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Abstract
Cyber-physical systems are complex environments that combine physical devices (i.e., sen-
sors and actuators) with a software controller. The ubiquity of these systems and dangers 
associated with their failure require the implementation of mechanisms to monitor, verify 
and guarantee their correct behaviour. This paper presents ParetoLib 2.0, a Python tool for 
offline monitoring and specification mining of cyber-physical systems. ParetoLib 2.0 uses 
signal temporal logic (STL) as the formalism for specifying properties on time series. Pare-
toLib 2.0 builds upon other tools for evaluating and mining STL expressions, and extends 
them with new functionalities. ParetoLib 2.0 implements a set of new quantitative opera-
tors for trace analysis in STL, a novel mining algorithm and an original graphical user 
interface. Additionally, the performance is optimised with respect to previous releases of 
the tool via data-type annotations and multi core support. ParetoLib 2.0 allows the offline 
verification of STL properties as well as the specification mining of parametric STL tem-
plates. Thanks to the implementation of the new quantitative operators for STL, the tool 
outperforms the expressiveness and capabilities of similar runtime monitors.

Keywords Signal Temporal Logic · Quantitative analysis · Specification mining · 
Parameter synthesis · Python

1 Introduction

Cyber-physical systems are complex environments that combine physical devices (i.e., sen-
sors and actuators) with a software controller. The ubiquity of these systems and dangers 
associated with their failure require the implementation of mechanisms to monitor, verify 
and guarantee their correct behaviour.

This paper presents ParetoLib 2.0, a Python tool for offline monitoring of cyber-physi-
cal systems. ParetoLib 2.0 allows qualitative and quantitative analysis of real-time signals 
using specification in an extension of Signal Temporal Logic (STL) [1]. Additionally, Pare-
toLib 2.0 supports mining parameter valuations of parametric STL (PSTL) [2] properties 
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from trace examples (i.e., a variant of STL that allows parameters in addition to numeric 
constants).

ParetoLib 2.0 gathers the contributions presented in [3–5] and extends previous versions 
of ParetoLib [6] with the following additions. First, we provide a graphical user interface 
that helps the end users efficiently interact with the tools and interpret the results. Sec-
ond, we support additional quantitative STL operators allowing to express a richer set of 
properties involving counting of events ( �-count), trends (derivatives), or accumulations 
(integrals). Third, ParetoLib includes recent algorithms for mining parametric STL speci-
fications that do not require monotonicity assumptions of the validity domain [7]. Finally, 
we have optimised the tool performance by adding multicore support, type annotations and 
directives to compile the Python modules into C code.

The paper is organised as follows: Sect. 2 motivates the extension of STL with some 
examples that are complicated to express without the new STL operators. Section 3 intro-
duces the STL specification language and the quantitative extensions. Next, Sect. 4 pre-
sents the technical aspects of ParetoLib 2.0 and details the new contributions. Section 5 
presents a case study that uses the new quantitative operators. Section 6 compares Pare-
toLib 2.0 to similar tools. Finally, Sect. 7 gathers the conclusions and sketches the future 
work.

2  Motivating examples

Before formally defining the STL language, let us look at some examples of properties that 
we would like to express. In particular, we look at properties that motivated the develop-
ment of more expressive and harder to monitor logics.

Example 1 (Stabilisation) The first interesting property is stabilisation around a value 
that is not known in advance, e.g., “x stays within +∕ − 0.05 units of some value for at 
least 200 time units”. It is tempting to formalise this property using existential quantifica-
tion “there exists a threshold v, such that...”, which is possible with first-order logic of 
signals (and was one of its motivational properties [8]), but it is actually not necessary. 
Instead, we can compute the minimum and maximum of x over the next 200 time units 
and compare their distance to 0.1 = 2 ⋅ 0.05 . In some imaginary language, we could write 
max[0,200]x − min[0,200]x ≤ 0.1 . At this point we propose to separate the aggregate operators 
from the operator that defines the temporal window, which will be useful later, when the 
until operator will define a window of variable width. We use the operator On[a,b] to define 
the temporal window of constant width and the operators Min and Max (capitalised) to 
denote the minimum and maximum over the previously defined window.

Signal x stabilises within 0.05 units of an unknown value for 200 time units:

Figure 1 shows an example of a signal x(t) (red) performing damped oscillation with the 
period of 250 time units. Blue and green curves are the maximum and the minimum of x 
over a siding window [t, t + 200] . Finally, the orange Boolean signal (its y scale is on the 
right) evaluates to true (i.e., y = 1 ) when the maximum and minimum of x over the next 
200 time units are within 0.1.

On[0,200]Max x − On[0,200]Min x ≤ 0.1
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Example 2 (Local Maximum) Consider the property: “the current value of x is a minimum 
or maximum in some neighbourhood of current time point”. Previously, a similar property 
became a motivation to extend STL with freeze quantifiers [9], but we can also express it 
by comparing the value of a signal with some aggregate information about its neighbour-
hood, which we can do similarly to the previous example.

Current value of x is a local maximum on the interval [0, 85] relative to the current time.

Figure 2 shows an example of a sine wave x(t) (red) with the period of 250 time units. Blue 
curve is the maximum x over a siding window [t, t + 85] . The orange Boolean signal evalu-
ates to true when the current value of x is a maximum for the next 85 time units. Another 
way of detecting the moments when the signal reaches a local minimum or maximum, 
regardless the actual value of x, consists on expressing the property in terms of derivatives 
(D operator). Local maximum and minimum are reached when derivatives are equal to 
zero, so the following expression will draw a pulse in the surroundings of local peaks in the 
orange Boolean signal every 125 time units (not shown in Fig. 2).

x ≥ On[0,85]Max x

Fig. 1  Damped oscillation x(t) and its maximum and minimum over the window [t, t + 200]

Fig. 2  Sine wave x(t), its 
maximum over the window 
[t, t + 200] , and whether x(t) is a 
local maximum on the interval 
[t, t + 200]
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Example 3 (Stabilisation Contd.) We want to be able to assert that x becomes stable around 
some value not for a fixed duration, but until some signal q becomes true. We will be able 
to do this with our version of until operator.

