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Hybrid System Identification through
Optimization and Active Learning

Hadi Dayekh ∗ Nicolas Basset ∗ Thao Dang ∗

∗ Université Grenoble Alpes, CNRS, Grenoble INP, VERIMAG,
Grenoble, France (e-mail: firstname.lastname@univ-grenoble-alpes.fr).

Abstract: We present a method to identify state-dependent switched nonlinear dynamical
systems with polynomial ODEs through optimization and active learning. Our approach extends
and incorporates segmentation into a previous optimization-based approach for identifying
SARX models. We use logistic regression to find the polynomial or linear mode boundaries
of the system. Additionally, we provide a way to refine the result of the classifier through active
learning and equivalence queries, assuming the correct identification of continuous dynamics.
We provide results of our approach on multiple experiments, including a parametric experiment
with increasing number of modes. We also compare our results with a different approach that
deals with a similar class of problems and show that our method performs better.

Keywords: Hybrid Systems, Identification, Data-driven Modeling, Active Learning

1. INTRODUCTION

The problem of identifying hybrid systems attracted much
attention as soon as hybrid system models became widely
accepted in the 1990s by both computer science and con-
trol theory communities as a rigorous mathematical tool
for describing and reasoning about processes involving
both continuous and discrete dynamics. Due to the recent
progress in machine learning, this identification problem,
as part of data-driven model learning, is currently enjoying
renewed interest. The classical identification problem can
be seen as a passive model learning problem. In active
model learning, we assume to be able to manipulate the
system inputs and initial states to generate system trajec-
tories, and then the question is how to generate new data
to improve the model accuracy. Active learning has been
intensively studied in the context of automata learning
since Angluin [1987]. To our knowledge, active learning
has not yet been much explored for hybrid systems.

In this paper, we propose an approach to identify switched
nonlinear dynamical systems. Before explaining our con-
tribution, we present a brief review of related work on
(passive) hybrid system identification.

The first hybrid system identification work focused on
affine hybrid systems and addressed Piecewise AutoRe-
gressive eXogenous (PWARX) or Switched AutoRegres-
sive eXogenous (SARX) models (see the tutorial of Pao-
letti et al. [2007]). One major approach relies on a solution
where classifying data (that is, assigning a submodel to
each data point) is coupled with estimating the dynamics
of the submodels. This is done in Ferrari-Trecate et al.
[2001] using clustering techniques, by exploiting the ob-
servation that data points close to each other are likely to
belong to the same submodel. The bounded-error method
proposed in Bemporad et al. [2005] performs the coupling
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in an iterative manner by first aiming at matching data
points with a minimum number of submodels up to a given
fitting error bound, and then refining to resolve matching
inconsistency. Another major approach Vidal et al. [2003]
is based on an algebraic formulation that describes the
match of a data point to one submodel by a homogeneous
polynomial equation. An extension of this algebraic ap-
proach to handle data noise was proposed in Ozay et al.
[2009]. In Juloski et al. [2005], a Bayesian approach is used
to identify PWARX models. On the other hand, to address
the complexity of the optimisation problems associated
with the identification procedures, Ozay [2016] solves the
problem of segmentation of an ARX trajectory with a min-
imum number of mode changes using dynamic program-
ming. Non-smooth programming is exploited in Berger
et al. [2022] for identifying switched linear systems, to
achieve an algorithm linear in the size of the data, instead
of exponential as in a direct mixed-integer linear program-
ming approach Bemporad et al. [2001].

For nonlinear hybrid systems, Lauer and Bloch [2008] pro-
pose an extension of the bounded-error approach where the
dynamics of submodels are expressed in kernel expansion
form and the associated relaxed optimization problem is
then solved using kernel support vector regression (SVR).
Besides optimization-based solutions, machine learning
techniques are used, such as in Ly and Lipson [2012] which
employs symbolic regression to infer a symbolic discrete
dynamical model with continuous mappings.

