game they play to make a living. This would place AI agents as companions to gain deeper
insights, rather than unbeatable opponents used as a basis for the quality of actions played.



vi Summary

The later points are of particular interest to the Digital Ludeme Project (DLP)1 and
Game Table COST Action2, which aimed tomodel, reconstruct andmap ancient games
and their transmission across history and cultures. Modelling and reconstructing such
games was done using the Ludii Game Playing System. It features a description language
for games that is easier to use than Stanford’s GDL (1300 games implemented in Ludii
for only 52 in Stanford’s GDL) for modelling games. Reconstruction is important because
ancient games are often only partially recovered. Rules, equipment, or records of playing
data can be missing. In order to fill this gap, Ludii uses artificial agents to generate, test,
and analyze plausible rulesets. This methodology can be criticized because of one key flaw:
agents used in this process do not mimic human behavior.

Human motivations for playing games can be vastly more diverse than simply winning.
From getting into tricky situations for educational purposes, to asserting strength over a
weaker player by showcasing skillful plans, or losing on purpose to avoid upsetting the
opponent, there are many situations where winning is not everything. The general
theory of cognition of humans playing games is also vague and thus difficult to formalize.
The literature on these questions is sparse and difficult to get into. It encompasses research
domains such as psychology and cognitive science at the frontier of game theory. This
report aims to provide a survey of the current techniques, roadblocks and concepts that
have been explored to create more human general game playing agents.

1Digital Ludeme Project website: https://gametable.network/
2Game Table COST Action website: https://gametable.network/
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1
Introduction

The field of General Game Playing (GGP) [1] [2] usually yearns to create agents that
are able to win any game as efficiently as possible while not using any domain-specific
knowledge apart from the basic rules of the game. Utility functions are then easy to find:
winning the game, or achieving a better score, nets you better results.

This led to the field becoming a perfect testbench for new Artificial Intelligence (AI)
techniques. The environments are controlled, varied and yet non-trivial. This is mainly
due to the fact that games present *long-term rewards* that are difficult to grasp without
advanced planning. After all, the ability to play Chess, Go, Shogi and many other tabletop
games is the sign of a tactical, logical mind in many cultures [3].

As it turns out, the superhuman-level game playing agents that most research projects
aim to create deviate markedly from human behavior [4]. After all, human motivations
can be vastly more diverse than simply winning. From getting into tricky situations for
educational purposes, to asserting strength over a weaker player by making them fall into
traps, or losing on purpose to avoid upsetting the opponent, there are many situations
where winning is not everything.

1.1 Overview
The field of game playing has been a testbed for artificial intelligence ever since its inception.
The earliest examples of artificial agents playing games traces back to 1951 in computerized
versions of the games of Nim, Chess and Checkers. In this early phase, game playing agents
were already capable of achieving sufficient skill to challenge amateur players [5].

This skill level quickly ramped up, with the next milestone for AI in games being
achieved in 1997, when the chess computer DeepBlue [6] defeated then world champion
Garry Kasparov. This was the first instance of a game playing agent achieving superhuman
strength. This trend of superhuman-level agents continued, and became commonplace
around the 2010s, culminating with AlphaGo [7] beating 9-dan professional Go player Lee
Sedol in 2016. The program used a combination of Monte-Carlo Tree Search[8] and
Deep Neural Networks[9] trained using Reinforcement Learning[10] and self-play,
a combination of techniques that is now common place and will be explained in further
detail in section 2.2.2.
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It can be argued whether game specific agents really are "AI". Artificial intelligence often
assumes that the input data to the agent is arbitrary –not based on pre-encoded domain-
knowledge–, with a goal to generalize knowledge. In this regard, game specific agents
such as DeepBlue, AlphaGo and others can be seen as nothing more than sophisticated
domain-specific heuristic rules to drive underlying search algorithms.

1.1.1 General Game Playing
GGP aims to cross that gap by designing agents that can play any game. Domain-specific
knowledge is then eliminated, or reduced to high-level features common to a subset of
games i.e. tabletop games. Game Playing Systems (GGS), programs that take as input a
domain-specific language describing the rules of a game (often called a Game Description
Language (GDL)) and produce agents that are then expected to be able to play said game.

The first recorded GGS was MetaGame [11], a system able to define, generate and
play chess-like games automatically. The real kick off for widespread research and interest
in the field of GGP happened with the General Game Playing Stanford project in 2005
[12], organizing competitions to emulate progress. Innovative approaches have stood out
during these competitions [] [] [], broadening the understanding of games and algorithmic
techniques relevant to them.

1.2 Importance
While the prospect of human-like game playing agents has appeared in the literature before,
applications and techniques are left sparse and there is a lot we don’t yet understand about
defining agents that align with human behavior [4], such as what motivates humans to
play games, how our neural circuitry precisely functions, and more generally how to
formally define "human behavior". These questions are core to fields such as psychology
or neuroscience.

For video games, human-like agents may be used to replace disconnected players in
online settings, or to create believable non-playable characters [13]. Notably, agents that
are trained solely for the sake of "winning" are known to perform terribly when paired
with humans in cooperative environments [14].

Other domains, such as human-robot interaction, require agents that are able to coop-
erate effectively when paired with humans [15]. This problematic requires agents that are
able to understand human motivations, as well as feeling "humane" enough themselves for
us to be willing to cooperate with them.

Our field of interest, General Game Playing, has focused on human-like agents only
sparsely, with few mentions of generalizing techniques applied to specific games to a wider
range of problems [16]. One explanation is that while human-likeness is somewhat of a
requirement when cooperating with humans, it is not the case for games. Most tabletop
games are opposing environments: one player wins by making the other one lose. In GGP
research, worrying about how "naturally" resulting agents play is not a concern if we
simply want to achieve superhuman level.

However, human-like agents could be of use in this field by:

• providing more parameters to tune the strength of the agent believably, allowing
superhuman-level agents to match the strength of weaker players while preserving
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a natural playstyle.

• generating realistic game playing data.

• being a framework for explainable AI, providing deeper understanding of games.

Such agents would be used as gatherers of experience rather than simply being incredibly
strong opponents.

For example, the task of generating original games using LLMs as described by Graham
Todd [17] could benefit from extensive amounts of human-like playing data to strengthen
the plausibility of generated rulesets.

1.3 Aim
The literature on these questions is sparse and difficult to get into. It encompasses research
domains such as psychology and neuroscience at the frontier of game theory and artificial
intelligence. While human-like agents have been a topic of research in many neighboring
fields such as human-robot interaction (HRI) [15] [18], video games [14] [13] [19] [20] [21],
conversational agents [22] or game-playing agents [4] [23] [16], we lack a comprehensive
survey of these methods to have a full view of the state of human-like agents in the litterature.

This report aims to fill this gap by providing a survey of the current techniques and
concepts that have been explored to create more humane agents in other fields, and envision
how they may be applied to GGP. The end-goal of this approach is to design and implement
a GGP agent that is human-like in its behavior (Figure 1.1).
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Figure 1.1: Some artificial agents for chess are plotted on this graph based on their performance in the move
matching task [4]. The 𝑥-axis goes from 0% of human moves predicted (uncanny) to 100% (human player). The
𝑦-axis measures playing strength against the current top engine, Stockfish (https://stockfishchess.org/), with a
measured Elo of 3641 on the CCRL scale at the time of writing. Current approaches tend to predict human moves
with around 50% chance, and the playing strength of an agent does not correlate to it being more or less human.
Our aim is to target the red area, focusing on human-likeness rather than playing strength.

1.4 Structure
This report aims to be a comprehensive aggregate of the techniques, methods and open
questions in the field of human-like GGP agents for board games. These notions will be
explored in the context of digital archaeoludology [24], GameTable Cost Action [25] and
more specifically the Ludii game playing system [26], which focus on the preservation,
reconstruction and study of cultural heritage through games. Introductory reminders on
these notions will be found in chapter 2. Chapter 3 will focus on the question of what
it means for an agent to be human-like. This will put forth a few abstract and general
criteria which will be used to measure human-likeness, as well as present previous work in
this domain. Chapter 4 will then present a new approach based on all the aforementioned
results, criterion and methods, applied to the field of GGP.
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2
Context

This chapter will present the general context of this report. It will be structured as follows:

• Section 2.1 will present related projects and organizations, notably the Digital
Ludeme Project (DLP) and the GameTable COST action.

• Section 2.2 serves as a reminder of the formalism of game theory.

• Section 2.3 will explain the goals, design and overall architecture of the Ludii game
playing system.

All of these notions are of peculiar importance to this research as they serve as a
baseline from which new techniques are derived. It will be referred to throughout the
remainder of the report.

2.1 Related projects and organizations
While human-like game playing agents may be useful in a wide variety of scenarios as
seen in section 1.3, this research is done in the context of the Digital Ludeme Project
(DLP) 1, and as such will be inclined to improve the objectives of this project.

