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Optimized coadministration of propofol and
remifentanil during the induction phase of total

intravenous anesthesia with statistical validation
Daniel Denardi Huff, Mirko Fiacchini, Thao Dang and Teodoro Alamo, Member, IEEE

Abstract— In this work, a Monte-Carlo approach is pro-
posed to tackle the control design problem of coadmin-
istration of propofol and remifentanil during the induction
phase of total intravenous anesthesia, where the measured
output is the Bispectral Index (BIS). The goal is to minimize
the expected value of the Integral Absolute Error of the
BIS in presence of high model uncertainties. An additional
constraint is used in the resulting optimization problem to
limit the probability of a large undershoot of the BIS signal.
Simulation results validate the proposed methodology and
provide a comparison between the proposed method and
another one from the literature.

Index Terms— Total intravenous anesthesia, Monte-Carlo
method, Drug control, Optimal control.

I. INTRODUCTION

TOTAL intravenous anesthesia consists in the coadminis-
tration of different drugs in order to induce hypnosis (loss

of consciousness), analgesia (lack of pain) and areflexia (lack
of movement) [1]. In particular, hypnosis and analgesia are
mandatory in general anesthesia and are commonly achieved
through the use of propofol (a hypnotic drug) and remifentanil
(an analgesic drug which also affects the degree of hypnosis).
The infusion rates of these drugs must be properly controlled
by the anesthesiologist taking into account the particular
surgical procedure while avoiding both underdosing, which
can lead to partial awakening, and overdosing, which can lead
to cardiovascular or respiratory collapse [2] and postoperative
complications [3]. In this context, studies have shown the
benefits of using automatic closed-loop control for anesthesia,
resulting in an improvement of safety for the patient and a
reduction of workload for the anesthesiologist [4], [5].

The Bispectral Index (BIS) [6], computed by using the elec-
troencephalographic (EEG) signal, is a well-known and reli-
able measure of the degree of hypnosis (DoH). This fact, along
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with the synergistic effect of propofol and of remifentanil on
the DoH, has motivated the use of multiple-input single-output
(MISO) control schemes, where the coadministration of these
drugs is controlled based only on the BIS signal [7]–[15].
Note that this control structure leads to an additional degree of
freedom, since the same steady-state response can be achieved
with different input combinations. In [7], for instance, this
issue is handled by using empirical rules based on clinical
practice, while [8] and [15] propose Model Predictive Control
solutions where the balance between the drugs depends on
their weights in the corresponding cost functions.

In this work, following the approach of [10]–[14], the ratio
between the infusion rates of propofol and remifentanil is
fixed. In this way, the anesthesiologist can arbitrarily select the
ratio in order to provide the desired hypnotic-opioid balance,
which depends on several factors including the specific kind
of surgery [16]. However, unlike [10] and [14], the control
design problem is solved through a Monte-Carlo approach.
The proposed randomized scheme fits into the framework of
[17] and has been applied, for instance, in [18] in the case
of cancer therapy. The key idea is to take into account the
variability of the pharmacokinetic (PK) and pharmacodynamic
(PD) parameters of the anesthesia model. That is, the control
design is carried out in a stochastic framework where the goal
is to minimize the expected value of the chosen performance
index under the assumption that the PK and PD parameters
follow a log-normal distribution, as reported in [19], [20].

In addition to the stabilization of the BIS output at the
desired level during the induction phase of anesthesia, the
proposed approach incorporates a constraint to the control
design problem whose role is to limit the risk of an excessive
undershoot of this signal. In other words, the risk of overdose
is reduced, as it will be statistically shown.

The paper is organized as follows. Section II presents the
standard PK-PD model for anesthesia. Section III describes
the Monte-Carlo approach used to solve the control design
problem. Next, Section IV presents the simulation results. At
last, some concluding remarks end the paper.