While the above-mentioned approaches concern mainly
discrete-time systems, other approaches are emerging to
identify hybrid automata with ODEs, such as for systems
with affine ODEs Soto et al. [2021], Yang et al. [2022].
Additionally, mode classification is done using shape-
based similarity measures of trajectories, such as Gurung
et al. [2023], Saberi et al. [2022]. On the other hand, the
approach proposed in Jin et al. [2021] can identify switched
nonlinear dynamical systems, based on either a novel



algorithm that combines segmentation with a merging
algorithm which merges segments together if they fit well
in a regression model, or a modified application of Alur and
Singhania [2014]. This approach is closely related to the
one we propose. However, it requires a stronger constraint
on the nature of the state space partition.

To situate our work in the current state of the art, the
identification approach we propose in the paper deals with
state-dependent switched nonlinear dynamical systems
and is based on a modified version of the approach in Lauer
and Bloch [2008], presented in section 2. The first major
novelty in our approach is the integration of segmentation
information in the optimization problem, and the direct
training of system coefficients rather than relying on kernel
methods (section 3). The second major novelty is the
use of active learning to correctly find the state space
partition of the modes, assuming the correct identification
of continuous dynamics (section 4). We provide results on
several experiments in section 5, and finally, we conclude
and talk about future work in section 6.

2. BACKGROUND AND PROBLEM STATEMENT

We first recall the method of Lauer and Bloch [2008] for
identifying discrete-time SARX models. Given pairs of an
input ut and an observable output yt, as well as model
orders na and nc, a regressor vector is built as follows:

xt =
(
yt−1 . . . yt−na

uT
t−1 . . .u

T
t−nc

)
The output yt depends on this regressor such that yt =
gj(xt), for some j ∈ {1, . . . , n}, representing the mode of
the system.

In the affine case, given the data points {xi, yi}i=N
i=1 , where

yi = gj(xi) and j ∈ {1, . . . , n}, the target function for each
mode j is of the form ĝj(x) = ωT

j x + βj . The goal is to
identify these functions and the modes of each data point.
The optimization problem for identifying affine 1 SARX
systems developed by Lauer and Bloch [2008] is:

min
ξ≥0,ω,β

n∑
j=1

ωT
j ωj + C

N∑
i=1

n∏
j=1

ξij

−ξij − δj ≤ yi −
(
ωT

j x+ βj

)︸ ︷︷ ︸
ĝj(x)

≤ δj + ξij , i=1,...,N, j=1,...,n

where δj is an insensitivity error for each mode j.

The global minimum is reached when the second term in
the objective function is zero. In this global minimum, for
each data point xi, there exists a j∗ ∈ {1, . . . , n} such
that ξij∗ = 0. Given this information, we know that the
data point xi is correctly described by the dynamics of

f̂j∗ , up to an insensitivity error δj∗ , as the constraint now
ensures that. Hence, xi belongs to mode j∗. The objective
function also includes the sum of norms of coefficients ωj ,
a regularization step that aims at hindering overfitting.
The mode of a data point xi is deduced as argminj ξij .

1 Lauer and Bloch [2008] also provides a way to identify nonlinear
SARX models through kernel SVR. In our learning algorithm, we
treat the nonlinear case as affine after transforming the data into a
polynomial feature space. We thus do not use kernels and hence will
not detail their optimization problem for the nonlinear case

Problem Statement

We aim at identifying a continuous-time state-dependent
Switched Nonlinear Dynamical System (SNDS), which is
a type of hybrid systems whose continuous dynamics are
governed by n ordinary differential equations, as follows:

ẋ = fj(x) if x ∈ Xj , j = 1, . . . , n

where x ∈ RD = X1∪X2∪ . . .∪Xn and Xi∩Xj = ∅, i ̸= j.
Furthermore, we only consider fj(x) that are polynomial
in the components of x, with a known maximum degree.
We also assume each Xj is defined by a conjunction of
polynomial inequalities.