The Digital Ludeme Project (2018 - 2023) [27] is a five-year project funded by the
European Research Council (ERC). It was hosted by and originated from Maastricht Uni-
versity. Its main goal is to devise methods for modelling, reconstructing and understanding
traditional games. These goals will be referred to under the umbrella term of digital ar-
chaeoludology [24], a field which studies ancient civilizations through their use of games
in social settings using modern techniques such as AI.

There is yet much to discover about ancient games. Such findings are often made
through unearthing equipment, partial records of playouts, or depictions of the game in
any way. Ancient games often miss parts of the pieces, the board, the rules, and generally
lack comprehensive records of playing sessions. Thus, our modern understanding of these
games is based on unreliable and modern reconstructions lacking scientific rigor [28] and
1Digital Ludeme Project: http://ludeme.eu
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Figure 2.1: The process of reconstructing ancient games requires a cooperation of multiple fields, notably those of
computer scientists and archaeologists. Findings made by achaeologists are transmitted to computer scientists,
who will model this potentially partial definition of the game into a form that the Ludii game playing system
can understand and make use of (Modelization). This model is then experimented on, generating potential
rulesets and testing their plausibility using AI techniques (Reconstruction). Such results are then given back to
archaelogists so that they can use the reconstructed game and map it to specific cultures and analyze their social
significance (Mapping)

therefore biased. A model for more formal analysis of these ancient games would be needed
to reduce this bias.

This is the aim of the DLP: applying mathematical models to the problem of
filling gaps in our understanding of ancient games (Figure 2.1).

This comes into three main phases:

• Modelization: implement a huge range of traditional games in a single, easy to use,
expandable and playable database.

• Reconstruction: fill gaps in our understanding of ancient games in a plausible way.

• Mapping: linking the reconstructions back to an archaeological setting.

Currently, this process is done with the help of state-of-the-art general AI techniques.
A valid criticism that could be made targets the lack of humaneness of agents emerging
from these techniques [4]. We can’t expect that ancient civilizations were playing games at
the level of these agents, or even if our algorithms maximize the right values to begin with.
In the past, games could be a medium to assert power, a social activity, and much more.
Winning is not everything, and agents mimicking humans could prove deeply useful in
reconstructing and understanding ancient games.

The DLP is a cross-disciplinary project. It requires expertise from various fields of
research and a wide range of abilities. As such, the GameTable COST action (CA22145)
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2, which is a new project based off the results of the DLP, provides the cross-disciplinary
network of scholars necessary for such an endeavour. It provides a platform on which the
DLP can rely when in need of insights from psychologists, archaeologist, historians, or
experts in many other fields.

Currently, the GameTable COST action has around 230 members divided into 5 working
groups:

cuses on topics such as search algorithms (Russell and Norvig, 2020) and reinforce-
ment learning (Sutton and Barto, 2018) for automated game playing, gen- eral game
playing (Pitrat, 1968), and explainability and interpretability of game-playing algo-
rithms and their decisions or decision-making processesSearch, Planning, Learn-
ing and Explainability, led by Dennis Soemers and Jakub Kowalski, focuses on
techniques for automated game playing, explainability and interpretability, such
as planning, learning, heuristics and AI [29]. More accurately, its research focus
is set on imperfect information games in the context of general game playing [30]
[], human-like AI and explainable search and reinforcement learning algorithms.
Cultural Heritage of Games, led by Walter Crist and Tim Penn, aims to develop
new applications for the study of games, and preserve potentially endangered or lost
cultural heritage in the form of games. This is done by improving the collection of
"game evidences" from around the world inside the Ludii database. It is composed of
scholars which are specialized in the history of various regions around the globe.
Automated Game and Puzzle Design, led by Swen Gaudl and Younes Rabii, is a
working group that focuses on the reconstruction of incomplete games using auto-
matic game generation techniques [17] [31]. Mathematics in Games, led by Lisa
Rougetet and Tiago Hirth, aims to share mathematical aspects of games to better
understand the tight bound between games and mathematics. It is mainly interested
in the perception, study and use of mathematics in relation to games specifically
[32]. Implementation, Dissemination, and Education, led by Theodora (Dorina)
Moullou and Barbara Care, has the responsibility of connecting all other working
groups and disseminating the results of the COST action to the general public [33].

This report falls into the first working group, Search, Planning, Learning and
Explainability.

2.2 Game theory: an introductory reminder
At the center of this work is the notion of games, formalized through the mathematical
framework of game theory. The section will mainly serve as an introduction to important
concepts used throughout the report.

Notably, we will present:

•••••• formalisms used to describe games, more precisely how to describe sequential
games as they are the main subject of this report. Our results can however be
generalized to other forms of games, such as stochastic or simulataneous games.

2Website of the GameTable COST action: https://gametable.network/
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• generalmodern algorithmic techniques used in the framework of game theory,
ranging from search algorithms to deep neural networks trained with reinforcement
learning and self-play.

2.2.1 Describing games
While there are many formal descriptions for different types of games, this report will
focus on three of them: Markov Decision Processes (MDP) [34] (section 2.2.1), Markov
Games (MG) [35] (section 2.2.1) and Extensive-Form Games (EFG) [36] (section 2.2.1).

MDPs are a common formalism to describe sequential decision-making problems. They
are commonly used in Reinforcement Learning (RL) (described in detail in section 2.2.2) and
describe single-agent problems. This is akin to a single player being modelled, able to take
actions, observe its environment and potentially learn how to maximize a reward function.
MGs extend this problem tomultiple agents, which may or may not have conflicting reward
functions.

EFGs are another formalism that is more common in game theory and literature on tree
search, and represents specifically sequential decision-making problems i.e. a game where
players take turns making actions. Most common tabletop games can be represented in an
extensive-form e.g. Shogi, Go, Connect-4, etc.

Markov Decision Process
A MDP [34] is described as a tuple < 𝑆,𝐴,𝑝, 𝑟 > where:

• 𝑆 is the set of all possible states the environement can be in at any given point. For
games specifically, this could be all configurations of a 15x15 Go board.

• 𝐴 is the set of all possible actions that the agent can take. For games, we often refer
to agents as players and actions as moves. On top of that, some actions can only be
legal in certain states. We denote 𝐴(𝑠) ⊆ 𝐴 the set of actions that are legal in a state
𝑠.

• 𝑝 ∶ 𝑆 ×𝐴×𝑆 ↦ [0,1] is a function that, given two states 𝑠, 𝑠′ ∈ 𝑆 and an action 𝑎 ∈ 𝐴,
returns a probability noted 0 <= 𝑝(𝑠′|𝑠,𝑎) <= 1 of the environment transitioning
from 𝑠 to 𝑠′ after executing 𝑎. As an additional constraint, we require ∀𝑠 ∈ 𝑆∀𝑎 ∈
𝐴∑𝑠′∈𝑆 𝑝(𝑠′|𝑠,𝑎) = 1 i.e. 𝑝 must be a probability distribution over all states and
actions.

• 𝑟 ∶ 𝑆 ↦ ℝ is the reward function, which defines for any state 𝑠 ∈ 𝑆 a real-valued
reward denoted 𝑟(𝑠) that the agent obtains by transitioning to state 𝑠.

There are many other formalisms for reward functions, such as defining rewards from state-
action pairs, or tuples < 𝑠,𝑎, 𝑠′ > of the origin state, action and resulting state. Rewards
can also be made to be non-deterministic. However, during this report, we’ll focus on the
given definition as it is the most widely used for games.

MDPs are discrete-time processes. We call trial a sequence of 𝑇 state-action pairs, where
at any time step 0 <= 𝑡 <= 𝑇 , the environment is in state 𝑠𝑡 , the agent selects an action 𝑎𝑡 ,
transitions into a state 𝑠𝑡+1 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) and receives a reward 𝑟𝑡+1 = 𝑟(𝑠𝑡+1). Note that 𝑇
can be infinite, in which case the trial never ends. In practice, it we cannot define a precise
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𝑇 for any game, since some games can last for various periods of time. A game of chess
can end after 4 moves, or last for multiple hundreds of moves. In such cases, it is more
practical to talk about these trials being infinite, and assuming that when a terminal state
𝑠𝑇 is reached, all actions transition to the same state 𝑠𝑇 and have a reward of 0.

A policy 𝜋 ∶ 𝑆 ×𝐴↦ [0,1] is a function that, given a state 𝑠 ∈ 𝑆 and an action 𝑎 ∈ 𝐴
returns a probability 0 <= 𝜋(𝑎|𝑠) <= 1 of the agent selecting 𝑎 when in state 𝑠. Note that 𝜋
must be a probability distribution over all actions. In the context of games, we add another
constraint that ∀𝑠 ∈ 𝑆∑𝑎∈𝐴(𝑠)𝜋(𝑎|𝑠) = 1 i.e. 𝜋 is a probability distribution over sets of legal
actions for all states.