Signal x is stable within 0.05 units of an unknown value until q becomes true:

Intuitively, for a given time point, we want the monitor to find the closest future time point, 
where q holds and compute Min and Max of x over the resulting interval. Note that this 
property cannot be easily monitored in the framework of “STL with pre-processing”, since 
it requires the monitor to compute Min and Max over a sliding window of variable width, 
which depends on the satisfaction signal of q.

Example 4 (Linear Increase) At this point, we can assert x to follow a more complex shape, 
for example, to increase or decrease with a given slope. Let T denote an auxiliary sig-
nal that linearly increases with rate 1 (like a clock of a timed automaton), i.e. we define 
T(t) = t ; this example works as well for T(t) = t + c , where c is a constant. To specify that 
x increases with the rate 2.5, we assert that the distance from x to 2.5 ⋅ T stays within some 
bounds.

Signal x increases approximately with slope 2.5 during the next 100 time units:

The previous expression can be rewritten in terms of derivatives in a much more simpler 
way:

Example 5 (Integral) Let us consider the following formula:

On[0,85]|Dx| ≤ 0.1

(Max xUq) − (Min xUq) ≤ 0.1

On[0,100]Max |x − 2.5T| − On[0,100]Min |x − 2.5T| ≤ 0.1

On[0,100]|Dx| ≤ 2.5

(1)�f ∶= On[0,p1]I x0 ≥ c2 − p2

Fig. 3  Piece-wise constant signal 
w10(t)
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Consider the piece-wise constant signal w10 (Fig. 3) with sample values 0, 9 and 18 at times 
0, 1 and 2 respectively and it ends at time 10. Let us now analytically compute the solution for 
the parametric identification problem for the above formula and the signal w10 . The value of the 
parameter p1 varies between 0 and 10 and the parameter p2 lies between 0 and 250 and c2 equals 
250. We can analytically compute the validity domain by considering 10 cases corresponding to 
the 10 segments of w10 . We give below the first three parts of the disjunction of constraint sys-
tems for representing the validity domain corresponding to the three cases which are p1 ∈ [0, 1) , 
p1 ∈ [1, 2) and, p1 ∈ [2, 3):

The full validity domain, named vf  , is computed as the union of all the regions and shown 
in green colour in Fig. 4. The validity domain for (¬(¬�f )) will be (¬(¬vf )) . If we naively 
compute this series of negations over semi-linear domains then the time complexity for 
obtaining the exact solution might be high. We implemented in C++ the negation opera-
tion on semi-linear domains using Parma Polyhedra Library [10]. We tested in addition 
to w10 using piece-wise constant signals w100 and w1000 each having 100 and 1000 seg-
ments respectively. We computed the validity domains by treating them as semi-linear 
domains for w10 , w100 and w1000 for (¬(¬�f )) while suitably setting the value of constant c2 
the ranges of values of parameters p1 and p2 . We observed computation times between 30 
and 50 milliseconds for signal w10 and 57264 milliseconds for signal w100 in a conventional 
laptop. For w1000 the operations timed out after the one hour limit we set. We see that the 
computation time increases steeply with the size of the signal and becomes prohibitively 
high for signal w1000 which is of reasonable size.

On the other hand, if we reason in terms of membership queries to an oracle that guides 
the computation of the validity domains, then the previous (¬(¬vf )) expression for sig-
nal w10 could be approximated efficiently (see Fig. 5) in 145 milliseconds. Our approach 

(2)

region1: = {(p1, p2) ∈ ℝ2
| (0 ≤ p1 < 1) ∧ (0 ∗ p1 ≥ 250 − p2))}

region2: = {(p1, p2) ∈ ℝ2
| (1 ≤ p1 < 2) ∧ (0 ∗ 1 + 9 ∗ (p1 − 1) ≥ 250 − p2))}

region3: = {(p1, p2) ∈ ℝ2
| (2 ≤ p1 < 3) ∧ (0 ∗ 1 + 9 ∗ 1 + 18 ∗ (p1 − 1 − 1) ≥ 250 − p2)}

…

vf : =
10
⋃

i=1
regioni

Fig. 4  Validity domain for signal 
w10(t) and the formula with 
integral
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requires 1997 and 75932 milliseconds respectively for approximating more than the 99% of 
the validity domains of signals w100 and w1000 . The C++ and ParetoLib code, as well as the 
w10 , w100 and w1000 signals in CSV format are publicly available.1

More examples of properties that require quantitative STL operators can be found in 
the literature. For instance, the monitoring of the accumulated electricity consumption on 
smart meters is easily described with integrals over a time window [11]. The rest of the 
paper includes toy examples and a case study that amplifies the necessity of the new fea-
tures we present. Further sections illustrate the methods we implement for approximating 
the validity domain we obtained in the last example, and outperform other monitoring tools 
that compute exact solution.

3  Extended signal temporal logic

3.1  Boolean semantics

Signal Temporal Logic (STL) [1] focuses on specifying properties of continuous-time signals 
that represent the evolution of attributes of a cyber-physical system. Formally, a signal is a 
function x ∶ 𝕋 → ℝ

n , where the time domain � = [Tstart, Tend] is a closed real interval, and 
the value |x| = Tend − Tstart is the duration of the signal. We refer to signal components using 
their own letters: x, y, z … ∈ 𝕋 → ℝ.

Then, the grammar of STL can be defined as follows:

• P ∈ � → {true, false} is a predicate over the components of the input signal;

� = P(x1,… , xn) ∣ ¬� ∣ �1 ∨ �2 ∣ �1U[t1,t2]
�2

Fig. 5  Approximation of the validity domain for signal w10(t) and the formula with integral

1 https:// zenodo. org/ doi/ 10. 5281/ zenodo. 10156 861
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• U is the temporal operator until; �1U[t1,t2]
�2 asserts that �2 becomes true in the future, with 

the delay between t1 and t2 , and �1 must hold until that point.