Given data points {tk,x(tk)} collected from a set of
trajectories over time at discrete time steps, we present
a way to identify the dynamical equations f1,f2, . . . ,fn

as well as the mode each data point belongs to, assuming
we know the number of modes n. At a later step, knowing
the modes of each of the training data points, we apply a
classical machine learning classification problem to deduce
the state space partition {Xj}j=n

j=1 .

3. PASSIVE LEARNING OF DYNAMICS

3.1 Identifying Dynamics and Data Modes

In this section, we modify the optimization-driven method
of Lauer and Bloch [2008] for SARX systems to our
continuous-time problem, through three major changes:
(1) changing the nature of “input” and “output” in SARX
systems as to respectively refer to the continuous state
x and its estimated derivative ẋ, (2) using polynomial
features to identify polynomial functions, and (3) incor-
porating in the optimization problem (see section 2) the
segmentation information by merging all ξ variables that
represent points belonging to the same segment. The last
modification greatly reduces the complexity of the opti-
mization problem as we go from n ·N variables ξ to n ·m,
with m being the number of segments.

Segmentation The first step in the identification process
is segmentation, which is dividing each trajectory into
segments such that each segment follows a certain dynamic
and thus belongs to one mode. We integrate segmentation
in the identification process, as this greatly reduces the
complexity of the optimization problem.

In order to segment each trajectory, we follow a similar
method to Jin et al. [2021], where we compare forward
and backward derivatives at each point of the trajectory,
concluding that there is a change in modes when the
difference is greater than a certain threshold.

After the segmentation process is done, we get a set of non-
intersecting segments S = {S1, S2, . . . , Sm}, whose union
represents our training data. We denote by σ(i) the index
of the segment in which the point xi belongs.

Estimating Derivatives Given data points {tk,x(tk)}
collected from trajectories over time at discrete time steps,
we use the five-point-stencil method Sauer [2012], which
uses forward and backward data along the trajectory, to
estimate the derivatives of points in each segment.



Our training data set is then X = (x1x2 · · ·xN )
T
, Ẋ =

(ẋ1ẋ2 · · · ẋN )
T
where x

(d)
i and ẋ

(d)
i respectively represent

the dth element of xi and ẋi, each of dimension D.

Extracting Polynomial Features We now extract polyno-
mial features by transforming each point in the dataset to
include all monomials of that point’s vector components up
to a certain degree. This allows us to then treat a nonlinear
problem as affine on the transformed dataset instead of
using kernels as in Lauer and Bloch [2008].

Given a vector x of dimension D and a polynomial degree
γ, denote by Ψγ(x) the vector of polynomial features
extracted from x, excluding 1. The dimension of this vector

is Q =

(
D + γ

γ

)
−1. We also define Ψγ(X) as the matrix

of extracted features of all row vectors x in X. For affine
systems, γ = 1, Ψ1(X) = X and Q = D.

Optimization Problem The goal now is to find each of
the vector functions fj(x) as well as the modes of each
xi in the training data. In other words, for each mode j
and vector component d, we have to find a scalar function

of the form f̂
(d)
j (x) = Ψγ(x)

T · ω(d)
j + β

(d)
j , where ω

(d)
j

is a vector of Q coefficients and β
(d)
j is a bias term. The

optimization problem in the multidimensional case is:

min
ξ≥0,ω,β

m∑
r=1

n∏
j=1

ξrj + C

D∑
d=1

n∑
j=1

ω
(d)
j

T
ω

(d)
j

−ξσ(i)j − δj ≤ ẋ
(d)
i −

(
Ψγ(xi)

T · ω(d)
j + β

(d)
j

)
≤ δj + ξσ(i)j

i=1,...,N, j=1,...,n, d=1,...,D

The mode of a segment Sr is deduced to be argminj ξrj .