We also define the returns𝐺𝑡 that an agent at time step 𝑡 will receive as𝐺𝑡 =∑∞
𝑘=0 𝛾 𝑘𝑅𝑡+𝑘+1

where 𝛾 is a discount factor added to control the impact of temporally distant rewards. For
games, 𝛾 = 1 is often used because the time it takes to win a game is usually irrelevant.

Derived from these returns, we define a value function 𝑉 𝜋(𝑠) = 𝔼𝜋[𝐺𝑡 |𝑠𝑡 = 𝑠] where
𝔼𝜋 denotes the idea that we take the expectation of returns under the assumption that
the agent acts according to policy 𝜋 for state 𝑠 onwards. We can also derive a state-action
value function 𝑄𝜋(𝑠,𝑎) = 𝔼𝜋[𝐺𝑡 |𝑠𝑡 = 𝑠,𝑎𝑡 = 𝑎] that gives the expected returns of executing
an action 𝑎 in state 𝑠, and then playing the rest of the trial by following policy 𝜋.

MDPs are a natural way to model single-agent tasks. In theory, 𝑛-player games can
also be modelled under this formalism by incorporating the other players as part of the
environment. This approach has hard limits, such as the fact that we must either consider
a single opponent model or one MDP per combination of opponent model. As such MDPs
are not well suited for multi-player games, and we should turn to Markov Games for such
problems.

Markov Games
The main difference between Markov Games [35] and MDPs is that the former explicitly
models tasks with multiple agents (players). A MG is a tuple < 𝑘,𝑆,𝐴1, ...,𝐴𝑘 ,𝑝, 𝑟1, ..., 𝑟𝑘 >
where:

• 𝑘 >= 1 is an integer denoting the number of players in the game. Note that a MG
reduces to a MDP if 𝑘 = 1.

• 𝑆 is, as in an MDP, the set of possible states.

• 𝐴𝑖 denotes the set of possible actions for player 𝑖. We denote 𝐴 = 𝐴1 × ... ×𝐴𝑘 the
joint action space i.e. all actions selected by each player simultaneously.

• 𝑝 ∶ 𝑆 ×𝐴 × 𝑆 ↦ [0,1] is similar to the probability of transition from MDPs, except
each transition requires all players to select an action.

• 𝑟𝑖 ∶ 𝑆 ↦ ℝ is the reward function for player 𝑖.

Policies and value functions can be defined just as in MDPs, with the difference that all
players select an action at every time step.

Markov Games are a natural way to express simultaneous-move games, where every
player selects their action at once e.g. rock-paper-scissors. It can also model sequential
games by restricting actions taken by non-moving players to a pass action.
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Extensive-Form Games
Extensive-Form Games (EFGs) [36] are a more natural way to express 𝑛-player sequential
games. They are represented as a tuple < 𝑃,𝑇 ,𝑈 , 𝑖,𝐷, 𝐼 > where:

• 𝑃 = 1,2, ..., 𝑘,𝑛 is a finite set of 𝑘 >= 1 players and a "nature" player 𝑛 modelling
stochastic events e.g. dice rolls, a deck of cards, etc.

• 𝑇 =< 𝑆,𝐴 > is a tree where each node represents a game state 𝑠 ∈ 𝑆. We denote
𝑆𝑇 ⊆ 𝑆 the set of terminal nodes and 𝑆𝐼 ⊆ 𝑆 the set of inner nodes such that 𝑆𝐼 ∩𝑆𝑇 = ∅.
A state 𝑠′ ∈ 𝑆 is a successors of 𝑠 ∈ 𝑆 if there is a legal action 𝑎 ∈ 𝐴 that transitions
from 𝑠 to 𝑠′.

• 𝑈 ∶ 𝑆𝑇 ↦ ℝ𝑘 is a reward function over states 𝑠 ∈ 𝑆, which returns a vector of real-
valued rewards for each of the 𝑘 players.

• 𝑖 ∶ 𝑆𝐼 ↦ 𝑃 maps the inner states of the game to a player, called the mover.

• 𝐷 ∶ {(𝑠, 𝑠′)|𝑖(𝑠) = 𝑛,𝑠 ∈ 𝑆𝐼 , 𝑠′ ∈ 𝑆}↦ ℝ models the stochastic decisions of the "nature"
player, with a probability 0 <=𝐷(𝑠, 𝑠′) <= 1 of transitioning to state 𝑠′ when in state
𝑠. 𝐷 must be a probability distribution over successors of 𝑠.

• 𝐼 ∶ {(𝑝,𝑠)|𝑝 ∈ 𝑃 ⧵ {𝑛}, 𝑠 ∈ 𝑆}↦ ℙ(𝑆) returns the information set of a player 𝑝 in state 𝑠.
This can be seen as the set of states that are indistinguishable from each other from
the perspective of player 𝑝 in state 𝑠.

EFGs add support for imperfect-information games, where a part of the state is hidden to
agents. This makes them able to encode simultaneous-move games by having each player
selecting an action during their turn, hiding this information to other players and finally
playing all selected moves simultaneously. However, we will only focus on sequential,
perfect information games in this report.

2.2.2 Modern techniqes
This subsection will briefly introduce techniques that are used in modern game playing
agents. Notably, we will focus onMonte-Carlo Tree Search (MCTS) [8] as a search algorithm
and Reinforcement Learning (RL) [37] as a method for learning policy.

These two methods are used in many game playing systems in some form today. Game
specific programs like AlphaZero [38] have popularized this combination of methods by
learning from zero using self-play i.e. only playing against itself.

Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) [8] is a family of algorithms and methods to find optimal
decisions in a given domain through random sampling, also refered to as rollouts of the
action space. It then builds and maintains a search tree according to previously sampled
results to direct future sampling.

As a search algorithm, it is so-called best-first. In opposition to depth-first algorithms
such as Minimax [39] with or without 𝛼𝛽 pruning [40], best-first solutions such as MCTS
build an unbalanced tree, focusing on searching promising actions deeper. As such, it works
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Figure 2.2: Graphical representation of one iteration of the MCTS algorithm. We first select a non-expanded
node by going down the tree while balancing exploration and exploitation. The selected node is then expanded,
leading to a sampling of possible results using playouts. The sampled result is then backpropagated to further
direct future iterations of the algorithm.

particularily well in game with a high branching factor i.e. many legal actions in a given
state on average.

On top of that, its reliance on random sampling makes it aheuristic, meaning it does
not require any heuristic evaluation function in order to run. The evaluation of actions
is solely derived from the rules of the game i.e the value of terminal states and results
obtained through sampling actions. This makes it a prime candidate algorithm for GGP, as
it requires no domain-specific knowledge apart from a game’s rules.

We define a run of the MCTS algorithm as an iterative process where four steps (in
Figure 2.2) are repeated until we reach a computational limit (time, memory, number of
iterations, etc):

• the selection phase traverses the tree from the root (current state) up to a leaf node
following a tree policy. The most common of these policies is Upper-Confidence
bounds applied to Trees (UCT) [41], which selects at each step the child maximizing
the following UCB1 formula.

• the selected node is then expanded. One of its children which have not yet been
explored is added to the search tree. This child is selected according once again to
the tree policy.

• a simulation or rollout is conducted starting from the newly added node. A game
is played until completion from the selected state, where actions are usually taken
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Figure 2.3: Vizualization of the reinforcement learning framework. The agent and environment form a feedback
loop where the agent modifies the environment through its actions, receiving a reward and updated observation
(state) in exchange. The observed reward and state can then be used to train the agent so it maximizes the reveived
reward in future interactions.

at random. The simulation returns the game-theoric value Δ of the terminal state
reached.

• the outcome Δ of the simulation is backpropagated through the nodes traversed
during the selection phase. Each of the traversed nodes updates its total reward 𝑋
(and potentially other metadata) with knowledge of the simulation’s result Δ.

The process being iterative means that MCTS is an anytime algorithm: it can be interrupted
at any point and yield a usable result.

We can parametrize this base MCTS algorithm through two means:

• the tree policy, which defines how we select and expand nodes. Many possible
policies exist for selecting nodes, such as GRAVE [42], RAVE [43], etc. When it comes
to expansion, the question is mainly that of how many child states should be added
to the tree in one iteration.

• the default policy used during the simulation phase to decide how actions should
be taken. The most common, as stated above, is to randomly select actions until
a terminal state is reached. There are however different approaches: one could
perform a shallowMinimax search from the expanded node, or place some probability
distribution over actions, etc.

Reinforcement Learning
Reinforcement Learning (RL) is an approach to machine learning that takes inspiration
from psychology [44]. It aims to simulate the way intelligent life seems to learn from
positive and/or negative feedback arising from their interactions with their environment
(Figure 2.3).

In usual RL tasks, examples of good behavior are not available. Instead, the agent is
expected to learn solely from interacting with its environment by taking actions, observing
the reward obtained, then adapting its policy.
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If the task is modelled as an MDP (section 2.2.1), the aim of RL is to learn an optimal
policy 𝜋 for action selection in the sense that it maximizes its reward.

