
HAL Id: hal-04794812
https://hal.science/hal-04794812v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mining of extended signal temporal logic specifications
with ParetoLib 2.0

Akshay Mambakam, José Ignacio Requeno Jarabo, Alexey Bakhirkin, Nicolas
Basset, Thao Dang

To cite this version:
Akshay Mambakam, José Ignacio Requeno Jarabo, Alexey Bakhirkin, Nicolas Basset, Thao Dang.
Mining of extended signal temporal logic specifications with ParetoLib 2.0. Formal Methods in System
Design, 2024, 62 (1-3), pp.260-284. �10.1007/s10703-024-00453-2�. �hal-04794812�

https://hal.science/hal-04794812v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Vol:.(1234567890)

Formal Methods in System Design (2024) 62:260–284
https://doi.org/10.1007/s10703-024-00453-2

1 3

Mining of extended signal temporal logic specifications
with ParetoLib 2.0

Akshay Mambakam1 · José Ignacio Requeno Jarabo2 · Alexey Bakhirkin1,2 ·
Nicolas Basset1 · Thao Dang1

Received: 10 January 2023 / Accepted: 14 April 2024 / Published online: 6 May 2024
© The Author(s) 2024

Abstract
Cyber-physical systems are complex environments that combine physical devices (i.e., sen-
sors and actuators) with a software controller. The ubiquity of these systems and dangers
associated with their failure require the implementation of mechanisms to monitor, verify
and guarantee their correct behaviour. This paper presents ParetoLib 2.0, a Python tool for
offline monitoring and specification mining of cyber-physical systems. ParetoLib 2.0 uses
signal temporal logic (STL) as the formalism for specifying properties on time series. Pare-
toLib 2.0 builds upon other tools for evaluating and mining STL expressions, and extends
them with new functionalities. ParetoLib 2.0 implements a set of new quantitative opera-
tors for trace analysis in STL, a novel mining algorithm and an original graphical user
interface. Additionally, the performance is optimised with respect to previous releases of
the tool via data-type annotations and multi core support. ParetoLib 2.0 allows the offline
verification of STL properties as well as the specification mining of parametric STL tem-
plates. Thanks to the implementation of the new quantitative operators for STL, the tool
outperforms the expressiveness and capabilities of similar runtime monitors.

Keywords Signal Temporal Logic · Quantitative analysis · Specification mining ·
Parameter synthesis · Python

1 Introduction

Cyber-physical systems are complex environments that combine physical devices (i.e., sen-
sors and actuators) with a software controller. The ubiquity of these systems and dangers
associated with their failure require the implementation of mechanisms to monitor, verify
and guarantee their correct behaviour.

This paper presents ParetoLib 2.0, a Python tool for offline monitoring of cyber-physi-
cal systems. ParetoLib 2.0 allows qualitative and quantitative analysis of real-time signals
using specification in an extension of Signal Temporal Logic (STL) [1]. Additionally, Pare-
toLib 2.0 supports mining parameter valuations of parametric STL (PSTL) [2] properties

Akshay Mambakam, José Ignacio Requeno Jarabo, Alexey Bakhirkin, Nicolas Basset and Thao Dang
have contributed equally to this work.

Extended author information available on the last page of the article

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

261Formal Methods in System Design (2024) 62:260–284

1 3

from trace examples (i.e., a variant of STL that allows parameters in addition to numeric
constants).

ParetoLib 2.0 gathers the contributions presented in [3–5] and extends previous versions
of ParetoLib [6] with the following additions. First, we provide a graphical user interface
that helps the end users efficiently interact with the tools and interpret the results. Sec-
ond, we support additional quantitative STL operators allowing to express a richer set of
properties involving counting of events (�-count), trends (derivatives), or accumulations
(integrals). Third, ParetoLib includes recent algorithms for mining parametric STL speci-
fications that do not require monotonicity assumptions of the validity domain [7]. Finally,
we have optimised the tool performance by adding multicore support, type annotations and
directives to compile the Python modules into C code.