II. STANDARD ANESTHESIA MODEL

Drug administration relies on pharmacokinetic and pharma-
codynamic modeling [21]. Pharmacokinetics is the study of
drug concentration in different tissues as a function of time and
of drug dosing while pharmacodynamics focuses on the rela-
tionship between drug concentration and a given physiological



effect. Sections II-A and II-B present, respectively, the PK
and PD models considered in this work. The drugs of interest
are propofol and remifentanil and the analyzed physiological
effect is the degree of hypnosis, commonly measured through
the BIS signal. The latter varies from 0% (no brain activity) to
100% (fully awake patient). It is typically around 50% during
general anesthesia, but some variation is acceptable from a
clinical perspective, say 40−60% [22].

A. Pharmacokinetic model

A three-compartment mammillary PK model is commonly
used to describe the distribution of anesthetics in the body,
which is divided into three parts: a fast acting compartment
(blood) and two additional peripherical compartments (muscle
and fat) [19], [20]. Assuming that the drug concentration is
approximately homogeneous within each compartment, the
resulting model is given by a linear system:

ẋ(t) = Ax(t)+Bu(t), (1)
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where the elements of x(t) ≜ [x1(t) x2(t) x3(t)]T ∈ R3 rep-
resent the drug concentrations in the blood, muscle and fat
compartments, respectively, and u(t) is the drug infusion rate.
Parameters Vi and Cli (i = 1,2,3) correspond to the volume
and clearance rate of the i-th compartment and are functions
of the patient’s demographic data, that is:

ξ = fξ (ψ), for all ξ ∈ {V1,V2,V3,Cl1,Cl2,Cl3}, (2)

where ψ ≜ (age,height,weight,gender). The explicit expres-
sions of the functions fξ : R3 ×{male, female}→R in (2) are
somewhat cumbersome and can be found in [19] for propofol
and in [20] for remifentanil (see also [23] and [24]). Two
different PK models are considered here, one for each drug.

B. Pharmacodynamic model

The PD model describes the impact of the blood concen-
trations of propofol and of remifentanil on the BIS signal.
It is typically divided into two parts. The first one includes
two different first-order linear differential equations (one for
each drug) to take into account the delay that exists between a
change in the blood concentration x1(t) and the corresponding
change in the effect-site concentration xe(t):

ẋe(t) = ke(x1(t)− xe(t)). (3)

Relation (3) can be represented through the introduction of an
effect-site compartment (which corresponds to the brain) in
the PK model of Section II-A, as also shown in Fig. 1. The
dynamics of x1(t) in (1) does not need to be modified to take
into account the effect-site compartment because the volume
of the latter is negligible compared to V1.

For propofol we consider [19]:

ke = fke(ψ) = 0.146(weight/70kg)−0.25 [min−1] (4)

and for remifentanil [20]:

ke = fke(ψ) = 1.09exp(−0.0289(age−35yr)) [min−1]. (5)

Fig. 1. Pharmacokinetic model.

The second part of the PD model corresponds to a static
nonlinear function – a Hill curve – that relates the effect-site
concentrations of propofol and remifentanil, denoted from now
on by xe,p and xe,r, respectively, to the BIS signal [25]:

BIS(t) = E0 −Emax
U(t)γ

1+U(t)γ
, (6)

where E0 ≈ 100% is a baseline that corresponds to the initial
drug-free state of the patient, Emax is the maximal decrease in
the BIS signal and γ is a slope coefficient that characterizes
the sensibility of the individual to the drugs. The term

U(t)≜Up(t)+Ur(t) (7)

describes the combined effect of propofol and remifentanil on
BIS, where

Up(t)≜
xe,p(t)
C50,p

, Ur(t)≜
xe,r(t)
C50,r

, (8)

and C50,p and C50,r are, respectively, the propofol and remifen-
tanil half-effect concentrations for BIS [25].