2.3 The Ludii game playing system
Ludii [26] is the main component allowing the Digital Ludeme Project and now the
GameTable COST Action to fulfill both modelization and reconstruction of ancient games.
It is a general game playing system focused on extensibility and ease of development rather
than simply playing-strength of resulting agents.

It is based on the ludemic approach to describe games, where games are composed
of atoms called ludemes. The idea occured to Cameron Brown while compiling his book
Connection Games: Variations on a Theme [45], during which he noticed that most games
were composed of different combinations of the same high-level ideas. This led to the
creation of Ludi during Browne’s PhD from 2006 to 2009 [46]. 15 years later, this idea was
made into a fully-fledged game playing system: Ludii [26].

Ludii is a game playing system applicable to any game. It can be given the rules of a
game through its GDL [47], compile these rules into an adapted data structure allowing
efficient and correct traversal of the game tree, then produce agents able to play the game
[48]. We will further explore how games are described in order to be usable by the Ludii
Game Playing System, as well as the means used to learn how to play games under heavy
domain-specific knowledge and time constraints.

2.3.1 Ludii’s Game Description Language
Rules of the games are provided using a LISP-like domain-specific languagewhere keywords
relate to general game concepts such as the notion of boards, pieces, movements, etc. We’ll
refer to it as part of the family of Game Description Languages (GDLs). The term GDL was
originally coined for Stanford’s GDL, but many other GDLs exist. Ludii rolls out its own
Game Description Language (GDL), which we’ll refer to as L-GDL throughout this report.
Instead of extending first-order logic like Stanford’s GDL, it opts for a constructive approach
based on atomic units of game-related information called ludemes [49]. Composing ludemes
yields one or more new ludemes.

Some base ludemes are included in the language as keywords. They encapsulate key
concepts of games, like the board configuration, pieces, common moves that can occur,
etc [50]. Such ludemes are directly derived from their implementation in the Java core of
the system [51]. The full grammar of the language is documented in the Ludii Language
Reference [47].

Compared to Stanford’s GDL, which is the academic standard, L-GDL is:

• simpler conceptually

• generalizes concepts well

• provides encapsulation

• easier to compile into an efficient representation [52] [53]
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As a simple metric to understand this difference, Stanford’s GDL is used in the implementa-
tion of around 52 games over the 2005-2018 time period, while Ludii implemented around
1300 from 2020 to 2023.

This simple framework does not come at the expense of expressiveness, as both Ludii
and Stanford’s GDL can express the full range of games [54]. In essence, they are both
equivalent to extensive-form games.

The basic structure of an L-GDL program is as follows:

• (players ...) is a ludeme used to define players taking part in the game. It can
take a single integer when only the number of players is important, or additionnal
data such as colours, important zones, directions, etc when needed.

• (mode ...) is optional and provides information about the type of game about
to be described, notably if it is simultaneous or sequential. If it is ommited, the game
is assumed to be sequential.

• (equipment ...) is used to defined aspects such as board type, pieces, and
other equipments e.g. dices, tokens, etc.

• (rules ...) defines how the game is played. It takes as parameters three other
ludemes:

– (start ...) rules are actions that are applied before the first turn. It
usually constructs the initial board state i.e. initial position of pieces.

– (play ...) rules are used to define legal moves that should be generated
given a game state.

– (end ...) rules are conditions under which the game should end for certain
players, and defines rewards acquired when such states are attained.

This representation is then compiled down to a Game object in Ludii. This object
encapsulates and represents static data about the game, such as its state representation,
algorithms to generate legal actions or check whether the game ended. Without delving into
too much details, it is important to know that boards are represented as graphs𝐺 = (𝑉 ,𝐸,𝐶)
with 𝑉 the set of vertices, 𝐸 edges between said vertices and 𝐶 cells composed of vertices
and edges [55].

2.3.2 State-action features
During his PhD thesis, Dennis Soemers generalized an approach for learning state-action
features for games [56]. State-action features as proposed by Soemers are a linear function
approximator, as opposed to Deep Neural Networks (DNNs) which are able to express
non-linear relationships. While unlikely to match the playing strength of DNN approaches,
these approximators have the advantage of [57]:

• generality, as DNNs often require different architectures for different games.

• iterpretability, as features are extractible from from the model once learned, and
then exploitable by humans [58].
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Figure 2.4: Feedback loop of the expert iteration framework. The apprentice learns from the expert by trying to
mimick its policy, while the expert itself is biased by the apprentice as it learns. In our specific framework, the
expert policy is obtained from an MCTS algorithm, itself biased by learnt state-action features.

• lower computation requirements for training and possibly evaluating.

We describe features 𝑥 =< 𝑝,𝑎 > as a tuple of:

• 𝑝 a pattern or set of elements that the features tests for. These elements are in the
the off-board, empty, friendly, enemy, owned by player 𝑛, piece of type 𝑡.

• an action 𝑎 =< from, to > which the feature weighs. Note that the from position is
optional e.g. it is not necessary in games such as Go or Tic-Tac-Toe.

Such features are applicable to any game which board’s can be represented as a graph [57].
Features are learned using an expert iteration [7] [59] is a framework for self-play

learning that makes use of two policies: an apprentice policy, and an expert policy. The
expert policy is thought of as a slow, algorithmical model of thought which does not need
prior training to function, while the apprentice is a computationally efficient heuristic, but
requires training in order to perform.

Both of these policies affect and improve each other. The apprentice is trained on
results obtained through the expert, and then the expert is biased by the apprentice. The
usual combination for superhuman-level agents is that of MCTS and DNNs. Here, we’ll
formalize the combination of MCTS as an expert policy and state-action features as the
apprentice (Figure 2.4). State-Action features as described by Dennis Soemers have already
been engineered to be learnt through the expert iteration framework [57] [60] [61], and it
is thus fair to assume the applicability of this framework to models later described in this
report.
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3
Describing and evaluating

human-like cognition

Human psyche is a complex enough subject to have multiple fields of research entirely
dedicated to it. Throughout this chapter, we’ll refer to cognitive science, an umbrella
term encompassing fields such as psychology, artificial intelligence, neuroscience, etc.

This complexity did not stop researchers in various fields to try to create human-like
artificial agents. This is, in fact, one of the subgoals of Artificial General Intelligence (AGI)
[62]. Throughout the litterature, scholars have refined methods to evaluate humaneness in
an algorithm’s decisions, and adapted various results from cognitive science to emulate
the human mind as best as possible. [15] [22] [4] [63] [23] [16] [14].

All fields of computer science do not have the same natural incentive when it comes
to research on the topic of human-like agents. Human-Robot Interation (HRI) [15] [18],
believable non-player characters [14] [13] [19] [20] [21] in video games or emulating
conversation [22] are all cooperative tasks. Two or more agents strive to attain a co-
dependant objective, whether it is moving through a crowd or making the player or
interlocutor engaged.

Game playing, and by extensions General Game Playing, are not commonly cooperative
tasks. The most prevalent form of tabletop games is that of two-players zero-sum games,
where a player can only gain utility by taking from its opponent. Here, the two agents are
in opposition. Human-like agents for games have been researched on two occasions: at a
time where heuristics were complex, and the human psyche seemed like a stronger model
[63] [6], and recently when researchers realized that explainable models might be of use
[23] [16].

This chapter will focus on previous results regarding both human thought-process and
the application of these results to artificial agents in various fields. The goal is to have a
broad understanding of the current state-of-the-art regarding the question of human-like
AI, as well as a deeper understanding of the underlying concepts used to make said agents
human-like in the first place.
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3.1 Human thought: cross-disciplinary perspective
3.1.1 Human cognition in games
Most of the work done in psychology when it comes to understanding how humans think
about tabletop games can be attributed to Adriaan de Groot, a Dutch psychologist. His
work and experiments are reported in their integrity in his thesis, "Het denken van den
schaker" published in 1946 and later translated to english as "Thought and Choice in Chess"
[64]. His work focused solely on the game of Chess, but it can be argued that his results
are general enough to cover a wide range of board games.

He formalizes the "choice-of-move" problem. That is, given a position, how does the
player (subject) selects an action he thinks leads to the best outcome. We are not interested
here in whether or not the selected action is objectively the best, but how it was selected.
De Groot describes the problem as ill-defined, as there are many considerations to take
into account. Notably, he exhibits a difference between laying out a plan and executing
one, planning and acting.

An important factor also formalized was that of freedom of choice, aka how many
moves can be chosen. De Groot does not translate this to the idea of legal actions as
thought of in game theory, but rather the number of moves from which the subject really
makes his choice, a subset of the legal actions space. Note that his thesis was written
before the apparition of computer chess, and while he intuited the notion of "proven good
move" to be that of a MiniMax tree, De Groot did not have access to computers for his
calculations. However, he still posited from statistical analysis of previous games that there
were on average between two and five good moves per position. For reference, chess has
an estimated branching factor of between 31 and 35.