The paper is organised as follows: Sect. 2 motivates the extension of STL with some
examples that are complicated to express without the new STL operators. Section 3 intro-
duces the STL specification language and the quantitative extensions. Next, Sect. 4 pre-
sents the technical aspects of ParetoLib 2.0 and details the new contributions. Section 5
presents a case study that uses the new quantitative operators. Section 6 compares Pare-
toLib 2.0 to similar tools. Finally, Sect. 7 gathers the conclusions and sketches the future
work.

2 Motivating examples

Before formally defining the STL language, let us look at some examples of properties that
we would like to express. In particular, we look at properties that motivated the develop-
ment of more expressive and harder to monitor logics.

Example 1 (Stabilisation) The first interesting property is stabilisation around a value
that is not known in advance, e.g., “x stays within +∕ − 0.05 units of some value for at
least 200 time units”. It is tempting to formalise this property using existential quantifica-
tion “there exists a threshold v, such that...”, which is possible with first-order logic of
signals (and was one of its motivational properties [8]), but it is actually not necessary.
Instead, we can compute the minimum and maximum of x over the next 200 time units
and compare their distance to 0.1 = 2 ⋅ 0.05 . In some imaginary language, we could write
max[0,200]x − min[0,200]x ≤ 0.1 . At this point we propose to separate the aggregate operators
from the operator that defines the temporal window, which will be useful later, when the
until operator will define a window of variable width. We use the operator On[a,b] to define
the temporal window of constant width and the operators Min and Max (capitalised) to
denote the minimum and maximum over the previously defined window.

Signal x stabilises within 0.05 units of an unknown value for 200 time units:

Figure 1 shows an example of a signal x(t) (red) performing damped oscillation with the
period of 250 time units. Blue and green curves are the maximum and the minimum of x
over a siding window [t, t + 200] . Finally, the orange Boolean signal (its y scale is on the
right) evaluates to true (i.e., y = 1) when the maximum and minimum of x over the next
200 time units are within 0.1.

On[0,200]Max x − On[0,200]Min x ≤ 0.1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

262 Formal Methods in System Design (2024) 62:260–284

1 3

Example 2 (Local Maximum) Consider the property: “the current value of x is a minimum
or maximum in some neighbourhood of current time point”. Previously, a similar property
became a motivation to extend STL with freeze quantifiers [9], but we can also express it
by comparing the value of a signal with some aggregate information about its neighbour-
hood, which we can do similarly to the previous example.

Current value of x is a local maximum on the interval [0, 85] relative to the current time.

Figure 2 shows an example of a sine wave x(t) (red) with the period of 250 time units. Blue
curve is the maximum x over a siding window [t, t + 85] . The orange Boolean signal evalu-
ates to true when the current value of x is a maximum for the next 85 time units. Another
way of detecting the moments when the signal reaches a local minimum or maximum,
regardless the actual value of x, consists on expressing the property in terms of derivatives
(D operator). Local maximum and minimum are reached when derivatives are equal to
zero, so the following expression will draw a pulse in the surroundings of local peaks in the
orange Boolean signal every 125 time units (not shown in Fig. 2).

x ≥ On[0,85]Max x

Fig. 1 Damped oscillation x(t) and its maximum and minimum over the window [t, t + 200]

Fig. 2 Sine wave x(t), its
maximum over the window
[t, t + 200] , and whether x(t) is a
local maximum on the interval
[t, t + 200]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

263Formal Methods in System Design (2024) 62:260–284

1 3

Example 3 (Stabilisation Contd.) We want to be able to assert that x becomes stable around
some value not for a fixed duration, but until some signal q becomes true. We will be able
to do this with our version of until operator.

Signal x is stable within 0.05 units of an unknown value until q becomes true:

Intuitively, for a given time point, we want the monitor to find the closest future time point,
where q holds and compute Min and Max of x over the resulting interval. Note that this
property cannot be easily monitored in the framework of “STL with pre-processing”, since
it requires the monitor to compute Min and Max over a sliding window of variable width,
which depends on the satisfaction signal of q.