The semantics of an STL formula � with respect to a signal x is its satisfaction signal 
[[�]] ∈ � → {true, false} ; for every time point t, [[�]](t) tells whether or not � holds at that 
time point. That is, (x, t) ⊧ 𝜑 ⟺ [[𝜑]](t).

 Here, we use the non-strict semantics of until that requires the existence of a time point 
where both �1 and �2 hold.

Somewhat more commonly used temporal operators F (eventually) and G (always) can be 
defined in terms of until:

F[t1,t2]
� asserts that � becomes true with a delay between t1 and t2 ; and G[t1,t2]

� asserts that 
for every time point between t1 and t2 time points in the future, � holds.

Note that the atomic propositions of STL are predicate signals; they are assumed to be pro-
duced from sensor readings of some cyber-physical system, but the logic does not specify 
how exactly this happens. The satisfaction signals are piecewise-constant (since the range 
is {true, false} ), and this is the only kind of signals STL monitors need to work with.

3.2  Quantitative semantics: new additions to STL

STL also admits robustness semantic that measures how far is an observed behaviour from 
satisfying/violating a specification. In this case, the semantics of a formula � is interpreted 
as a piecewise-constant or piecewise-linear function from real-time, i.e., � formula is a func-
tion [[�]] ∶ 𝕋 → ℝ . Thus, � has real-valued switching points. This feature facilitates the inclu-
sion of quantitative operators while treating real numbers 0 and 1 as Booleans (i.e., 0 ≡ ����� , 
1 ≡ ���� ). The quantitative interpretation of a � formula involves that Boolean expressions are 
rewritten in terms of the composition of min/max operators:

This quantitative interpretation should not be confused with the quantitative semantics for 
STL called space robustness (known popularly as simply robustness) defined in [12]. This 
robustness denoted as � indicates by how much margin a given signal w satisfies an STL 
formula � . It follows that positive and negative robustness values correspond to satisfac-
tion and violation of the formula respectively. One can now see why while our quantitative 
interpretation requires ¬� ≡ 1 − � , robustness changes sign when negation is applied over 
a formula i.e. �(¬�,w) = −�(�,w) . Similarly to � for STL in Boolean semantics, a � for-
mula may refer to an input signal x ; apply a real-valued function f pointwise to the outputs 

[[P(x1,… , xn)]](t) = P(x1(t),… , xn(t))

[[¬�]](t) = ¬[[�]](t)

[[�1 ∨ �2]](t) = [[�1]](t) ∨ [[�2(t)]]

[[�1U[t1,t2]
�2]](t) = ∃t� ∈ [t + t1, t + t2].[[�2]](t

�) ∧ ∀t�� ∈ [t, t�].[[�1]](t
��)

F[t1,t2]
𝜑 ≡ ⊤U[t1,t2]

𝜑 G[t1,t2]
𝜑 ≡ ¬F[t1,t2]

¬𝜑

[[F[t1,t2]
�]](t) = ∃t� ∈ [t + t1, t + t2].[[�]](t

�)

[[G[t1,t2]
�]](t) = ∀t� ∈ [t + t1, t + t2].[[�]](t

�)

�1 ∧ �2 ≡ ���{�1,�2}�1 ∨ �2 ≡ ���{�1,�2} ¬� ≡ 1 − �

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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its � subformulas; be a temporal operator ( U , F, G); or, additionally, apply an aggregate 
function over the sliding window ( On[a,b] ). We define it as:

We abuse the notation so that x is both a symbol referring to a component of an input sig-
nal and the corresponding real-valued function; similarly, f is both a function symbol and 
the corresponding function.

The necessity of expressing richer properties in STL motivates the incorporation of STL 
dialects to ParetoLib that extend the original set of operators with additional quantitative 
primitives. As previously sketched in the motivating examples, these predicates compute, for 
instance, the minimum/maximum values of a signal in a time window [3], the value of the 
derivative in a time point or the integral in a time interval [13], or counts the number of events 
in a sequence [5]. Section 5 will show a case study that requires the count operator for learning 
patterns in labelled electrocardiograms (ECG). The following grammar summarises the list of 
operators that are supported by ParetoLib 2.0:

Min, Max. Operations like minimum/maximum or integrals aggregate the values for a time 
window. The semantics of a � formula is a function [[�]] ∶ (ℝ ∪ −∞) × (ℝ ∪∞) → ℝ 
from an interval of time with real lower bound to a dual value. A � formula is evaluated 
on an interval and does not have an output signal by itself. Instead, it supplies an aggregate 
operation that will be computed when evaluating the containing On formula or until for-
mula. It should be possible to efficiently compute this aggregate operation over a sliding 
window, and it should preserve the chosen shape of signals.

Since we focus on piecewise-constant and piecewise-linear signals, the two operations that 
we can immediately offer are Min and Max, which can be efficiently computed over a sliding 
window using the algorithm of D. Lemire [14, 15], and preserve the piecewise-constant and 
piecewise-linear shapes.

At this point, we extend until operator in order to align with the quantitative semantics. 
For every time point t, we either associate an interval ending when �2 becomes non-zero 
(i.e., starts holding); or we report that no suitable end point was found. When such interval 
exists, we evaluate �1 on it. When the interval does not exist, we produce d. Formally:

Standard STL eventually and always operators can be expressed in the new language as 
follows:

Finally, standard STL until operator (denoted as USTL ) is expressed as follows:

[[x]](t) = x(t) [[On[a,b]�]](t) = [[�]]([t + a, t + b])

[[f (�1 …�n)]](t) = f ([[�1]](t)… [[�n]](t)

� ∶ = c� ∣ x ∣ f (�1 ⋯�n) ∣ f
d
+
(�) ∣ f d

−
(�) ∣On[t1,t2]� ∣ �1U

d
[t1,t2]