Other qualitative considerations can be formulated to evaluate how closely a method
approximates the human evaluation and planning patterns. Notably, it has been found
that humans of different skill levels do not vary as much in depth of search as they do
in pattern recognition [65] [64]. This immediately disqualifies "depth limiting" methods
as good candidates for a human-like agent. Depth-first algorithms are also deemed bad
models, since we tend to focus on a few good moves in best-first fashion. This claim is
backed up by the fact that Monte-Carlo Tree Search based search outperforms 𝛼 −𝛽 in
predicting what moves human players chose in a variety of situations [4].

3.2 Research on human-like agents
Multiple fields have been interested in crafting human-like agents for a long time. The
main problem that human-like agents would solve for these is better cooperation with
humans. For example, the field of Human-Robot Interaction (HRI) has an emphasis
on creating intelligent machines that are able to cooperate with human agents to achieve
tasks as efficiently as possible.

Sometimes, this cooperation is implicit, with a prevalent example being navigating
amongst a crowd. [15] Humans make strong assumptions about the behavior of their peers
within a crowd in order to not bump into one another while reaching different goals. It
has been demonstrated that humans tend to feel more at ease if the crowd behaves in an
expected, human-like way. This includes machines that are part of the crowd.

On other occasions, this cooperation is explicit. This happens for example in cooper-
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Figure 3.1: Turing Tests involve two groups: the observers and observees. In Turing’s original setup, the
observers would interact with observees unknowingly of whether they were machines or humans, then take a
guess. Modern approaches are more complete, with qualitative analysis of the observees rather than a simple
"human or machine" question.

ative games, where human and AI are to work together to achieve a given goal. Agents
trained through reinforcement learning and self-play achieve superhuman levels when
playing together (AI-AI team), but tend to be subpar when playing in a human-AI team.
This is alleviated by using more humane artificial agents [14].

This section will present current standard ways of evaluating the human-likeness of
an artificial agent, as well as results and approaches from various fields when designing
human-like agents.

3.2.1 Evaluating human-likeness
Quantifying human-like behavior is a problem in and of itself. Formally defining such
a complex and intricate concept as "human behavior" is not a feasible goal. However,
the literature on human-like agents has come up with a high-level definition that stems
from how we test for human behavior in such agents: a behavior is human-like if it
is indistinguishable from that of a human. This definition is the basis of evaluation
methodologies in current research and will be the basis of our own methodologies as well.

3.2.2 Turing tests
The most well known attempt to evaluate human-like behavior is the Turing test (Figure
3.1). In said test, human observers are given the task of ranking several unknown agents
or observees, some of which are humans themselves, while others are machines, based
on their intuition of how "humane" the agents were. This is a qualitative evaluation of
human behavior.
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Figure 3.2: Statistical tests compare an expected model of human behavior collected from available data with the
behavior emerging from the model. This allows the measurement of a quantitative distance between observed
behaviors. This evaluation scheme is heavily dependant on the classification of human-generated data. Said
classification can be done by skill level, player archetype (aggressive, passive, tactical), or more involved criteria.

This methodology has been widely criticized in the philosophical literature [66] as a test
for general intelligence. However, when targeting specific domains, such as tabletop games
in our case, it still constitutes a good basis for qualitative evaluation due to the possibility of
narrowing the evaluated characteristics down to more precise features. Another improve-
ment over the basic Turing test is to allow for more open feedback. Humaneness is not based
on ranking observees, but rather scaling them (e.g. as a "percentage of human-likeness).
Other qualitative feedback can be obtained that way, like how comfortable the observer
felt interacting with the observee, or its aggressiveness when playing a tabletop game.
This methodology fits our definition of qualifying indistinguishability and is common in
the literature [15] despite being reatively costly to setup in most scenarios. It requires
willing participants for the survey, both in the roles of observers and observees, on top of a
requirement of anonimity when it comes to the nature of the observees.

3.2.3 Statistical tests
On the quantitative side, previous research on human-like game playing already defined
useful ideas. The most prominent method for evaluating an alignment with human behavior
is by quantifying the ability of an agent to predict human actions given a state of its
environment (Figure 3.2).

For example, the recently published human-like chess engine Maia Chess [4] measures
the human-likeness of its models by comparing the move chosen by the agent in a given
position to the most common moves played by humans. Turnwald et al. [15] employs a
similar strategy by measuring the difference in trajectory between humans and robots
trying to reach a goal. Other attempts include He et al. comparison of their dialogue
model’s decisions with human responses included in conversational datasets [22].

This quantitative evaluation scheme gives tangible results as a measure of distance
between behavior, but cannot by itself qualify as a sufficient test for human-likeness. A
neural network acting as a classifier from environment states to actions taken by humans
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could achieve great results under this framework, while it could be argued that it does
not exhibit "human-like behavior" by itself. This can be countered by generalizing the
framework and using sufficiently big datasets as to avoid this bias. For general game
playing, statistical testings over a wide range of games with sufficiently large datasets
should help in reducing this bias significantly.

Another important feature of this evaluation scheme is its capacity to compare an
agent’s behavior to a pre-processed behavioral cluster. For example, one could check how
different the choices of aggressive human players are from that of our model. Clusters
of skill level are also good examples [4]. This allows researchers to fit their models to a
specific type of human player rather than humans in a general sense.

3.2.4 Past attempts at creating human-like agents
Methods already exist for mimicking human behavior in agents. Most of these methods,
however, come from the field of Human-Robot Interaction (HRI) or General Video
Game Playing (GVGP), and have not been tested or applied to the task of playing board
games specifically. This section will discuss said existing methods as well as evaluate their
applicability to GGP.

It is widely agreed on that modelling humans as optimal agents is counter-productive
when designing agents that need to cooperate with us. Most of the work in HRI focuses on
planning, evaluating and learning using models of human behavior. How these human
models are derived in HRI could be a first step towards understanding and implementing
an agent mimicking such a model in GGP [14].

Work of particular interest to our task is that of Choudhury et al. [67], which compares
two approach for human modelling: imitation learning using data from humans on a
particular task, or the more structured and generalizable "theory of the mind".

Experimental results of training agents to cooperate with human models show that the
agent is more adaptable to its environment, performing tasks with more varied strategies
[14] [15]. Notably, instead of always having a leading/following role in the cooperative
task, it tends to switch between these roles when suitable.

Model-free reinforcement learning approaches are often appealing because the agent
does not require a "role-model" from which it learns how to interact with the world.
However, it often falls short in areas such as explainability, or, more relevant to our
problem space, interactibility and humaneness. This has been quantified by Carroll et
al. [14] in an experiment where a human-AI team played the cooperative video game
Overcooked. Self-trained agents were shown to perform incredibly well when paired
together, but poorly when paired with a human. They posit this is due to the "sub-optimal"
playing of human players from the point of view of the self-trained agent.

Model-based approaches, instead, allow the agent to learn by observing human actions.
In this sense, it is akin to imitation learning. An agent is trained on human-generated data,
and is tasked with mimicking the observed behavior. Agents trained this way performed
way better when cooperating with humans in Carroll et al.’s experimental setup.

The main drawback of this approach in our case is that we work under the assumption
that data arising from human play does not exist and/or is heavily limited. On top of
that, training for a single game does not generalize well. However, learning how humans
perceive the utility of different game states does generalize pretty well and is doable
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using inverse reinforcement learning [68] [69], a technique which we’ll describe more
thorougly in subsection 3.2.5.

"Theory of the Mind" (ToM), a term coined by Alison Gopnik [70], advocates for
modelling humans using a set of assumptions. It models agency.

Cognitive science literature provides some amount of evidence that we might use ToM
as a basis for our own interactions with peers during infancy [69] [71] [72] [73], notably
under the assumption that they are rational, and as such make approximately optimal
decisions under some objective.

Research done on whether a ToM approach is best for human-agent interaction is often
inconclusive due to a few intricate roadblocks arising [67]:

• We do not yet have a precise model of "how humans think". Therefore, any quantita-
tive or qualitative results are derived from using probably subpar models.

• Experiments are often costly, although this point can be somewhat alleviated by
using board games as an intermediate.

The problem of designing a ToM approach to general game playing comes in three
subproblems:

• defining a planning algorithm optimizing for the constrained computational model
of humans.

• modelling rewards for different tasks, which may or may not be related to winning
a game.

• providing a way to evaluate heuristics for state-action pairs.

Planning like a human
In GGP, the two predominant family of algorithms for planning are depth-first (Minimax
[74], 𝛼𝛽 [40], etc) and best-first (MCTS [8], GRAVE [42], UCT [41], etc). In an effort to
mimick human strength, it is often the planning algorithm that is impacted. For example,
the maximum depth of the search can be reduced or the program can chose the wrong
move randomly.

However, these tweaks do not tend to make game playing systems more "human-like"
[4]. Instead, we argue that the currently available algorithms for GGP are not fit to that
task and will try to infer a new algorithm from the basis of psychology.