Example 4 (Linear Increase) At this point, we can assert x to follow a more complex shape,
for example, to increase or decrease with a given slope. Let T denote an auxiliary sig-
nal that linearly increases with rate 1 (like a clock of a timed automaton), i.e. we define
T(t) = t ; this example works as well for T(t) = t + c , where c is a constant. To specify that
x increases with the rate 2.5, we assert that the distance from x to 2.5 ⋅ T stays within some
bounds.

Signal x increases approximately with slope 2.5 during the next 100 time units:

The previous expression can be rewritten in terms of derivatives in a much more simpler
way:

Example 5 (Integral) Let us consider the following formula:

On[0,85]|Dx| ≤ 0.1

(Max xUq) − (Min xUq) ≤ 0.1

On[0,100]Max |x − 2.5T| − On[0,100]Min |x − 2.5T| ≤ 0.1

On[0,100]|Dx| ≤ 2.5

(1)�f ∶= On[0,p1]I x0 ≥ c2 − p2

Fig. 3 Piece-wise constant signal
w10(t)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

264 Formal Methods in System Design (2024) 62:260–284

1 3

Consider the piece-wise constant signal w10 (Fig. 3) with sample values 0, 9 and 18 at times
0, 1 and 2 respectively and it ends at time 10. Let us now analytically compute the solution for
the parametric identification problem for the above formula and the signal w10 . The value of the
parameter p1 varies between 0 and 10 and the parameter p2 lies between 0 and 250 and c2 equals
250. We can analytically compute the validity domain by considering 10 cases corresponding to
the 10 segments of w10 . We give below the first three parts of the disjunction of constraint sys-
tems for representing the validity domain corresponding to the three cases which are p1 ∈ [0, 1) ,
p1 ∈ [1, 2) and, p1 ∈ [2, 3):

The full validity domain, named vf , is computed as the union of all the regions and shown
in green colour in Fig. 4. The validity domain for (¬(¬�f)) will be (¬(¬vf)) . If we naively
compute this series of negations over semi-linear domains then the time complexity for
obtaining the exact solution might be high. We implemented in C++ the negation opera-
tion on semi-linear domains using Parma Polyhedra Library [10]. We tested in addition
to w10 using piece-wise constant signals w100 and w1000 each having 100 and 1000 seg-
ments respectively. We computed the validity domains by treating them as semi-linear
domains for w10 , w100 and w1000 for (¬(¬�f)) while suitably setting the value of constant c2
the ranges of values of parameters p1 and p2 . We observed computation times between 30
and 50 milliseconds for signal w10 and 57264 milliseconds for signal w100 in a conventional
laptop. For w1000 the operations timed out after the one hour limit we set. We see that the
computation time increases steeply with the size of the signal and becomes prohibitively
high for signal w1000 which is of reasonable size.

On the other hand, if we reason in terms of membership queries to an oracle that guides
the computation of the validity domains, then the previous (¬(¬vf)) expression for sig-
nal w10 could be approximated efficiently (see Fig. 5) in 145 milliseconds. Our approach

(2)

region1: = {(p1, p2) ∈ ℝ2
| (0 ≤ p1 < 1) ∧ (0 ∗ p1 ≥ 250 − p2))}

region2: = {(p1, p2) ∈ ℝ2
| (1 ≤ p1 < 2) ∧ (0 ∗ 1 + 9 ∗ (p1 − 1) ≥ 250 − p2))}

region3: = {(p1, p2) ∈ ℝ2
| (2 ≤ p1 < 3) ∧ (0 ∗ 1 + 9 ∗ 1 + 18 ∗ (p1 − 1 − 1) ≥ 250 − p2)}

…

vf : =
10
⋃

i=1
regioni

Fig. 4 Validity domain for signal
w10(t) and the formula with
integral

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

265Formal Methods in System Design (2024) 62:260–284

1 3

requires 1997 and 75932 milliseconds respectively for approximating more than the 99% of
the validity domains of signals w100 and w1000 . The C++ and ParetoLib code, as well as the
w10 , w100 and w1000 signals in CSV format are publicly available.1

More examples of properties that require quantitative STL operators can be found in
the literature. For instance, the monitoring of the accumulated electricity consumption on
smart meters is easily described with integrals over a time window [11]. The rest of the
paper includes toy examples and a case study that amplifies the necessity of the new fea-
tures we present. Further sections illustrate the methods we implement for approximating
the validity domain we obtained in the last example, and outperform other monitoring tools
that compute exact solution.