C. Model uncertainties
As previously mentioned, the literature provides equations

to compute the parameters of the models for propofol and for
remifentanil as a function of the patient characteristics (i.e.
age, height, weight and gender). However, these expressions
are just an approximation of the real values, which are subject
to uncertainties. The works [19] and [20] propose the use of a
log-normal distribution to model the interpatient variability of
the PK parameters, which are then treated as random variables.
More precisely, (2) is replaced by an expression of the form

ξ = fξ (ψ)eλξ , (9)

where λξ ∼ N (0,σ2
ξ
) is a Gaussian random variable of zero

mean and variance σ2
ξ

for all ξ ∈{V1,V2,V3,Cl1,Cl2,Cl3}. The
same reasoning of (9) also applies to parameter ke in (4) and
(5), i.e. ke = fke(ψ)eλke . Table I presents the variances obtained
in [19] for propofol and in [20] for remifentanil as well as the



nominal values (i.e. with λξ = λke = 0) of the parameters for
a 70kg, 170cm, 35-years-old male individual.

Unit Propofol Remifentanil
Nominal σ2 Nominal σ2

V1 L 6.28 0.610 5.81 0.104
V2 L 25.50 0.565 8.82 0.115
V3 L 168.2 0.597 5.03 0.810
Cl1 L/min 1.62 0.265 2.58 0.0197
Cl2 L/min 1.83 0.346 1.72 0.0547
Cl3 L/min 0.77 0.209 0.124 0.285
ke 1/min 0.146 0.702 1.09 0.947

TABLE I
LOG-NORMAL DISTRIBUTION OF THE PK PARAMETERS. NOMINAL

VALUES CORRESPOND TO A 70KG, 170CM, 35-YEARS-OLD MALE

INDIVIDUAL.

A log-normal distribution is also proposed in [26] for the PD
parameters. The corresponding values are shown in Table II.

Unit Nominal σ2

C50,p µg/mL 4.47 0.0326
C50,r ng/mL 19.3 0.581
γ – 1.43 0.0884
E0 % 97.4 0
Emax % 97.4 0

TABLE II
LOG-NORMAL DISTRIBUTION OF THE PD PARAMETERS. NOMINAL

VALUES CORRESPOND TO A 70KG, 170CM, 35-YEARS-OLD MALE

INDIVIDUAL.

III. CONTROLLER OPTIMIZATION

The control scheme considered in this work (see Fig. 2)
is taken from [10], [14] and is based on a parametrized
controller denoted by C(θ), where θ ∈Rp is the corresponding
vector of control parameters. The control inputs are subject
to saturation, as also illustrated by Fig. 2. The goal is to
regulate the coadministration of propofol and remifentanil
during the induction phase of general anesthesia – that is,
the patient is initially awake and a setpoint of r(t) = 50%
for the BIS signal must be attained as fast as possible without
excessive undershoot. Vector θ will then be tuned based on
the minimization of the integral absolute error (IAE), given by

IAE ≜
∫ T

0
|r(t)−BIS(t)|dt, (10)

where T is the time horizon.
As in [10], [14], a fixed ratio is imposed between the

propofol infusion rate, up(t) (in mg/s), and the remifentanil
infusion rate, ur(t) (in µg/s). In this way, as explained in
the introduction, the anesthesiologist can explicitly select the
ratio in order to provide the desired hypnotic-opioid balance.
In particular, a higher infusion rate of remifentanil implies a
stronger analgesic effect. In general,

0.5 ≤ ur(t)/up(t)≤ 15,

where the upper and lower bounds are obtained from clinical
considerations described in [10].

A. Tuning of the controller

As explained in Section II-C, the system parameters are
uncertain and can be modeled as random variables. Thus, the
following optimization problem is proposed to tune the con-
troller C(θ) such that the expected value of the performance
index IAE in (10) is minimized:

θ ∗ ≜ argmin
θ∈Θ

E(IAE(θ ,ω)) (11)

where Θ is the search space, ω ∈R20 ×{male, female} repre-
sents a concatenation of all the random parameters presented
in Table I (2× 7 = 14 parameters) and in Table II (the first
3 parameters) along with the age, height, weight and gender
of the patient and the operator E(·) denotes expectation with
respect to ω . Note that the dependence of IAE on (θ ,ω) is
made explicit in (11), unlike (10).