We place C in front of the norm of coefficients, giving it a
more familiar meaning as a regularization hyperparemeter.

Note that unlike Lauer and Bloch [2008], we find the con-
tinuous dynamics coefficients directly by extracting poly-
nomial features, instead of using kernel methods. For small
polynomial degrees γ and dimensions D, our approach is
more efficient as it reduces the number of decision variables
in the optimization problem. It also overcomes the need
to compute kernel matrices, each of which having a space
complexity of N2. Using polynomial features allows us to
identify many nonlinear examples that the kernel-based
optimization problem fails to identify.

Hyperparameter Tuning In the aforementioned opti-
mization problem, we encounter four main hyperparam-
eters: the number of modes n, the maximum polynomial
degree γ, the insensitivity error δ, and the regularization
hyperparameter C. As for the first three, here we assume
that they are user defined. What remains is the hyperpa-
rameter C, which expresses how much regularization we
want to incorporate into the minimization problem.

In classical machine learning, a very common technique for
hyperparameter tuning is to split the data into a training
set and a validation set (Hastie et al. [2009]). For different
values of the hyperparameter, a model is trained using the
training set, then it is tested on the validation set, allowing

to calculate a validation error. The hyperparameter value
that minimizes this validation error is selected.

We split each segment separately to construct our training
and validation datasets, ensuring that each segment gets
its share of training and validation points. This way, we
are sure that the segment in which each validation point
belongs to contains training data. Hence, the optimizer
already found which mode the entire segment belongs
to. Using this information, we can deduce the mode of
these validation points and know which function to use to
find the predicted derivatives and compute the validation
error. Moreover, the validation error would be calculated
using data from all segments and would thus be more
representative of the state space and the trajectories.

3.2 Finding the State Space Partition

To wrap up a complete model, we need to find the state
space partition of the modes. Given the learned modes
of the data points, we set up a multi-class classification
problem using logistic regression. For polynomial bound-
aries, we extract polynomial features similarly to what we
discussed in subsection 3.1, where Ψκ(x) is the vector of
polynomial features of x up to a certain degree κ.

Binary case (n = 2). The model provides coefficients
of the boundary that separates the two classes/modes:
B(x) = wTΨκ(x) + b = 0, consequently defining the two
regions: X1 = {x : B(x) ≤ 0} , X2 = {x : B(x) ≥ 0}.

Multi-class case (n > 2). As for the multi-class case, we
opt for multinomial logistic regression. The model returns
a set of coefficients (wj , bj) per mode j. The regions that
construct the state space partition for the modes are:

Xj =

x :
∧
k ̸=j

(wj −wk)
TΨκ(x) + (bj − bk) ≥ 0


Furthermore, the decision boundary between modes j and
k is (wj−wk)

TΨκ(x)+(bj−bk) = 0. One could use linear
programming techniques to get rid of redundant or useless
hyperplanes that may occur (Bemporad et al. [2005]).

4. ACTIVE LEARNING OF BOUNDARIES

In many of the examples tried, including affine systems,
the original trajectories and those simulated from the
learned system differ by shape not due to a difference in
the dynamical equations between the original and learned
systems, but rather due to wrong state space partition. In
this section, we explain how we refine the result of the
classifier by using active learning. We assume we have
access to the system under learning (SUL) as a black
box that we can execute to generate trajectories given an
initial condition x0, a time step ts, and a time range T .
Furthermore, we also assume that we correctly identify the
continuous dynamics of the system, and thus we only need
to improve the classification boundaries.

In principle, the idea is to execute the SUL to generate
new data points then estimate their derivatives through
numerical differentiation methods. Having these points
and their derivatives, we can now guess their modes



by comparing the estimated derivatives with the learned
dynamics of each mode and choosing the mode that
minimizes the difference. Finally, we add this new data
to the training data of the classifier and retrain it.

The main question here is: how to choose the initial
conditions of these new trajectories?