3 Extended signal temporal logic

3.1 Boolean semantics

Signal Temporal Logic (STL) [1] focuses on specifying properties of continuous-time signals
that represent the evolution of attributes of a cyber-physical system. Formally, a signal is a
function x ∶ 𝕋 → ℝ

n , where the time domain � = [Tstart, Tend] is a closed real interval, and
the value |x| = Tend − Tstart is the duration of the signal. We refer to signal components using
their own letters: x, y, z … ∈ 𝕋 → ℝ.

Then, the grammar of STL can be defined as follows:

• P ∈ � → {true, false} is a predicate over the components of the input signal;

� = P(x1,… , xn) ∣ ¬� ∣ �1 ∨ �2 ∣ �1U[t1,t2]
�2

Fig. 5 Approximation of the validity domain for signal w10(t) and the formula with integral

1 https:// zenodo. org/ doi/ 10. 5281/ zenodo. 10156 861

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

266 Formal Methods in System Design (2024) 62:260–284

1 3

• U is the temporal operator until; �1U[t1,t2]
�2 asserts that �2 becomes true in the future, with

the delay between t1 and t2 , and �1 must hold until that point.

The semantics of an STL formula � with respect to a signal x is its satisfaction signal
[[�]] ∈ � → {true, false} ; for every time point t, [[�]](t) tells whether or not � holds at that
time point. That is, (x, t) ⊧ 𝜑 ⟺ [[𝜑]](t).

 Here, we use the non-strict semantics of until that requires the existence of a time point
where both �1 and �2 hold.

Somewhat more commonly used temporal operators F (eventually) and G (always) can be
defined in terms of until:

F[t1,t2]
� asserts that � becomes true with a delay between t1 and t2 ; and G[t1,t2]

� asserts that
for every time point between t1 and t2 time points in the future, � holds.

Note that the atomic propositions of STL are predicate signals; they are assumed to be pro-
duced from sensor readings of some cyber-physical system, but the logic does not specify
how exactly this happens. The satisfaction signals are piecewise-constant (since the range
is {true, false}), and this is the only kind of signals STL monitors need to work with.

3.2 Quantitative semantics: new additions to STL

STL also admits robustness semantic that measures how far is an observed behaviour from
satisfying/violating a specification. In this case, the semantics of a formula � is interpreted
as a piecewise-constant or piecewise-linear function from real-time, i.e., � formula is a func-
tion [[�]] ∶ 𝕋 → ℝ . Thus, � has real-valued switching points. This feature facilitates the inclu-
sion of quantitative operators while treating real numbers 0 and 1 as Booleans (i.e., 0 ≡ ����� ,
1 ≡ ����). The quantitative interpretation of a � formula involves that Boolean expressions are
rewritten in terms of the composition of min/max operators:

This quantitative interpretation should not be confused with the quantitative semantics for
STL called space robustness (known popularly as simply robustness) defined in [12]. This
robustness denoted as � indicates by how much margin a given signal w satisfies an STL
formula � . It follows that positive and negative robustness values correspond to satisfac-
tion and violation of the formula respectively. One can now see why while our quantitative
interpretation requires ¬� ≡ 1 − � , robustness changes sign when negation is applied over
a formula i.e. �(¬�,w) = −�(�,w) . Similarly to � for STL in Boolean semantics, a � for-
mula may refer to an input signal x ; apply a real-valued function f pointwise to the outputs

[[P(x1,… , xn)]](t) = P(x1(t),… , xn(t))

[[¬�]](t) = ¬[[�]](t)

[[�1 ∨ �2]](t) = [[�1]](t) ∨ [[�2(t)]]