In order to cover a wide range of patient profiles, a uniform
distribution is considered for the demographic data, where, as
in [10], [15]:

18yr ≤ age ≤ 70yr,
150cm ≤ height ≤ 190cm,

50kg ≤ weight ≤ 100kg.

Moreover, to reduce the probability of an excessive undershoot
of the BIS signal (say BIS(t)< 40%), a constraint of the form

E(g(α,θ ,ω))≤ η (12)

is added to problem (11), where η ∈ [0,1] and α ∈ (0,100)%
are fixed a priori and

g(α,θ ,ω)≜

{
1, if BIS(t)< α for some t,
0, otherwise. (13)

Note from definition (13) that g(α,θ ,ω) is well-defined (i.e.
it is deterministic) for fixed α , θ and ω . Moreover,

E(g(α,θ ,ω)) = Pr(BIS(t)< α for some t), (14)

i.e. E(g(α,θ ,ω)) corresponds to the probability that the BIS
signal goes below the level α during the induction phase
of anesthesia when the control parameters are given by θ

and taking into account the probability distribution of ω .
Constraint (12) imposes an upper bound for this probability.

It is not an easy task to compute the exact value of the
expectations in (11) and (12), as remarked in [17]. Thus, as
proposed in this reference, a Monte-Carlo approach is used to
tackle the control design problem. The key idea is to draw a
cloud

Ω ≜ {ω
( j)}N

j=1

of N independent realizations of the random vector ω accord-
ing to its known probability distribution. Then, the optimiza-
tion problem composed by (11) and (12) can be approximately
solved by considering the sample means of IAE(θ ,ω) and
g(α,θ ,ω), i.e.

θ̂ = argmin
θ∈Θ

ÊIAE(θ ,Ω)

such that Êg(α,θ ,Ω)≤ η ,

(15)
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Fig. 2. Control scheme for coadministration of propofol and remifentanil during general anesthesia. Adapted from [10].

where

ÊIAE(θ ,Ω)≜
1
N

N

∑
j=1

IAE(θ ,ω( j)),

Êg(α,θ ,Ω)≜
1
N

N

∑
j=1

g(α,θ ,ω( j)).

Note that, with this procedure, the original constraint (12) is
not necessarily satisfied for θ = θ̂ obtained in (15). However, it
is possible to obtain a confidence interval (CI) for the value of
E(g(α, θ̂ ,ω)) a posteriori, as it will be shown next. Moreover,
if desirable, one can replace η in (15) by a smaller value
η ′ < η in order to reduce the chances of violation of (12) (see
[27]).

B. Statistical analysis

Even if the probability of a large undershoot as in (14) is
not known, it is possible to infer its value from the sample
mean Êg(α,θ ,Ω) with a certain confidence level (1 − δ ),
where δ ∈ (0,1). In order to do so, consider a cloud Ω′

of N′ new realizations of ω (independent of the realizations
used to design the controller). Given θ̂ from (15), δ and N′,
a 100(1− δ )% confidence interval for E(g(α, θ̂ ,ω)) can be
computed as in [28]:

p̂± zδ/2
√

p̂(1− p̂)/N′ (16)

where p̂ ≜ Êg(α, θ̂ ,Ω′) and zc denotes the (1−c) quantile of
the standard normal distribution1. This is known as the Wald
confidence interval. Note that a larger value of N′ results in a
smaller interval for the same confidence level.