4.1 By Generating Points Between Segments

We argue that points near the classifier boundaries play
an important role in the classifier result, as these crucially
separate one mode from another. That being said, a first
step is to execute the SUL to generate finely spaced tra-
jectories between extremities of consecutive segments. This
ensures that the new trajectories cross mode boundaries,
thus helping refine the classifier results. We re-perform
segmentation on this newly generated set of data points,
as to avoid erroneously estimating the derivatives by using
points from different modes.

4.2 Through Equivalence Query Checking

In active learning terminology, given a hypothesis H of
the learned system, an equivalence query is a check made
to determine whether H is equivalent to the SUL. In case
is not, the equivalence query provides a counterexample
of an execution that differs between H and the SUL. This
counterexample is used to improve the hypothesisH before
posing a new equivalence query. Such improvements are
done until the equivalence query returns true, in which
case the learned system and the SUL are equivalent.

We apply a similar technique to improve the state space
partition, still assuming that the dynamics are correctly
identified in the passive learning step. As there is no
formal check to compare the SUL and a hypothesis H,
we approximate this check by comparing a large number
of executed trajectories between the two systems.

To approximately check for an equivalence query, we ran-
domly choose a certain number ntrajs of initial conditions
within predefined bounds of the state space, following
some coverage criteria (Dang and Nahhal [2009]). The
SUL and the learned hypothesis are then executed with
the same time step and time range. We then proceed to
compare each trajectory of the SUL with its corresponding
one from the learned system, by computing an average
of the relative difference (RD), a normalized difference
introduced in Jin et al. [2021], between each pair of corre-
sponding points in these trajectories.

As long as the average relative differences of some pairs
of trajectories are greater than a certain tolerance, we
consider these trajectories to be the counterexamples. We
then apply segmentation to these counterexample trajec-
tories to generate finely spaced points between extremities
of segments (if any), as in subsection 4.1. All this new data
is used to refine the classifier result.

5. EXPERIMENTS

We demonstrate our approach through a parametric ex-
ample with different numbers of modes, as well as eight
other examples, five of which are taken from Jin et al.

[2021]. We run the optimization problem using inter-point
optimization with , made accessible in Python with CasADi
(Andersson et al. [2019]). Additionally, we use the scikit-
learn library for extracting polynomial features, hyperpa-
rameter tuning, and logistic regression classification. As
for the simulation of trajectories, we use the solve ivp
function of SciPy. The experiments are run on a MacBook
Pro, with the M1 Pro chip and 32 GB of memory. For
each experiment, we perform a hyperparameter search of
C among the values: 0, 0.001, 0.01, 0.1, and 1, but we
report results on the hyperparameter that minimizes the
validation error. Furthermore, in all the experiments, we
train with a single insensitivity error δ = 0.001. Moreover,
in the active learning part, we consider 50 test trajectories
per equivalence query, with RD tolerance of 0.1.

In order to test our learning algorithm, we consider a
fixed set of test trajectories generated by the SUL and
chosen with random initial conditions. At every step (pas-
sive learning, active learning through generating points
between segments of training data, and active learning
through equivalence queries), we provide the average RD
between these SUL test trajectories and those generated
from the hypothesis with the same initial conditions, as
well as the time of computation and number of equivalence
queries. Furthermore, we provide the average RD of the
predicted and true derivatives of each point of the test
trajectories. This is to compare with the two methods
implemented by Jin et al. [2021] who use this measure.

5.1 Parametric Example

We provide a parametric example with linear dynamics
and a nonlinear state space partition in 2D. The example
is parametric in the number of modes n, designed to try
and push the limits of our learning model by choosing
increasing number of modes.

Given a two-dimensional square box centered around O =
(0, 0) with side length equal to 2, we construct n−1 equally
spaced circles centered around O inside this box, such that
the radius of the smallest circle is 1/n and the difference
between the radii of two consecutive circles is also 1/n.
These circles act as the mode barriers in the state space.