[[�1U[t1,t2]
�2]](t) = ∃t� ∈ [t + t1, t + t2].[[�2]](t

�) ∧ ∀t�� ∈ [t, t�].[[�1]](t
��)

F[t1,t2]
𝜑 ≡ ⊤U[t1,t2]

𝜑 G[t1,t2]
𝜑 ≡ ¬F[t1,t2]

¬𝜑

[[F[t1,t2]
�]](t) = ∃t� ∈ [t + t1, t + t2].[[�]](t

�)

[[G[t1,t2]
�]](t) = ∀t� ∈ [t + t1, t + t2].[[�]](t

�)

�1 ∧ �2 ≡ ���{�1,�2}�1 ∨ �2 ≡ ���{�1,�2} ¬� ≡ 1 − �

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

267Formal Methods in System Design (2024) 62:260–284

1 3

its � subformulas; be a temporal operator (U , F, G); or, additionally, apply an aggregate
function over the sliding window (On[a,b]). We define it as:

We abuse the notation so that x is both a symbol referring to a component of an input sig-
nal and the corresponding real-valued function; similarly, f is both a function symbol and
the corresponding function.

The necessity of expressing richer properties in STL motivates the incorporation of STL
dialects to ParetoLib that extend the original set of operators with additional quantitative
primitives. As previously sketched in the motivating examples, these predicates compute, for
instance, the minimum/maximum values of a signal in a time window [3], the value of the
derivative in a time point or the integral in a time interval [13], or counts the number of events
in a sequence [5]. Section 5 will show a case study that requires the count operator for learning
patterns in labelled electrocardiograms (ECG). The following grammar summarises the list of
operators that are supported by ParetoLib 2.0:

Min, Max. Operations like minimum/maximum or integrals aggregate the values for a time
window. The semantics of a � formula is a function [[�]] ∶ (ℝ ∪ −∞) × (ℝ ∪∞) → ℝ
from an interval of time with real lower bound to a dual value. A � formula is evaluated
on an interval and does not have an output signal by itself. Instead, it supplies an aggregate
operation that will be computed when evaluating the containing On formula or until for-
mula. It should be possible to efficiently compute this aggregate operation over a sliding
window, and it should preserve the chosen shape of signals.

Since we focus on piecewise-constant and piecewise-linear signals, the two operations that
we can immediately offer are Min and Max, which can be efficiently computed over a sliding
window using the algorithm of D. Lemire [14, 15], and preserve the piecewise-constant and
piecewise-linear shapes.

At this point, we extend until operator in order to align with the quantitative semantics.
For every time point t, we either associate an interval ending when �2 becomes non-zero
(i.e., starts holding); or we report that no suitable end point was found. When such interval
exists, we evaluate �1 on it. When the interval does not exist, we produce d. Formally:

Standard STL eventually and always operators can be expressed in the new language as
follows:

Finally, standard STL until operator (denoted as USTL) is expressed as follows:

[[x]](t) = x(t) [[On[a,b]�]](t) = [[�]]([t + a, t + b])

[[f (�1 …�n)]](t) = f ([[�1]](t)… [[�n]](t)

� ∶ = c� ∣ x ∣ f (�1 ⋯�n) ∣ f
d
+
(�) ∣ f d

−
(�) ∣On[t1,t2]� ∣ �1U

d
[t1,t2]

�2

� ∶ = Min � ∣Max � ∣f i�

[[Min�]][t1, t2] = ���[t1,t2][[�]] [[Max�]][t1, t2] = ���[t1,t2][[�]]

[[�1U
d
[t1,t2]

�2]](t) =

{
[[�1]][t�], if ∃t

� ∈ [t + t1, t + t2], s.t. [[�2]](t
�) ≠ 0

d, otherwise

F[t1,t2]
� ≡ On[t1,t2]Max� G[t1,t2]