�2

� ∶ = Min � ∣Max � ∣f i�

[[Min�]][t1, t2] = ���[t1,t2][[�]] [[Max�]][t1, t2] = ���[t1,t2][[�]]

[[�1U
d
[t1,t2]

�2]](t) =

{
[[�1]][t�], if ∃t

� ∈ [t + t1, t + t2], s.t. [[�2]](t
�) ≠ 0

d, otherwise

F[t1,t2]
� ≡ On[t1,t2]Max� G[t1,t2]

� ≡ On[t1,t2]Min�
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�-count (c�). The �-count operator counts the number of positive events in a signal (i.e., 
the moments when a Boolean signal becomes true). The �-count operator is not explicitly 
available at the STL grammar level, but it can be used for counting the number of positive 
intervals in a Boolean signal via the OracleEpsSTLe wrapper in ParetoLib. The �-count 
operator grounds on the support of a Boolean signal x , denoted by supp(x), which is 
the topological closure of {t ∣ x(t) ≠ 0} , that is, the smallest closed set that contains all 
the points where the signal is not false. The �-count operator, originally defined in [5], is 
inspired by the notions of �-separated sets and �-capacity proposed in [16]. The �-count 
operator contrasts to the Lebesgue’s measure of subsets of ℝ which entails a small measure 
for a signal whose support is the disjoint union of many intervals of almost-null measure 
which are quite far apart. Formally speaking, the �-count operator is defined as:

Definition 1 (�-separated set and �-count) Given a Boolean signal x , a set S of reals is �
-separated w.r.t. x if S ⊆ ����(x) and for every t, t� ∈ S with t ≠ t′ , it holds that |t − t�| ≥ � . 
The �-count of a signal x is c�(x) = ���{|S| ∣ S is �-separated w.r.t. x}.

The �-count of a signal x is determined in a greedy manner with the following recursive 
equations:

• c�(0) = 0 when it is applied to the constant signal 0 , and
• c�(x) = 1 + c�(x

�) where x�(t) = 0 if t < 𝜖 + ���(����(�)) and x�(t) = x(t) otherwise.

Finally, the �-count has some remaining properties: 

(1) The �-count is null iff it is applied to the constant signal 0.
(2) The �-count is increasing: if x ≤ x′ then c�(x) ≤ c�(x

�).
(3) The �-count satisfies a triangular inequality: c�(x ∨ x�) ≤ c�(x) + c�(x

�).

Derivatives, Integrals. The derivatives and integrals are calculated using the following 
mathematical expressions, where x stands for the complete signal, x� is the value of the 
signal at time � , f i

[t1,t2]
(�)2 is the integral for the time interval [t1, t2] and f d

+
(�) ( f d

−
(�) ) rep-

resent the right (left) derivatives:

Due to the implicit signal discretization, x� , the value of the input signal at time � , is 
obtained as xk�t where k is the k-th term of the array, �t is the time step determined by the 
sampling frequency and k𝛿t ≤ 𝜏 < (k + 1)𝛿t . The quantitative measurements of derivatives 
and integrals are then discretized and approximated by the following equations:

�1U
STL
[t1,t2]

�2(t) ≡ (Min�1)U
0

[t1,t2]
�2

[[f d
+
(�)]] =

df (�)

dt+
[[f i(�)]] = ∫ f (�� )��

[[f d
−
(�)]] =

df (�)

dt−
[[f i

[t1,t2]
(�)]] = ∫

t2

t1

f (�� )��

2 f i
[t1,t2]

(�) is a syntax sugar for On[t1,t2] f
i(�)
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4  Tool presentation

4.1  Internal structure

The internal structure of ParetoLib 2.0 is depicted in Fig. 6. The components that are high-
lighted in red represent the parts that are updated or completely new with respect to the 
previous releases of ParetoLib.

The architecture of ParetoLib 2.0 is divided into three parts: the GUI, the STL moni-
tor and the modules for mining the parameter valuations in parametric specifications. 
Depending on the type of STL specification the user introduces in the GUI (parametric 
vs non-parametric STL properties), ParetoLib directly forwards the query to the STL 
monitor or starts the mining procedure for extracting the validity domain. In any case, 
ParetoLib uses external STL monitors as oracles for answering STL queries. ParetoLib 
2.0 continues to rely on top of StlEval [17], a C++ engine for evaluating extended 
Signal Temporal Logic (STL) specifications. ParetoLib interfaces to StlEval with a 
C API that includes the new quantitative operators (e.g, derivatives or integrals over 
the signals). Other STL monitors such AMT 2.0 [18] are also supported via Python 
code (replacing OracleSTLeLib by OracleSTL in Listings 1) or can be easily incorpo-
rated thanks to the modularity of the library. As the features of AMT 2.0 have not been 
enlarged since the previous release of ParetoLib, this STL monitor is omitted from the 
previous UML diagram for the sake of concision.

The functionalities for the internal modules of ParetoLib remain unchanged. These 
modules are responsible for learning the parameter valuations of parametric STL 
specifications. The mining algorithm converts the PSTL formulas into numerical STL 
instances that queries to StlEval [19]. The current version of ParetoLib optimises the 
performance of this process by adding support to multi core CPU and type annotations 
and Cython directives [20] to compile the Python modules into C code during the instal-
lation phase. The rest of the code is also updated in order to support recent Python ver-
sions and standards.

[[f d
+
(x� )]] =

f (x(k+1)�t) − f (xk�t)

�t
[[f i

[a,b]
(x)]] =

k+b∕�t−1∑

k�=k+a∕�t

f (xk��t)�t

[[f d
−
(x� )]] =

f (xk�t) − f (x(k−1)�t)

�t

Fig. 6  Internal structure of ParetoLib 2.0
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The graphical user interface (GUI) allows to interact both with the mining library for 
parametric STL specifications and indirectly with the StlEval tool for numerical STL 
properties. The GUI simplifies the interaction with StlEval, but experienced users can 
also run StlEval through the OS terminal for evaluating non-parametric STL specifica-
tions. Similarly, ParetoLib 2.0 can also be imported as a Python library and run in the 
Python console, as illustrated by the code in Listings 1.