Previous work on the subject of human-like planning has been done, notably for Large
Language Models [22] or motion planning in HRI [15] with promising results. These
works are based on some form of Monte-Carlo Tree Search, the rationale for such a choice
often being that it is closer to how human cognition works expertimentally [4] [15]. This
empirical notion matches the findings from De Groot’s experiments on planning in the
game of chess [64].

An augmentation of the usual MCTS framework comes from the Dual-Process Theory
of Cognition (DPTC) [75] as applied by He et al. to their conversational agents [22]. This
theory posits that humans employ two different processes of thinking:

• System 1 is fast and based on intuition. This sytem is used when the agent is faced
with known and learned patterns e.g. endgames in chess, or the eye pattern in Go.
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• System 2 is slow and analytical. It is active mainly when new situations arise and
System 1 is unsure of what to do next. System 2 will then take some time to simulate
and plan ahead to compensate for the lack of prior knowledge.

The idea posited by He et al. for a more humane conversational agent is to:

• use a policy function as System 1. This policy function is based on a fast neural
network.

• use the MCTS algorithm as a fallback when System 1 presents uncertainty, simulating
System 2. In their experiment, the forward simulation was done using ChatGPT to
create the interlocutor’s response in advance.

The notion of uncertainty in the policy function was measured as the value difference
between the first and second choices. If both choices are deemed almost equally interesting
by the policy function, we assume that it is uncertain about how to proceed. Another idea,
probably more applicable to game playing, is to compute the entropy of the returned policy
distribution. This is due to the fact that in games, particularly in winning states, more than
one action can lead to the desired outcome.

A proposed strategy to still take advantage of the second system in situations where
the policy is almost certain that one of two actions is the best is to solely search these two
"best" actions. This is done by computing the entropy of the policy, then picking actions to
search by removing them from the action set and normalizing the policy. This process is
repeated until the policy is too uncertain in regards to an 𝜖 parameter.

This idea will be explored further in section 4.1.

3.2.5 Human-like agents in tabletop games
The research on tabletop games is not exempt from attempts at creating human-like agents
altogether. Experiments on the subject date back to 1991 where Levinson and Snyder
designed the Morph computer chess program [63]. The idea was to take advantage of
pattern matching for the program to learn heuristics. Positions were represented as graphs
with attack-defense semantics 3.3. All pieces in the chess board represented a node of
the graph, and a vertex was added between pieces if one could attack or defend the other.
Weights were then added to patterns in order to produce a heuristic value for states.

The results from this experiment were pretty mixed. On one hand, Morph managed
to learn values for each piece which were closely tied to the theoretical values given by
professional chess players. However, Levinson and Snyder noted that finding the correct
function to apply to the weights of active features in order to find a good heuristic was a
complexe endeavour. Notably, they seemed to be limited by the lack of non-linearity.

More recently, Manziuk proposed an approach similarily based on pattern recognition,
or contexts (Figure 3.4) to find the best moves in connect-4 with a 1-ply search [23].

His approach was based on a neural network, which introduced non-linearity unlike the
experiment made by Levinson and Snyder. Results from this approach are also encouraging,
with the network performing better than naïve deep neural network approaches when
it came to finding the best move to play without any search i.e. through pure pattern
recognition.
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Figure 3.3: Example of an attack-defend pattern as described by Levinson and Snyder [63]. Filled arrows represent
a direct path from one piece to another, while dashed arrows represent indirect paths i.e. through a piece.

Figure 3.4: An example of the four possible contexts described by Mandziuk in his paper [23]. It matches lines of
4 pieces, in any direction, and for all cells.
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Maia Chess [4] introduces the task ofmove-matching, a statistical test where the chosen
move of the agent is compared to the move chosen by humans on average. The goal here
was to maximize the accuracy of the agent in the task of predicting human moves given a
game state.

This can be expressed as a classification problem. Training a deep neural network
on human-generated data obtained from the Lichess platform allowed Maia Chess to
outperform other agents such as Stockfish or Leela Chess Zero in the move-matching task.

This approach could be used for GGP by gathering a large quantity of data, something
made plausible using the Ludii online platform. However, it is not directly applicable to the
task of reconstructing ancient games, since it relies on the availability of human-generated
data.

Human-like rewards
Rewards in General Game Playing are often translated one-to-one from scores that can be
achieved by completing goals in the current game. For two-player zero-sum games, the
typical reward is 1 for winning, 0 for a draw, or −1 for losing. These rewards are solely
limited to the game’s outcome, and are a useful evaluator of an agent’s performance in the
literature.

However, human motivation for playing games can be varied. None of the papers cited
above [67] [14] [15] deal with this idea even while trying to design human-like agents.
Instead, their approaches simply try to maximize the intricate reward (in the case of [14]
the score given to players for completing tasks). In the case of human-AI collaboration,
this could lead to unpredictable behavior and poor performance when an agent designed
solely for maximizing in-game score is paired with a human who wants to simply have fun
some other way, or even whose goal is to ruin the AIs plans.

Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) [39] [68] is the problem of inferring a reward function
from the decisions taken by an agent. Previous works that apply this technique to tabletop
games to infer a reward function when it is difficult to describe otherwise [19] or as an
opponent model policy [76]. We’d instead want to understand a model trained on human
data not to optimize our reward for winning, but instead to make said reward function align
better with human considerations. This was one of the potential applications proposed by
Russel in its original description of IRL [39]. Some work has been done in this regard for
other fields, such as cognitive science [69] or sociology [77], demonstrating the inference
of a human’s goal by formalizing their actions as an IRL problem.

In our case, IRL could be used to study how humans perceive rewards in games. For
example, two-player zero-sum games often consider reward functions to be −1 for the
losing player, 1 for the winner, and 0 for both in case of a draw. It would not be far-
fetched however to infer that so called "bad loosers" would value losing and winning in an
unbalanced way, as would a novice playing against an expert. The potential applications
and methods to use will be further described in 4.2.

IRL is often formalized as a Markov Decision Process (MDP) ascribed to the interaction
of the observed agent with its environment e.g. a trial for GGP. As a reminder, a MDP is a
tuple < 𝑆,𝐴,𝑝, 𝑟 >, explained in further details in 2.2.1.
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The reward function 𝑟 of this MDP is unknown, and the observed agent is assumed
to be following an optimal policy for the MDP i.e. the policy 𝜋 that maximizes 𝑉 𝜋(𝑠)
for all 𝑠𝑖𝑛𝑆 the set of all possible states. IRL problems are thus expressed as a 3-uple
< 𝑆,𝐴,𝑝,𝐷 >. 𝑆, 𝐴, and 𝑝 are the same as in MDPs, but we replaced the reward function
with: 𝐷 = {(𝑠0, 𝑎0)1, ..., (𝑠𝑇 , 𝑎𝑇 )1, ..., (𝑠0, 𝑎0)𝑛, ..., (𝑠𝑇 , 𝑎𝑇 )𝑛} the set of observed trajectories. We
assume that these trajectories are perfectly observed, meaning that we know all actions and
states encountered for all timesteps 0 <= 𝑡 <= 𝑇 .

Our goal is then to determineΘ𝑟 a reward function that best explains either the policy 𝜋
if given, or the observed trajectories.

3.3 Closing remarks
This preliminary survey of existing methods for human-like artificial agents in different
fields and results on human cognition from a general cognitive science perspective help us
unveil a few key points on:

• what makes a human-like agent successful in its task.

• the processes from human cognition that come into play, specifically for game playing
problems.

• methods to evaluate the humanness of an artificial agent.
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Human-like model for GGP

As stated in previous chapters, human-like agents are important to GGP for different reasons
than in the fields where it is usually employed, which often revolve around cooperating
with humans.

The goal of humane agents in GGP is, in a sense, also to cooperate with humans, altough
said cooperation is indirect. Notably, such agents could:

• provide deeper insight into strategies they employ, in opposition to usual black box
agents.

• generate realistic, human-like playing data in an automated way.

• offer a more interesting, organic and fun challenge to human players.

Such agents will be referred to as gatherers of experience rather than the usual black
box superhuman-level opponent game playing agents trend towards.

As stated in previous chapters, our main framework for humane agents is that of the
Digital Ludeme Project (DLP), more specifically embedding said models in the Ludii game
playing system. In this frame, human-like models would be used for the reconstruction of
ancient games with missing rules, pieces or records of trials, as well as generating plausible
playing data and strategies that we can analyze to better understand the cultures said
games originated in.

This chapter focuses on translating methods, approaches and results summarized in
chapter 3 to the specific field of GGP. We will dive into the details of a preliminary model
trying to mimick human cognition and behavior, as well as the experimental setup devised
to evaluate the humaneness of this model when it plays (Figure 4.1).

This chapter is dedicated to further detailing the ideas behind its architecture, evaluation
scheme and how adjustments should be made based on feedback from said evaluations.
These preliminary ideas will be further tested, evaluated and adapted in future publications.