� ≡ On[t1,t2]Min�

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

268 Formal Methods in System Design (2024) 62:260–284

1 3

�-count (c�). The �-count operator counts the number of positive events in a signal (i.e.,
the moments when a Boolean signal becomes true). The �-count operator is not explicitly
available at the STL grammar level, but it can be used for counting the number of positive
intervals in a Boolean signal via the OracleEpsSTLe wrapper in ParetoLib. The �-count
operator grounds on the support of a Boolean signal x , denoted by supp(x), which is
the topological closure of {t ∣ x(t) ≠ 0} , that is, the smallest closed set that contains all
the points where the signal is not false. The �-count operator, originally defined in [5], is
inspired by the notions of �-separated sets and �-capacity proposed in [16]. The �-count
operator contrasts to the Lebesgue’s measure of subsets of ℝ which entails a small measure
for a signal whose support is the disjoint union of many intervals of almost-null measure
which are quite far apart. Formally speaking, the �-count operator is defined as:

Definition 1 (�-separated set and �-count) Given a Boolean signal x , a set S of reals is �
-separated w.r.t. x if S ⊆ ����(x) and for every t, t� ∈ S with t ≠ t′ , it holds that |t − t�| ≥ � .
The �-count of a signal x is c�(x) = ���{|S| ∣ S is �-separated w.r.t. x}.

The �-count of a signal x is determined in a greedy manner with the following recursive
equations:

• c�(0) = 0 when it is applied to the constant signal 0 , and
• c�(x) = 1 + c�(x

�) where x�(t) = 0 if t < 𝜖 + ���(����(�)) and x�(t) = x(t) otherwise.

Finally, the �-count has some remaining properties:

(1) The �-count is null iff it is applied to the constant signal 0.
(2) The �-count is increasing: if x ≤ x′ then c�(x) ≤ c�(x

�).
(3) The �-count satisfies a triangular inequality: c�(x ∨ x�) ≤ c�(x) + c�(x

�).

Derivatives, Integrals. The derivatives and integrals are calculated using the following
mathematical expressions, where x stands for the complete signal, x� is the value of the
signal at time � , f i

[t1,t2]
(�)2 is the integral for the time interval [t1, t2] and f d

+
(�) (f d

−
(�)) rep-

resent the right (left) derivatives:

Due to the implicit signal discretization, x� , the value of the input signal at time � , is
obtained as xk�t where k is the k-th term of the array, �t is the time step determined by the
sampling frequency and k𝛿t ≤ 𝜏 < (k + 1)𝛿t . The quantitative measurements of derivatives
and integrals are then discretized and approximated by the following equations:

�1U
STL
[t1,t2]

�2(t) ≡ (Min�1)U
0

[t1,t2]
�2

[[f d
+
(�)]] =

df (�)

dt+
[[f i(�)]] = ∫ f (��)��

[[f d
−
(�)]] =

df (�)

dt−
[[f i

[t1,t2]
(�)]] = ∫

t2

t1

f (��)��

2 f i
[t1,t2]

(�) is a syntax sugar for On[t1,t2] f
i(�)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

269Formal Methods in System Design (2024) 62:260–284

1 3

4 Tool presentation

4.1 Internal structure

The internal structure of ParetoLib 2.0 is depicted in Fig. 6. The components that are high-
lighted in red represent the parts that are updated or completely new with respect to the
previous releases of ParetoLib.

The architecture of ParetoLib 2.0 is divided into three parts: the GUI, the STL moni-
tor and the modules for mining the parameter valuations in parametric specifications.
Depending on the type of STL specification the user introduces in the GUI (parametric
vs non-parametric STL properties), ParetoLib directly forwards the query to the STL
monitor or starts the mining procedure for extracting the validity domain. In any case,
ParetoLib uses external STL monitors as oracles for answering STL queries. ParetoLib
2.0 continues to rely on top of StlEval [17], a C++ engine for evaluating extended
Signal Temporal Logic (STL) specifications. ParetoLib interfaces to StlEval with a
C API that includes the new quantitative operators (e.g, derivatives or integrals over
the signals). Other STL monitors such AMT 2.0 [18] are also supported via Python
code (replacing OracleSTLeLib by OracleSTL in Listings 1) or can be easily incorpo-
rated thanks to the modularity of the library. As the features of AMT 2.0 have not been
enlarged since the previous release of ParetoLib, this STL monitor is omitted from the
previous UML diagram for the sake of concision.