More concretely, given a point x, define d2(x) to be
the squared distance from the origin O. The state space
partition is defined as follows:

X1 =

{
x : d2(x) ≥

(
n− 1

n

)2
}

Xj =

{
x :

(
n− j

n

)2

≤ d2(x) <

(
n− j + 1

n

)2
}
, 1<j≤n

Furthermore, the continuous dynamics in a mode j are
ẋ(1) = −2.5x(1) + αjx

(2) and ẋ(2) = −αjx
(1) − 2.5x(2),

where αj = 2j if j is odd, otherwise αj = −2j, leading to
alternating spiraling towards the center between clockwise
and anti-clockwise. Fig. 1 illustrates a set of trajectories
executed with the parametric example for 3 and 5 modes.

We run our algorithm on this example with different
numbers of modes. For each run, we choose the same
initial conditions (1,−1), (−1, 1), (−1,−1) for the training
data, with time step ts = 0.02 and time range T = 1.



Table 1. Experimental results on the parametric example with different number of modes n.

n d1 d2 d3 t1 t2 t3 NEQ dder dmerge dpwa tmerge tpwa

2 0.15205 0.14529 0.00182 0.4 0.2 20.8 2 1.5e-03 4.5e-02 4.5e-02 0.1 0.1
3 0.21835 0.14256 0.00661 0.7 0.4 22.6 2 3.4e-06 2.1e-01 1.3e-01 0.1 0.2
4 0.27007 0.18318 0.00543 1.2 0.7 54.0 2 5.2e-03 – – – –
5 0.37468 0.23661 0.01390 5.6 0.9 138.5 2 3.8e-03 – – – –

d1, d2, d3: The average relative difference of test trajectories after passive learning, after active learning through generating points
between training data segment extremities, and after active learning through equivalence queries respectively.
t1, t2, t3: The non-cumulative running time (in seconds) of the passive learning with the best hyperparameter C, active learning through
generating points between training data segment extremities, and active learning through equivalence queries respectively.
NEQ : The number of equivalence queries posed.
dder : The average relative difference of the derivatives of test data points with the final learned model.
dmerge , dpwa : The average relative difference of the derivatives of test data points using the methods of Jin et al. [2021].
tmerge , tpwa : The non-cumulative running time (in seconds) of the methods of Jin et al. [2021].

Table 2. Information about other experiments:
the number of modes n, the state vector di-
mension D, and the polynomial degrees γ and
κ for the dynamics and classifier respectively.

Experiment Name n D γ κ

Isolette† 2 2 1 1
Three Mode Affine 3 2 1 1
Switched Lorentz Attractor† 2 3 2 1
Three Mode Poly-2† 3 2 2 1
Two Mode Poly-3† 2 2 3 2
Four Dimensional† 2 4 1 1
Biological System 2 2 3 1
Hamiltonian 2 2 3 2

† This experiment is taken from Jin et al. [2021].
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Fig. 1. A set of trajectories given with the parametric
example for n = 3 and n = 5.

Table 1 shows our results for the parametric example, with
n ranging from 2 to 5. Our optimization algorithm was not
able to recover the dynamics for number of modes greater
than 5, due to the complexity of the optimization problem.

In this experiment, we choose initial conditions that are
asymmetrical in the state space of the system to highlight
the importance of active learning. Indeed, we notice a great
improvement across all numbers of modes after refining the
classifier through equivalence queries. Furthermore, given
this refinement, our algorithm performs better than that
of Jin et al. [2021] when n = 2 and n = 3. Their provided
code does not support a higher number of modes.

By looking at the results, we also note that the active
learning part, mainly posing equivalence queries, takes the
most amount of time. This is due to the cost of simulation
of the learned model across different trajectories, as well
as retraining the classifier with a large amount of data.
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Fig. 2. Result of each equivalence query posed in the
three mode parametric example, showing conforming
(green) and counterexample (red) trajectories.