4

28 4 Human-like model for GGP

Figure 4.1: A preliminary experimental setup involving an AI model inspired by the dual-process theory of
cognition [75]. This model integrates a rapid pattern recognition system developed through Inverse Reinforcement
Learning (IRL) and based on state-action features (System 1) that defaults to a Monte Carlo Tree Search model
(System 2) when it encounters states of uncertainty regarding the optimal action. The outputs of this model
are assessed both qualitatively by humans through a Turing test and quantitatively by comparing them against
statistical player profiles. This two-pronged evaluation method aims to gauge the model’s "human-likeness"
effectively, ensuring a robust measure of its performance in scenarios mimicking human decision-making.
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4.1 Architecture
The architecture of our first model is based off of a few core ideas unveiled in the previous
chapter:

• double-process theory of cognition

• inverse reinforcement learning for human-like rewards

• selection of a subset of moves to search based on prior knowledge

• best-first search model of planning

Our architecture is composed of two core blocks: the intuitive brain (based on System
1 of the Double-Process Theory of Cognition aka DPTC) and the analytical brain (based
on System 2 of DPTC). Both blocks will work in tandem and exchange information to direct
the final decision made by the model as well as future decisions.

4.1.1 The intuitive brain
Humans rely much more on intuition and pattern recognition than searching deep lines
when playing games, as De Groot uncovered during his studies [64]. The trend for game-
playing agents, however, focuses more on the latter: the deeper and longer an 𝛼-𝛽 or
MCTS algorithm can search, the better it performs on average. This is mainly due to our
inneficiency in capturing human players’ pattern matching capabilities. Even modern
approaches based on deep neural networks tend to fall for Binet’s theory that the model of
cognition for human players evaluating positions relates to visual recognition [78] [7].

Humans tend to prune extremely large portions of the search tree, focusing on a few
identified good actions. This leads to relatively shallow, sharp lines that are informed
and guided purely through intuition. The difference between an expert and an amateur
rarely lies in the depth to which they can simulate future moves rather than their ability to
identify good lines intuitively.

We represent this cognitive feature of humans as the intuitive block, corresponding
to System 1 of the DPTC. This system focuses on intuitive, memory based thinking. As
to clarify, this is not akin to visual memory, as Alfred Binet theorized prior to De Groot’s
thesis, but rather an abstract representation of positions based on spatial relationships
between pieces. We also tend to not think about the intrinsic value of position but rather
the value of actions that can be made in the current state.

We posit that state-action features as described by Dennis Soemers in his thesis [56]
and implemented in the Ludii game playing system would be prime candidates for this
type of heuristic. They represent abstract spatial relationships between pieces based on
the rules of the current game. As such, they fit the criterion of:

• explainability, as learned features can be easily extracted from the model.

• adaptability, since they can be learnt on the fly using the process of expert iteration.
The expert system is here provided by the analytical brain, further explained in 4.1.2.

• being based on pattern matching and recognizing previously encountered relations
between pieces.
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• providing a policy over legal actions.

The resulting policy is then first observed to decide whether the agent is in a state of
doubt or not. Intuitively, if doubt arises in the intuitive brain, it falls back to the secondary
analytical block to inform its final decision. A question of importance here is that of
deciding what it means for the agent to be in doubt.

When introducing the DPTC model for their human-like conversational agent, He et
al. described the state of doubt "by the probability difference for the top-2 values" [22].
Put simply, if the top-2 choices as ranked by the policy are close enough e.g. top-1 has a
value of 100 while top-2 has a value of 98, then the agent is in doubt and falls back to the
analytical brain to search the full range of possible actions. Our definition of "doubt" will
be more closely tied to the results obtained by De Groot that humans search a few good
moves. Our idea is to use the policy as a filter of potentially good actions by picking the
best action until the entropy of the policy is deemed too high i.e. induce a state of doubt
by reducing the action space. This is done by computing the entropy of the policy, then
picking actions to search by removing them from the action set and normalizing the policy.
This process is repeated until the policy is too uncertain in regards to an 𝜖 parameter.

Formalizing this idea, we compute the initial entropy of the policy distribution as such:

𝐻 (𝑃𝐴) = −∑
𝑎∈𝐴

𝑝𝑎𝑙𝑜𝑔2𝑝𝑎

Where 𝑃𝐴 is the policy over a set of actions 𝐴 and 𝑝𝑎 is the probability that the agent will
choose action 𝑎 ∈ 𝐴.

Our set of actions to be searched can then be computed using the following algorithm
(Algorithm 1), where 𝜖 is a threshold value for which we consider the policy to be uncertain:

This algorithm filters actions that are deemed not worthy of further search by the
policy function. If |𝐴′| = 1, we can skip the second system altogether since the policy was
absolutely certain that this action was the right one. On the other hand, if |𝐴′| = 0 then the
policy was completely unsure about the right course of action, and we fallback to our slow
analytical system entirely to decide what action is best.

4.1.2 The analytical brain
The second block of our model, or analytical brain, will be based on the Monte-Carlo
Tree Search (MCTS) algorithm to further plan ahead. The choice for this algorithm instead
of alternatives like 𝛼-𝛽 or Proof-Number Search is due to its best-first, unbalanced nature,
which has been deemed to be more closely tied to human cognition when planning in
games [64] [4].

There are a few modifications made to the base algorithm described in 2.2.2 for it to
better fit the human psyche:

• the simulation phase is discarded, as it makes no sense for a human player to
"randomly sample" a possible trial from a position. The expanded leaf node will
instead have the value of its best possible child according to the policy (intuitive
brain).
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Algorithm 1 Pseudo-code of an algorithm to sample a subset of actions to search deeper.
It does so by picking out the best action until the subset of non-picked actions reaches a
high enough entropy, determined by an 𝜖 parameter. This cuts the legal actions space in
two: a subset of "bad" actions, and a subset of "good" actions, both with high entropy. In
the event that all actions are equally good from the start i.e the "good" subset is empty, the
whole legal actions space is returned.

𝑃𝐴 ← policy over𝐴
𝐴′ ← {}
𝐻 ← 𝐻 (𝑃𝐴)
if 2|𝐴|−𝜖 ≤ 𝐻 or |𝐴| = 0 then

return 𝐴
end if
repeat

𝑎∗ ← argmax𝑝𝑎
𝐴′ ← 𝐴′ ∪ {𝑎∗}
𝐴← 𝐴⧵ {𝑎∗}
𝑃𝐴 ← { 𝑝𝑎

1−𝑝𝑎∗
, 𝑎 ∈ 𝐴}

𝐻 ← 𝐻 (𝑃𝐴)
until 2|𝐴|

𝐻 ≤ 𝜖 or |𝐴| = 0
return 𝐴′

• children of a state will not encompass its entire action space, but rather the filtered
actions from the intuitive brain. This better fits the results showing that humans
only look at a subset of actions they deem "good" from experience, discarding the
rest of the action space.

• the search tree cannot grow unbounded. Even when given ample time to think,
humans keep a cognitive limit to how much they are able to remember about their
search. We focus on refining lines that we have deemed exploitable after analysis. A
hard limit on the number of nodes stored is thus placed.

• it is possible, though not backed up by previous results, to incur noise during
backpropagation and/or selection.

This scheme puts the spotlight on the intuitive brain, as it highly biases the search
algorithm. It entirely decides of the values of leaf nodes when expanded and dictates the
action space to be searched.

The hard-limit that is put on the number of nodes that can be stored in the game tree
exists to avoid the unrealistic scenario of a human searching to unimaginable depths, which
is likely to occur due to the reduced search space. We propose to use a fixed size table
mapping states to nodes, with a replacement strategy in the event of a collision. Such
replacements strategies could favor nodes with:

• high exploitation values i.e. nodes that are known to be good.

• high amount of visits as they are likely important to the search.
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Figure 4.2: Co-dependency between the two systems of DPTC is illustrated as a back-and-forth, the intuitive
brain guiding the analytical MCTS algorithm during its iterations by reducing the search space drastically, while
the results of this deeper analysis are learnt from to sharpen the intuition of the model.

Many other such replacement schemes exist and will be tested in future works for ex-
perimental results. In the same vein, the actual size limit will have to be determined
experimentally, as no results from various fields of cognitive science are able to provide an
upper bound on the matter.

4.1.3 Learning and interaction between the two brains
These two blocks should be co-dependant (Figure 4.2), as is the case in DPTC. As already
stated, the analytical brain is greatly biased by the intuitive one due to the reduction of
search space and influence on the values of leaf nodes.

While the analytical brain is purely based off of the rules of the game, and can thus
function without any preparation, the intuitive brain is based solely on recognition of
learnt patterns. As such, it requires a learning phase, which can be separated in two
paradigms:

• the agent should learn during the game, reusing results from its analysis to adjust
its playing style. If an action that was intuitively good turns out to lead to a losing
position after further analysis, the agent should be able to learn from that result.

• after a definitive result has been reached i.e. at the end of a trial, the agent should
be able to reflect on this outcome and adjust its beliefs accordingly.