The functionalities for the internal modules of ParetoLib remain unchanged. These
modules are responsible for learning the parameter valuations of parametric STL
specifications. The mining algorithm converts the PSTL formulas into numerical STL
instances that queries to StlEval [19]. The current version of ParetoLib optimises the
performance of this process by adding support to multi core CPU and type annotations
and Cython directives [20] to compile the Python modules into C code during the instal-
lation phase. The rest of the code is also updated in order to support recent Python ver-
sions and standards.

[[f d
+
(x�)]] =

f (x(k+1)�t) − f (xk�t)

�t
[[f i

[a,b]
(x)]] =

k+b∕�t−1∑

k�=k+a∕�t

f (xk��t)�t

[[f d
−
(x�)]] =

f (xk�t) − f (x(k−1)�t)

�t

Fig. 6 Internal structure of ParetoLib 2.0

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

270 Formal Methods in System Design (2024) 62:260–284

1 3

The graphical user interface (GUI) allows to interact both with the mining library for
parametric STL specifications and indirectly with the StlEval tool for numerical STL
properties. The GUI simplifies the interaction with StlEval, but experienced users can
also run StlEval through the OS terminal for evaluating non-parametric STL specifica-
tions. Similarly, ParetoLib 2.0 can also be imported as a Python library and run in the
Python console, as illustrated by the code in Listings 1.

The versatility of ParetoLib 2.0 adapts the complexity of the tool to the user level:
inexperienced users can interact with STL monitors via the GUI, while programmers
and software engineers can code scripts and use ParetoLib 2.0 as a Python library.

ParetoLib 2.0 provides an all-in-one bundle installer that ships the GUI as well as
the DLL and binaries of StlEval for Windows and Linux. Except for the STL moni-
tors (StlEval and AMT), ParetoLib is mainly written in Python. Hence, ParetoLib 2.0
becomes a cross-platform tool and can interact with the rest of the Python ecosystem
(e.g., it can be easily imported as a library in a Jupyter Notebook).

4.2 StlEval

Given a non-parametric STL specification, StlEval implements efficient monitors that
evaluate the properties on a real-time signal. StlEval has been upgraded in order to
natively process new quantitative operators that count the number of events (�-count) on
a signal or calculate the derivatives and integrals. Previously, StlEval already included
operators for computing other quantitative properties such as the maximum/minimum
values of a signal in a time window.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

271Formal Methods in System Design (2024) 62:260–284

1 3

StlEval receives a finite representation of the continuous real-time signal in the
format of a comma separated values (CSV) array, which is interpreted as a constant
piecewise function. Each row of the CSV file has a pair < ���������, ����� > . Times-
tamps are integer values starting in 0, and the samples are floating numbers. Next,
StlEval reads a text file with the STL specification. StlEval uses prefix notation, i.e.,
(F[0,p1]

(≤ (abs (D x0)) p2)).

4.3 Mining algorithms in ParetoLib

ParetoLib converts the problem of mining parametric STL equations into solving a multi
criteria optimisation problem. Our tool provides three algorithms for computing the Pareto
front that will return the valuations that satisfy the parametric STL expressions. All the
methods replace the variables in PSTL equations by numerical STL instances that are
query to an external STL monitor. Based on the Boolean answer the STL monitor replies,
the mining algorithms guide the discovery of the validity domain.

The first method, named BBMJ19 [4], calculates a single Pareto front while the second
method, named BDMJ20 [5], obtains the intersection of two Pareto fronts. The BBMJ19
method was originally defined in [21, 22] and shipped in the first release of ParetoLib in
[4], while method BDMJ20 was incorporated in later versions. These algorithms assume
that the STL properties are monotonic and use the concepts of upset, downset and Pareto
front. Recently, method BMNN23 [7] has also been incorporated to ParetoLib, which
allows for mining parametric STL specifications that do not require monotonicity assump-
tions of the validity domain. It provides two types of algorithms that partition the search
space of a PSTL property into smaller boxes and compute the validity domain for the
parameter valuations based on statistical constraints.