IV. SIMULATION RESULTS

To illustrate the proposed approach, consider, as in [10],
[14], that C(θ) corresponds to a standard PID controller:

C(θ)≜ Kp

(
1+

1
Tis

+
Tds

1+Tds/M

)
, (17)

where Kp is the proportional gain, Ti is the integral time
constant, Td is the derivative time constant and the high-
frequency pole of the derivative term depends on the factor
M = 5. In practice, the BIS signal is very noisy and, thus,
care should be taken to avoid a high value of Td , which could
be detrimental.

1A typical value is zδ/2 = 1.96 for δ = 0.05, i.e. 95% of confidence.

The control loop is implemented in a sampled-data fashion
using a sampling period of 1 second as in [10], [15]. Thus,
in practice, (17) is discretized and (10) is replaced by a
summation over a finite time horizon of 10min. Moreover,
considering the maximum infusion rate of a standard clinical
pump, one concludes that 0 ≤ up(t) ≤ 6.67mg/s and that
0 ≤ ur(t)≤ 16.67µg/s [10]. Taking these limits into account,
a conditional integration anti-windup technique from [29] has
been implemented in the controller block of Fig. 2.

Problem (15) is solved with α = 40% for different values
of the parameter η through the particle swarm optimization
algorithm (PSO) [30] with a swarm size of 100 particles. The
simulation results consider ur(t)/up(t) = 2, which is a typical
value for the ratio of drugs in normal conditions [10]. The
number of Monte-Carlo samples is fixed at N = 1000, θ ≜
[Kp Ti Td ]

T ∈ R3 and the search space Θ is an empirically
chosen hypercube:

Θ ≜ [1.6×10−3,3.2×10−1]× [102,103]× [10−1,102]⊂ R3.

The closed-loop system is simulated through the Python Anes-
thesia Simulator presented in [31], which includes different
well-known models for anesthesia, among them the ones
mentioned in Section II.

PID η Kp Ti Td ÊIAE (θ̂ ,Ω) Êg(α, θ̂ ,Ω)
#1 − 0.0549 588.3 10.25 3539 18.1%
#2 10% 0.0443 624.2 12.17 3650 10%
#3 5% 0.0398 738.4 14.24 3854 5%
#4 2% 0.0289 655.1 21.88 4595 2%
#5 1% 0.0244 731.0 21.51 5152 0.9%
#6 0.5% 0.0197 599.6 31.49 5963 0.5%
#7 [10] − 0.0924 916.3 19.75 − −

TABLE III
COMPUTED PID CONTROLLERS AND CORRESPONDING VALUES OF THE

SAMPLE MEANS ÊIAE (θ̂ ,Ω) AND Êg(α, θ̂ ,Ω) OBTAINED THROUGH THE

SOLUTION OF (15).

Table III shows the PID controllers obtained through the so-
lution of (15) as well as the resulting sample means ÊIAE(θ̂ ,Ω)
and Êg(α, θ̂ ,Ω). The a posteriori statistical analysis of these
controllers will be presented in Section IV-A. Controller #1
was obtained without the use of constraint Êg(α,θ ,Ω) ≤
η . For comparison purposes, the table also shows the PID
controller obtained with the method from [10], which is tuned
by solving a min-max optimization problem of the form:

θ̂ = argmin
θ∈Θ

max
ψ∈Ψ

IAE(θ ,ψ) (18)

where ψ = (age,height,weight,gender) ∈ Ψ varies within a
predefined list of 13 patients (cf. Table 1 in [10]), which is
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Fig. 3. BIS output of the closed-loop system for 100 patients randomly chosen from cloud Ω′.

representative of a wide population with significantly differ-
ent responses to propofol and remifentanil administration, as
argued in the aforementioned reference. In this case, the intra-
patient variability of the PK-PD parameters is not taken into
account in the computation of IAE in (18), i.e. the model
uncertainties described in Section II-C are not directly used.

As shown by Table III, the use of a more restrictive
parameter η in constraint (12) results in a larger value of
IAE. In other words, there exists a compromise between
the performance index IAE and the probability of a large
undershoot of the BIS signal. This fact is confirmed in the
next section, where a numerical analysis of the obtained PID
controllers is performed.