Online learning
During a trial, the agent should be able to learn online from the insightful results of
the MCTS algorithm. Once the search has finished, two scenarios can occur: either the
analytical brain agrees with the policy, or it produces a different policy. In any case,
the results of the analytical brain should be used to bias intuition.

This is akin to an expert iteration system, already used to learn state-action features
from game play in the Ludii game playing system. In such systems, and apprentice (usually
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used to produce a policy) learns from the results of an expert (Monte-Carlo Tree Search,
𝛼-𝛽, and other search algorithms) in order to infer better heuristics to guide the expert.
In our model, the expert would be represented by the analytical brain while the intuitive
brain acts as the apprentice.

Offline learning
When starting to learn a game, the intuitive brain is completely blank and unable to give
insight to direct the analysis. In this case, it is in a constant state of doubt regarding the
policy, and relies entirely on the MCTS algorithm to analyze the game. This is akin to a
child trying out a game for the first time: it has no preconcieved ideas about which actions
are good in the long term, and requires deeper analysis of the game in order to make any
sort of plans.

These plans are obviously subpar, or even random, due to the fact that all states feel
the same. Planning ahead without any intuition on the long-term value of actions is thus
futile at this point. Only at the end of the game can the intuitive brain begin to analyze
what happened and infer some first preconceptions about the value of patterns. A step of
learning has to happen in between games in order for the intuitive brain to learn correctly.
This approach is more akin to reinforcement learning. After a playout has been done,
we give the agent time to reflect on the outcome by assigning game-theoric values from
the game’s result to all actions that were taken.

The aim is twofold:

• we avoid a scenario where the agent’s learning curve is slow at the start of training
due to non-existent heuristics and the removal of the simulation phase of the MCTS
algorithm.

• we allow the agent to infer long-term rewards rather than forcing it to rely only on
the relatively short-sighted analytical brain.

In order to account for that, the 𝜖 parameter controlling whether the model is in a state
of doubt regarding actions could evolve as the model learns to represent its confidence in
its intuitive decisions. A model with no experience would use a high value, being more
doubtful about its insights. As it gathers more experience and validates its intuition through
analysis more and more accurately this 𝜖 value would reduce.

4.2 Human-like rewards for tabletop games
Besides the planning algorithms used to mimick human though processes, an important
aspect is the modelling of human affect in games. This is reflected in finding an appropriate
reward function.

Our first model will use Inverse Reinforcement Learning (IRL), which we presented
formally in 3.2.5, to study how humans perceive rewards in games. For example, two-player
zero-sum games often consider reward functions to be −1 for the losing player, 1 for the
winner, and 0 for both in case of a draw. It would not be far-fetched however to infer
that so called "sore loosers" would value losing and winning in an unbalanced way, as
would a novice playing against an expert. The former could value losing states with −10
while winning states are still valued 1 and draws hold a reward of 0. For the latter, maybe
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winning states would be valued extremely highly (30), draws are still thought of as a win
(1) since the opponent was supposed to dominate us, and losses are valued 0, since they
were just expected.

Many online plateforms for tabletop games make their databases of recorded trials
available, some holding millions of games that can be used to infer a reward function.

4.2.1 Clustering player behavior
As stated multiple times throughout this report, human motivations are varied. Some
players are aggressive, others are tactical, some hate loosing, others try to play tricky
positions hoping to make their opponent fall for a trap.

IRL problems would benefit from learning rewards from clusters of players rather than
the entire playerbase at once. Clustering players by their behavior would help the model
learn multiple sharp reward functions rather than one vague "average of human behavior"
way of valuing game states.

A possibility to create such clusters would be to define human behavior in games from
the Ludii platform using multiple metrics to measure the distance between these behaviors,
in a similar fashion to what has already been done for games themselves [50] [79].

4.3 Evaluation scheme
Our evaluation scheme to assess the human-likeness of our model is two-fold:

• move matching will be used to compare its decisions to that of humans in the same
environment or state.

• Turing tests are organized for qualitative feedback on the humanness of the model,
as well as more intricate attributes relating to its play style.

This evaluation will also be held on other models to serve as comparison. Notably, we’ll
conduct the same experiments on a pure MCTS-UCT model in Ludii, which also uses
state-action features, as well as other well-known game playing agents.

4.3.1 Move matching
As described in chapter 3, move matching is a statistical test assessing how well an artificial
model is able to predict human moves given a state [4].

In this evaluation scheme, skill levels must be taken into account. One could argue that
a game played between two skilled human players is different than one played between
two novices. As such, states and their according action distribution must be classified by
both game and skill level when available. This greatly reduces the amount of games that
move matching can be conducted on as we need both a large enough dataset and access to
some form of skill rating.

Multiple online board game platforms offer such data for popular games. One example
is the Lichess database, which features a wide range of games of various skill levels. Similar
databases for games such as Renju also exist in the form of tournament results 1.

1International Renju Federation tournament games: https://www.renju.net/game/
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A noteworthy element is that move matching only cares about the actually chosen
action. The ranking of other actions is never taken into account. Our evaluation scheme
would first create statistics on chosen moves based on games between humans. The chosen
move of an agent would then determine its statistical success based on the probability of
this move being chosen by a human player. For example, if in the starting position of the
game of chess, 60% of human players chose to play e4, and the agent also chooses e4, then
it has 60% accuracy in the move matching test.

4.3.2 Turing tests
These tests will serve as the basis for more nuanced qualitative feedback on the humanness
of our model. It will deviate from the original and well known method of ranking observees
by instead asking observers to rate the human-likeness of each opponent individually. On
top of this general observation, multiple scales for play style related attributes will be
added in order to better understand "how the model plays".

These tests can be conducted directly on the Ludii online platform, which offers to
play implemented games against AI opponents [80]. A form would pop-up before the
game starts offering the visitor to participate in the study. Participation would obfuscate
information about the available AI opponents as to avoid prior knowledge, as well as
offer a form to fill information about the perceived humanness of the opponent after the
game. Additionally, information about the game such as moves played, states reached, and
evaluation information from the artificial agent would be recorded.

Usually, these kinds of tests include a human participant in order to form a statistical
baseline of the perception of observers. While our methodology allows for a large number
of participants, it lacks this important aspect. As such, more formal studies should be
conducted by gathering participants and randomly assigning them to either play against
each other or AI opponents. This primary dataset would form a more trusted source of
information, albeit on a smaller population.

4.4 Malleability of the model
There are multiple parameters that can be adjusted depending on the feedback obtained
through our evaluation scheme:

• the 𝜖 parameter deciding on whether the intuitive brain is in doubt.

• the maximum size of the remembered game tree.

• the allowed complexity of state-action features.

This gives us some leverage to test various sets of parameters in order to adjust our cur-
rent model. However, would the model prove to not feel human-like after said adjustments
have been exhausted, it would have to be redesigned.

These parameters also give us a way to adjust the model’s perceived strength in an
organic way. Online platforms featuring AI opponents often limit their strength based on
depth-limit i.e. limiting the maximum search depth the program is allowed to reach, or
though random blunders i.e. assigning a probability of picking an action the program
has deemed sub-optimal.
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While this indeed reduces the playing strength of these programs, it does so in an
artificial way. The resulting agents often play "weird" actions that don’t make much more
sense from a human perspective, or resort to straight up nonsensical play. A good example
of the latter is the lowest level chess bots available on many online platforms.

With our model, reducing the playing strength of an agent can come from:

• reducing the size of the remembered game tree, making it less capable of analyzing
the position deeper while not hindering its ability to play intuitively good moves.

• reducing the complexity of learnt state-action features, providing a ceiling to how
much the model can hone its intuition.

The latter matches what has been observed by De Groot or Chase et al. that lower ranked
players often don’t differ much in their ability to analyze a position rather than in their
ability to intuitively identify good moves [64] [65].
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Conclusion

Current state-of-the-art for human-like agents in multiple fields of computer science and
robotics showcase promising results in bridging the gap in behavior between AI models and
humans, cementing our hopes of creating a similarily performing agent for GGP. Notably,
they bring forward a standard definition of the problem, as well as various methods of
evaluation, both of which were found to be complex questions spanning multiple subfields
of cognitive science.

A human-like model for GGP derived from these methods and approaches in Section
4 will be implemented and evaluated over multiple levels of granularity. First, we aim to
implement a simple game-specific agent using this model for the game of Renju. Due to
their random sampling model, standard Monte-Carlo Tree Search (MCTS) approaches tend
struggle with "trap states"—situations with only one winning or losing move—which are
inherent to the game. In contrast, humans excel at recognizing important patterns and have
a strong focus on them to guide their planning, a behavior which we aim to replicate in
this restricted framework. This game-specific model will be evaluated using both methods
described in this report, Turing tests and move matching, in order to gather various forms
of feedback to further improve the model.

Our model, improved through collected feedback, will later be generalized for General
Game Playing in the Ludii game playing system.
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