The versatility of ParetoLib 2.0 adapts the complexity of the tool to the user level: 
inexperienced users can interact with STL monitors via the GUI, while programmers 
and software engineers can code scripts and use ParetoLib 2.0 as a Python library.

ParetoLib 2.0 provides an all-in-one bundle installer that ships the GUI as well as 
the DLL and binaries of StlEval for Windows and Linux. Except for the STL moni-
tors (StlEval and AMT), ParetoLib is mainly written in Python. Hence, ParetoLib 2.0 
becomes a cross-platform tool and can interact with the rest of the Python ecosystem 
(e.g., it can be easily imported as a library in a Jupyter Notebook).

4.2  StlEval

Given a non-parametric STL specification, StlEval implements efficient monitors that 
evaluate the properties on a real-time signal. StlEval has been upgraded in order to 
natively process new quantitative operators that count the number of events ( �-count) on 
a signal or calculate the derivatives and integrals. Previously, StlEval already included 
operators for computing other quantitative properties such as the maximum/minimum 
values of a signal in a time window.
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StlEval receives a finite representation of the continuous real-time signal in the 
format of a comma separated values (CSV) array, which is interpreted as a constant 
piecewise function. Each row of the CSV file has a pair < ���������, ����� > . Times-
tamps are integer values starting in 0, and the samples are floating numbers. Next, 
StlEval reads a text file with the STL specification. StlEval uses prefix notation, i.e., 
(F[0,p1]

(≤ (abs (D x0)) p2)).

4.3  Mining algorithms in ParetoLib

ParetoLib converts the problem of mining parametric STL equations into solving a multi 
criteria optimisation problem. Our tool provides three algorithms for computing the Pareto 
front that will return the valuations that satisfy the parametric STL expressions. All the 
methods replace the variables in PSTL equations by numerical STL instances that are 
query to an external STL monitor. Based on the Boolean answer the STL monitor replies, 
the mining algorithms guide the discovery of the validity domain.

The first method, named BBMJ19 [4], calculates a single Pareto front while the second 
method, named BDMJ20 [5], obtains the intersection of two Pareto fronts. The BBMJ19 
method was originally defined in [21, 22] and shipped in the first release of ParetoLib in 
[4], while method BDMJ20 was incorporated in later versions. These algorithms assume 
that the STL properties are monotonic and use the concepts of upset, downset and Pareto 
front. Recently, method BMNN23 [7] has also been incorporated to ParetoLib, which 
allows for mining parametric STL specifications that do not require monotonicity assump-
tions of the validity domain. It provides two types of algorithms that partition the search 
space of a PSTL property into smaller boxes and compute the validity domain for the 
parameter valuations based on statistical constraints.

The computational costs of BBMJ19, BDMJ20 and BMNN23 depend on the accuracy 
requirements for the computation of the validity domain. For instance, BBMJ19 catego-
rises the search space into (in)valid and unexplored area. The volume contained in the 
unexplored area decreases below �% of the initial volume V0 in O(V0∕�

�m2
m−1) where m is 

the number of parameters (or dimensions) in a PSTL formula and �m is a constant number 
in the interval [2m − 4, 2m − 3] which represents the number of boxes created during the 
partitioning step.

BMNN23 relies on a partition strategy which can use a fixed or dynamic cell size. In the 
worst case, it costs O(Mm) ⋅O(n) , where m is the number of parameters (or dimensions) 
in a PSTL formula, and M is a constant that depends on the granularity of the cell size. 
As BMNN23 uses statistical properties for partitioning the validity domain, the method 
requires n input signals or samples.

Finally, the evaluation of non-parametric STL properties is commonly handled by STL 
monitors in linear time with respect to the length of the input signal.

Partial order on ℝn , Upset, Downset and Pareto Front. Given two vectors p, q ∈ ℝ
n , 

vector p is lower than q, denoted by p ≤ q , if ∀i, pi ≤ qi . A set X is an upset if for all 
p, q ∈ ℝ

n such that p ≤ q if p ∈ X then q ∈ X . A set X is a downset if for all p, q ∈ ℝ
n 

such that q ≤ p if p ∈ X then q ∈ X . The boundary consisting of all the minimal ele-
ments of an upset (or all the maximal elements of a downset) is called a Pareto front in 
the field of multi-criteria optimisation. The box between two vectors x and x with x ≤ x is 
⌊x, x⌉ = {y ∣ x ≤ y ≤ x}.
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Both algorithms in ParetoLib deal with user-given boxes. Consider the box B from 
Fig. 7. The first Pareto front P1 separates the upset U1 and the downset D1 (Fig. 7a), while 
the second Pareto front P2 separates the upset U2 and the downset D2 (Fig. 7b). The algo-
rithms rely on the existence of two oracle functions defined over the box B. Given a query 
point x contained in B, the first oracle function o1(x) indicates whether x belongs to U1 or 
not (i.e., x ∈ U1 ). The second oracle function o2(x) works similarly and returns the mem-
bership of x to D2 (i.e., x ∈ D2).

Assuming the existence of a Pareto front, the BBMJ19 algorithm takes an oracle and a 
box to approximately compute the upset and downset. In particular, U1 and D1 are approxi-
mated using oracle o1 and box B. Similarly, U2 and D2 are computed using oracle o2 and 
box B. Please note that BBMJ19 requires that the oracles are monotonic. In these exam-
ples, o1 is increasing: for p, q ∈ B with p ≤ q , it applies that o1(q) ≥ o1(p) . Similarly, the 
oracle o2 is decreasing: for p, q ∈ B with p ≤ q , it applies that o2(q) ≤ o2(p).