A. Numerical analysis
The procedure of Section III-B is used to analyze the

controllers presented in Table III. The number of samples
for the Monte-Carlo runs is fixed at N′ = 10N = 10000. The
resulting sample means ÊIAE(θ̂ ,Ω

′) are shown in Table IV, as
well as the 99% confidence intervals for E(g(α, θ̂ ,ω)).

PID ÊIAE (θ̂ ,Ω
′) 99% CI for E(g(α, θ̂ ,ω))

#1 3583 [ 15.91%, 17.83% ]
#2 3727 [ 9.68%, 11.26% ]
#3 3926 [ 5.97%, 7.25% ]
#4 4665 [ 2.06%, 2.86% ]
#5 5214 [ 1.03%, 1.63% ]
#6 6025 [ 0.74%, 1.26% ]
#7 [10] 4569 [ 22.42%, 24.6% ]

TABLE IV
STATISTICAL ANALYSIS OF THE PID CONTROLLERS OF TABLE III.

Recall that E(g(α, θ̂ ,ω)) is the probability of a large
undershoot of the BIS signal during the induction phase of
anesthesia – in this case, the probability that that the BIS
goes below the level α = 40%. As indicated by Table IV,
the reduction of this probability results in a less aggressive
control law in the sense that the expected value of the
performance index IAE – approximately given by ÊIAE(θ̂ ,Ω

′)
– increases. Thus, there exists a compromise between these
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Fig. 4. Mean value of the BIS ± its standard deviation over the cloud
Ω′ of N′ = 10000 patients for the PIDs.

two performance criteria that must be taken into account by
the anesthesiologist in order to choose the most appropriate
controller between the options of Table IV.

As also shown by Table IV, the expected value of IAE
for the PIDs #1, #2 and #3 is smaller than the one for
PID #7, obtained with the approach from [10]. Moreover, all
controllers from #1 to #6 result in smaller probabilities of
large undershoot than PID #7 according to the 99% confidence
intervals for E(g(α, θ̂ ,ω)). In particular, PID #4 provides a
probability of large undershoot around 10 times smaller than
the one of PID #7 while the expected value of IAE for these
two controllers is roughly the same.

The facts described above are corroborated by Figs. 3 and
4, which provide a more detailed comparison between PIDs
#1, #4 and #7. Fig. 3 shows the resulting BIS output of the
closed-loop system for 100 patients randomly chosen from
cloud Ω′ while Fig. 4 presents the mean value of the BIS ±
its standard deviation over Ω′. Note in Fig. 3 that the designed
controllers may result in a significant undershoot of the BIS
for some realizations of the system. This is expected from the



fact that E(g(α, θ̂ ,ω)), even if small, is not exactly equal to
zero.

V. CONCLUSIONS

A Monte-Carlo approach was presented to tackle the control
design problem of coadministration of propofol and remifen-
tanil during the induction phase of total intravenous anesthesia,
where the goal is to minimize the expected value of the IAE
of the BIS and, at the same time, limit the probability of a
large undershoot of this signal. As shown by the simulations,
there is a compromise between these two criteria. Moreover,
compared to the controller from [10], the ones provided by the
proposed method result in considerably smaller probabilities
of a large undershoot of the BIS while the expected value of
the IAE is of the same order of magnitude.

The framework is quite flexible and can handle other
performance criteria – like the settling time or time to target
– as well as other types of control law, which could be
investigated in the future. Another possibility of future work is
to combine the idea of individualized PID tuning considered
in [14] with the Monte-Carlo approach presented in this paper
in order to improve the performance of the resulting closed-
loop system. Moreover, the maintenance phase of anesthesia
could also be studied. Finally, it would also be possible to
consider measurement noise within the proposed framework,
taking into account that the BIS signal is usually considerably
noisy.
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