As for the latter part, one could be more selective when
it comes to the data used for retraining by discarding new
points that are far from the classifier decision boundaries,
which we do not do at this point yet.

Fig. 2 shows the result of the equivalence queries for the
parametric example with n = 3. As seen in Fig. 2a,
the first equivalence query returns many counterexamples,
which are used to refine the boundaries, resulting in an
equivalence query with no counterexamples (Fig. 2b).

5.2 Other Experiments

In addition to the parametric example, we run our learning
algorithm on eight other experiments, with different poly-
nomial degrees of dynamics and of the mode boundaries.
Table 2 provides information about each experiment.

Similarly to the parametric example, Table 3 provides
our experimental results for these examples, with the
same measures. We notice that in all cases, the active
learning of the boundaries improves the average RD of
test trajectories. Moreover, our final model performs better
than those of Jin et al. [2021] in all cases.

6. CONCLUSION AND FUTURE WORK

We present an optimization based approach for the identi-
fication of state-dependent switched nonlinear dynamical
systems, augmented with active learning of the discrete dy-
namics. Our approach in learning the continuous dynamics
and modes of training data is based on a previously pro-
posed optimization for identifying SARX systems by Lauer
and Bloch [2008]. In addition to integrating segmentation



Table 3. Experimental results on examples whose characteristics are described in Table 2.

Experiment Name d1∗ d2∗ d3∗ t1∗ t2∗ t3∗ NEQ
∗ dder

∗ dmerge
∗ dpwa

∗ tmerge
∗ tpwa

∗

Isolette 0.00029 0.00004 0.00004† 0.5 0.2 14.0 1 2.9e-11 1.7e-03 1.7e-03 0.1 0.2
Three Mode Affine 0.21167 0.11653 0.01669 4.3 0.3 31.5 3 3.2e-03 6.3e-03 6.3e-03 0.1 0.2
Switched Lorentz Attractor 0.01853 0.00076 0.00076† 4.7 1.3 70.1 1 1.0e-05 2.0e-02 2.0e-02 0.2 0.3
Three Mode Poly-2 0.15703 0.00974 0.01038 1.5 0.6 72.7 2 2.4e-03 5.8e-03 6.9e-03 0.3 0.4
Two Mode Poly-3 0.02233 0.00308 0.00308† 3.1 0.4 81.7 1 6.5e-04 1.5e-02 2.3e-01 0.8 0.3
Four Dimensional 0.00531 0.00056 0.00056† 5.3 0.5 72.2 1 5.7e-04 4.7e-03 1.1e-02 1.9 0.4
Biological System 0.00357 0.00057 0.00057† 7.5 0.3 88.5 1 7.8e-05 6.6e-04 6.7e-03 0.8 1.6
Hamiltonian 0.17670 0.17670 0.00251 4.5 0.1 60.1 3 5.6e-03 2.1e-02 2.1e-02 7.6 0.4

∗ For the meaning of the different measures, refer to Table 1.
† Equivalent to d2 as the first equivalence query returns no counterexamples.

and identifying coefficients directly, we propose a way to
tune hyperparameters of the optimization, as well as a
generative approach to improving classification of modes
through active learning. Our approach achieves very good
experimental results on various affine and polynomial ex-
amples with varying number of modes and dimensions.
Compared to Jin et al. [2021], our algorithm achieves
better results across all of our experiments.

A limitation of our current approach is that we assume
knowing the number of modes and the maximum degree
of the polynomial. Our future work includes doing ex-
periments on over- and underestimating these quantities
during the identification process.

We intend to incorporate active learning for the continuous
dynamics and to extend the approach to hybrid automata
with resets in the mode switches. We also plan to provide
an analysis of the completeness and convergence conditions
of our method in the future, in particular the probably-
approximate correctness (PAC) of the algorithms.
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