Conversely, the algorithm BDMJ20 computes the intersection of two Pareto fronts. This 
method applies when we are dealing with one increasing oracle and another decreasing 
oracle: it involves the intersection of the upset of the increasing oracle and the downset 
of the decreasing oracle. For example, it can approximately compute U1 ∩ D2 (in Fig. 7c) 
using oracles o1 , o2 and the box B. It computes approximately but directly, the intersection 
of U1 and D2 . A less efficient way is to separately compute U1 and D2 and then intersect 
them.

4.4  Graphical user interface

The main GUI window (Fig. 8) is implemented using PyQt5. Extra libraries such as Mat-
plotlib, Pandas and Seaborn help for displaying the time series or the parameter valuation 
results (Figs. 11, 12 and 13). The GUI starts when running the command python Pare-
toLib/GUI/GUI.py.

The tool receives three input files: (1) A finite representation of the continuous 
signal, (2) A (parametric) STL specification, and (3) Optionally, the list of parameter 
names. Signal files are in CSV format, and the rest of input files are in textual format 
with.stl/param extension. These files must comply with the StlEval format. In future 
versions, we aim at adding a selector which chooses the monitoring tool directly in 
the user interface (i.e., StlEval or AMT).

Fig. 7  Illustration for Pareto algorithms
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Then, the user chooses the values of the parameter range (if any) and configure the 
execution in the option area. For instance, the user can select the type of interpola-
tion, whether the STL specification is parametric or not, or the mining algorithm in 
case it is parametric (mining algorithms are BBMJ19 [4], BDMJ20 [5] or BMNN23 
[7]). In case of running the BDMJ20 method, the user must provide two STL specifi-
cation files: one for each oracle, as described in Sect. 4.3.

Running the evaluation of a non-parametric STL formula opens a pop-up window with 
a message saying if the property is satisfied or violated. If ParetoLib receives a parametric 
STL formula, it learns the parameter valuations and returns a window that plots the results 
(Figs. 11, 12 and 13).

Finally, the GUI offers a menu bar with useful options. For instance, it includes 
buttons for creating, loading and saving ParetoLib projects in a JSON file: this file 
will contain references to the input file paths and current configuration (e.g., mining 
method). In case that we desire to compare several Pareto fronts, the classification 
button will show the most characteristic element of the green region for each validity 
domain. This feature requires a list of validity domains in ParetoLib file format (see 
line 26 in Listing 1). Then, it internally computes the Haussdorf distance among the 
set of points.

4.5  Example

Using the new version of StlEval, ParetoLib can solve non-parametric and parametric 
formulas involving quantitative operators via the GUI or the Python terminal. As previ-
ously stated in the motivating examples in Sect.  2, some properties in cyber-physical 
systems are easier expressed in terms of these quantitative primitives than using other 
STL approaches. Let’s consider again two common scenarios: decaying signals (Fig. 9) 
and periodic signals (Fig. 10). Detecting whether the signal stabilises or not is equiva-
lent to check that the wave is almost flat, i.e., the derivative bounds are near zero in the 

Fig. 8  Main window of ParetoLib 2.0
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future. The usage of a parametric STL expression allows the inspection of the stabilisa-
tion property over a period of time and oscillation amplitudes:

Fig. 9  Decaying signal

Fig. 10  Triangular signal with 
4000 time units period

Fig. 11  Parameter valuation 
result for Eq. (3).
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The parameters in the PSTL equation are p1 and p2 , x0 is the first component of the input 
signal, D is the derivative operator and | ⋅ | computes the absolute value.3 The parameter 
p1 corresponds to the upper time bound of the sliding window, and p2 corresponds to the 
oscillation amplitude.

As a result, ParetoLib returns the parameter valuation (Fig. 11) that shows the combi-
nations of parameters p1 and p2 that satisfy the property (green region) or falsify it (red 
region). Figure 12 shows the Boolean signal produced replacing p1 and p2 by 100 and 0.05 
in Eq.  (3). It also textually reports if the STL property is satisfied at time instant 0 (i.e., 
True).

(3)F[0,p1]
|D x0| ≤ p2

Fig. 12  Boolean signal 
resulting from substitution of 
(p1, p2) = (100, 0.05) in Eq. (3)

Fig. 13  Parameter valuation 
result for Eq. (4)

3 For the sake of readability, the equation uses infix notation.
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Similarly, an example of parametric expression involving integrals is Eq.  (4). In this 
case, On[0,p1] refers to the integration interval for the I operator. If p1 is multiple of the peri-
odicity of oscillation of the signal around x0(t) = 0 , then the integral should also be zero. 
Figure  13 shows the parameter valuation for Eq.  (4) when evaluated over the triangular 
signal (Fig. 10). Figure 14 shows the integral of the triangular signal (blue) over time. The 
Boolean signal (orange) is produced replacing p1 and p2 by 4000 and 50 in Eq. (4).

The files for running the previous examples are located in the Test folder of the git 
repository of ParetoLib. These files include the STL specifications, the signals and a file 
containing the names of the parameter variables. Depending on the monitoring tool (i.e., 
StlEval or AMT), the file format of the STL specification and signal may change. Addi-
tional examples are located in the doc folder, as well as a video demo.

5  Case study

The goal of this section is to illustrate the new features of ParetoLib. In particular, we will 
show the benefits of the quantitative operators for simplifying the specification of STL 
properties as well as the computational speed up compared to the first release of ParetoLib.

In this case study, we design a disease detector for electrocardiograms (ECG) using par-
ametric STL. Informally speaking, an ECG is composed of a sequence of approximately 
flat regions followed by a pulse or heat beat. If the patient suffers from arrhythmia or other 
kind of heart diseases, the pulse exhibits an anomalous shape. In the following experi-
ments, we use the MIT-BIH Arrhythmia Database of Physionet [23, 24], a public library 
that contains several annotated ECG’s with thousands of pulses per sample. A portion of 
ECG 221 is depicted as in Fig.  15 where the signal (blue) and the annotations (orange) 
come from the database. The annotations for the normal peaks are modelled into a label-
ling signal that is 1 when a normal peak occurs and 0 everywhere else.

Our aim is to develop a pattern predictor (i.e., classifier) that identifies normal peaks and 
mimic the labelling a doctor would manually make for an input ECG. The learning procedure 
presented in [5] relies on the �-count operator for mining a classifier that minimises the num-
ber of mismatches (either false positives, �+ , or false negatives, �− ) with respect to the annota-
tions of the samples in the training set. The inferred classifier consists of a PSTL formula and 
the solution of the parameter space. Obtaining a classifier that mimics a doctor labelling is 

(4)On[0,p1]I x0 ≥ 5000 − p2

Fig. 14  Boolean signal 
resulting from substitution of 
(p1, p2) = (4000, 50) in Eq. (4)
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hence translated into an optimisation problem that minimises both �+ and �− . The problem is 
solvable by the BDMJ20 method in Sect. 4.3 that deals with two, maybe opposing, optimisa-
tion criteria.

Firstly, let’s introduce some formal definitions and notation. A labelled signal (s, �s) is a 
pair of signal s and labelling signal �s . We use S to denote the given set of labelled signals. 
We use IPPP to mean Increasing Parametric Pattern Predictor (defined formally in [5]). To 
put it in simple terms, increasing the parameter values for an IPPP makes the true predic-
tions become more common. We aim at learning parameters p for an IPPP Ψp so that for 
every given labelled signal (s, �s) , the labelling signals Ψp(s) and �s should match together 
as much as possible. We measure two kind of mismatches by measuring “how often” the 
two following signals are true. The false positive signal ¬�s ∧ Ψp(s) indicates when the 
predictor predicts an occurrence when there is none. The false negative signal �s ∧ ¬Ψp(s) 
indicates when the predictor misses an actual occurrence.

Given bounds �+ , �− on the allowed �-count of false positives and false negatives, we are 
interested in the following three sets:

For convenience, we call them respectively the positive, negative and intersection solution 
sets. In addition, we are interested in a relaxed version of the identification problem for 
false positive bounding, by tolerating a difference of � time units in matching the labels. 
This can be done by replacing �s with the signal4 F[−�,�] �s in  (5). More concretely, the 
solution set of the corresponding �-relaxed problem is:

Hence, the corresponding relaxed version of the intersection solution set (7) is

Note that ���+(Ψ,S, �+) and ���+�(Ψ,S, �+) are downsets and ���−(Ψ,S, �−) is an 
upset because Ψ is increasing (recall definitions of upset and downset from Sect. 4.3). The 
sets ��������(Ψ,S, �+, �−) and ���������(Ψ,S, �+, �−) are intersections of an upset 
and a downset, which we can compute from the intersection of two Pareto fronts using 
BDMJ20 algorithm.

It is also of great interest to compute the set of couples (�+, �−) , called set of feasible 
error bounds, for which a solution exists:

The set P(Ψ,S) is an upset and its minimal elements form a Pareto front. We compute it 
via membership-queries for couples (�+, �−) . They are done via non-emptiness checking of 
���������(Ψ,S, �+, �−) which is an easier problem than computing the whole set.

(5)���+(Ψ,S, �+) = {p ∣ ∀(s, �s) ∈ S, c�(Ψp(s) ∧ ¬�s) ≤ �+},

(6)���−(Ψ,S, �−) = {p ∣ ∀(s, �s) ∈ S, c�(¬Ψp(s) ∧ �s) ≤ �−},

(7)��������(Ψ,S, �+, �−) = ���+(Ψ,S, �+) ∩ ���−(Ψ,S, �−).

���+�(Ψ,S, �+) = {p ∣ ∀(s, �s) ∈ S, c�(Ψp(s) ∧ ¬ F[−�,�] �s) ≤ �+}.

(8)���������(Ψ,S, �+, �−) = ���+�(Ψ,S, �+) ∩ ���−(Ψ,S, �−).

(9)P(Ψ,S) = {(�+, �−) ∣ ��������
�(Ψ,S, �+, �−) ≠ �}.

4 where (F[−�,�] �s)(t) = 1 iff ∃t� ∈ [t − �, t + �], s(t�) = 1.
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Equation (10) gives a simple and rough characterisation of a normal ECG peak using 
min/max operators of extended STL [3]. For the sake of readability, the syntax has been 
slightly simplified by replacing On[a,b]Max x by Max[a,b] x . Equation (10) is equal to 1 if the 
maximum of x on [t − p1, t + p1] is above −p3 , and its variation is within the bound p2 on 
[t − c, t − p1] and on [t + p1, t + c] . The parameter domains are p1 ∈ [0, 70] , p2 ∈ [0, 1] and 
p3 ∈ [−1, 0] . Here, c = 70 is a constant representing an upper limit on p1 . Note that if one 
increases p1 , p2 or p3 , the property is easier to achieve. Alternatively, Eq. (11) characterises 
ECG pulses in terms of derivatives and integrals in a simpler and more readable way.

For ECG 221, the predictor in Eq.  (10) can match the labelling with no false negatives 
( �− = 0 ) and only a single false positive ( �+ = 1 ): it identifies the blue peak in the right 
hand side of Fig.  15 as a valid pulse. We denote the singleton signal set containing the 
labelled ECG 221 signal as S221 . Table 1 shows the execution time that ParetoLib requires 
for computing the solution set ( ���������(Ψch1 ,S221, �+ = 1, �− = 0)) of the parametric 
space (p1, p2, p3) with different accuracy. The value of V� represents the percentage of the 
parametric space that remains unexplored. For instance, the green area in Fig. 16 repre-
sents the solution set of the parameters when the unexplored area is less than 0.01%.

(10)

Ψ
ch1
(p1,p2,p3)

(x)(t) ∶=((Max[−c,−p1] x −Min[−c,−p1] x) ≤ p2) ∧

((Max[p1,c] x −Min[p1,c] x) ≤ p2) ∧

((Max[−p1,p1] x) ≥ −p3)

(11)Ψ
ch2
(p1,p2,p3)

(x)(t) ∶=(|Dx| < 1) U[0,p1]
(I[0,p2]x) < p3

Fig. 15  Excerpt from ECG221

Table 1  Execution time 
(seconds) of the solution set of 
the parametric space for different 
scenarios

ECG 221 V� = 1% V� = 0.1% V� = 0.01%

Python 97.66 403.58 1974.56
Cython 93.66 391.22 1940.21
Multicore Python 55.05 185.67 861.70
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The Cython code is around 3% faster than pure Python: the evaluation of the STL 
expressions, which is the most time consuming part of the mining method, was already 
externalised to StlEval in previous versions of ParetoLib. Additionally, ParetoLib 2.0 sup-
ports the parallel execution of the BDMJ20 method in multicore CPU’s, while ParetoLib 
1.0 did not. The experiments are run in a Intel(R) Core(TM) i5-3570K CPU @3.40GHz 
16GB, Ubuntu 22.04 and Python 3.10.

Equation  (10) is also evaluated for labelling pulses on ECG 100 and ECG 123 with 
different success. We denote the singleton signal sets containing the labelled ECG 100 
and ECG 123 signals as S100 and S123 respectively. Table 2 compares the number of mis-
matches, either false positives or false negatives, between the original labelling and the 
one produced by Eq.  (10). For the particular case of ECG 100, our solution provides 33 
false positives. According to the Pareto front (corresponding to the upset P(Ψch1 ,S100) ) 

Fig. 16  Solution set of the parametric space ���������(Ψch1 ,S221, �+ = 1, �− = 0)) for ECG221 
( V� = 0.01%)

Table 2  Execution time 
(seconds) and number of �−/�+ of 
the solution set of the parametric 
space for different ECGs

ECG n ◦ �− �+ V� = 1% V� = 0.1% V� = 0.01%

221 0 1 55.05 185.67 861.70
123 1 0 90.29 393.70 2265.52
100 0 33 507.60 3891.94 12780.00

Fig. 17  Pareto front for ECG100 
using Eq. (10)
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in Fig. 17, it is impossible to obtain a better solution set using the current specification. 
This issue does not come from a wrong definition of peak, but from pulses that are sepa-
rated further than usual. See the first pulse after 2000 time units in Fig. 18. It is called an 
Atrial Premature Beat which should not be considered a normal peak. Equation 12 enriches 
Eq. (10) with explicit information about the distance between peaks, which improves the 
accuracy of our peak detector and reduces the number of errors to 3 false positives and 1 
false negative. peak is an alias for Eq. (10).

6  Related work

Similar tools for offline monitoring of cyber-physical systems are AMT 2.0 [18], S-Tal-
iro [25] and Breach [26]. AMT 2.0 is a Java tool while S-Taliro and Breach are MAT-
LAB/Simulink toolboxes. AMT 2.0 analyses input traces with extended Signal Tempo-
ral Logic (xSTL), which combines STL and Timed Regular Expressions (TRE). On the 
other hand, S-Taliro and Breach include an explicit model of the cyber-physical system 
for simulating traces. S-Taliro is specialised in falsification of temporal logic properties 
by finding trajectories with minimum robustness. Breach allows the exhaustive inspec-
tion of the cyber-physical model by systematically varying configuration parameters. 
Next, py-stl [27, 28] implements a similar approach to our BBMJ19 method for min-
ing parametric STL equations. The authors of py-stl apply it to compute a family of 
distance metrics for a set of monotonic specifications that are mined from time-series 
learning [29]. Finally, MiniPaSTeL [30] implements the BMNN23 method for mining 
STL parameters [7]. It uses RTAMT [31] as monitoring tool.

However, these tools include neither the quantitative operators nor a full support 
for the specification mining methods presented in this paper. Additionally, ParetoLib 
2.0 has an adapter for externalising the run of non-parametric STL queries in AMT 2.0 
and is also prepared for connecting with the Matlab environment. Similarly to py-stl, 
ParetoLib 2.0 supports the comparison of the inferred validity domains for mined PSTL 
specifications. Our tool can compute the Haussdorf distances among a set of validity 
domains and return the characteristic point for each of them.

(12)Ψ
ch3
(p1,p2,p3,p4)

(x)(t) ∶= peak(p1, p2, p3) ∧ F[0,p4]
peak(p1, p2, p3)

Fig. 18  Excerpt from ECG100
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Recently, tools for online monitoring of systems that cannot be statically analysed 
have appeared. RTAMT [31] supports the online diagnosis with STL and IA-STL, an 
interface-aware extension for defining interface properties about input/output signals 
of a cyber-physical systems. Finally, RTLola [32] (previously named StreamLab) and 
TeSSLa [33] complete the state of the art. These tools are focused on evaluating real-
time streams instead of signals.

7  Conclusion

This paper introduces the new features of ParetoLib 2.0, a Python tool for the evalua-
tion and parameter synthesis of Signal Temporal Logic specifications (STL). The main 
changes w.r.t. the previous version of the tool consist of (1) A graphical user interface 
that simplifies the usage to the end users, (2) The support of additional quantitative 
operators that involve counting of events ( �-count), trends (derivatives), or accumula-
tions (integrals), and (3) The implementation of new mining methods. Besides, we have 
optimised the performance of the library for mining the parameter valuations of para-
metric STL specifications by completing the multi core support and compiling the ker-
nel modules into C code. The compilation of the internal Python modules into C code is 
transparent to the end users as the transformation is automatically executed during the 
installation of the Python library. Finally, we introduce the Haussdorf distance in order 
to compare the inference of validity domains of PSTL specifications.

As future work, we propose to include more options in the graphical user interface 
that are already available in ParetoLib as command-line options (e.g., the selection 
of parallel computations or the STL engine). On the other hand, we want to include 
other types of interpolation beyond the constant pairwise (e.g. linear). We plan to add 
new logic operators such as the probability operator Pr∼�� , where ∼∈ {<,≤,≥,>} and 
� ∈ [0, 1] . Finally, we will implement a natural language processor for writing STL 
specifications in natural language.
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