The computational costs of BBMJ19, BDMJ20 and BMNN23 depend on the accuracy
requirements for the computation of the validity domain. For instance, BBMJ19 catego-
rises the search space into (in)valid and unexplored area. The volume contained in the
unexplored area decreases below �% of the initial volume V0 in O(V0∕�

�m2
m−1) where m is

the number of parameters (or dimensions) in a PSTL formula and �m is a constant number
in the interval [2m − 4, 2m − 3] which represents the number of boxes created during the
partitioning step.

BMNN23 relies on a partition strategy which can use a fixed or dynamic cell size. In the
worst case, it costs O(Mm) ⋅O(n) , where m is the number of parameters (or dimensions)
in a PSTL formula, and M is a constant that depends on the granularity of the cell size.
As BMNN23 uses statistical properties for partitioning the validity domain, the method
requires n input signals or samples.

Finally, the evaluation of non-parametric STL properties is commonly handled by STL
monitors in linear time with respect to the length of the input signal.

Partial order on ℝn , Upset, Downset and Pareto Front. Given two vectors p, q ∈ ℝ
n ,

vector p is lower than q, denoted by p ≤ q , if ∀i, pi ≤ qi . A set X is an upset if for all
p, q ∈ ℝ

n such that p ≤ q if p ∈ X then q ∈ X . A set X is a downset if for all p, q ∈ ℝ
n

such that q ≤ p if p ∈ X then q ∈ X . The boundary consisting of all the minimal ele-
ments of an upset (or all the maximal elements of a downset) is called a Pareto front in
the field of multi-criteria optimisation. The box between two vectors x and x with x ≤ x is
⌊x, x⌉ = {y ∣ x ≤ y ≤ x}.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

272 Formal Methods in System Design (2024) 62:260–284

1 3

Both algorithms in ParetoLib deal with user-given boxes. Consider the box B from
Fig. 7. The first Pareto front P1 separates the upset U1 and the downset D1 (Fig. 7a), while
the second Pareto front P2 separates the upset U2 and the downset D2 (Fig. 7b). The algo-
rithms rely on the existence of two oracle functions defined over the box B. Given a query
point x contained in B, the first oracle function o1(x) indicates whether x belongs to U1 or
not (i.e., x ∈ U1). The second oracle function o2(x) works similarly and returns the mem-
bership of x to D2 (i.e., x ∈ D2).

Assuming the existence of a Pareto front, the BBMJ19 algorithm takes an oracle and a
box to approximately compute the upset and downset. In particular, U1 and D1 are approxi-
mated using oracle o1 and box B. Similarly, U2 and D2 are computed using oracle o2 and
box B. Please note that BBMJ19 requires that the oracles are monotonic. In these exam-
ples, o1 is increasing: for p, q ∈ B with p ≤ q , it applies that o1(q) ≥ o1(p) . Similarly, the
oracle o2 is decreasing: for p, q ∈ B with p ≤ q , it applies that o2(q) ≤ o2(p).

Conversely, the algorithm BDMJ20 computes the intersection of two Pareto fronts. This
method applies when we are dealing with one increasing oracle and another decreasing
oracle: it involves the intersection of the upset of the increasing oracle and the downset
of the decreasing oracle. For example, it can approximately compute U1 ∩ D2 (in Fig. 7c)
using oracles o1 , o2 and the box B. It computes approximately but directly, the intersection
of U1 and D2 . A less efficient way is to separately compute U1 and D2 and then intersect
them.

4.4 Graphical user interface

The main GUI window (Fig. 8) is implemented using PyQt5. Extra libraries such as Mat-
plotlib, Pandas and Seaborn help for displaying the time series or the parameter valuation
results (Figs. 11, 12 and 13). The GUI starts when running the command python Pare-
toLib/GUI/GUI.py.

The tool receives three input files: (1) A finite representation of the continuous
signal, (2) A (parametric) STL specification, and (3) Optionally, the list of parameter
names. Signal files are in CSV format, and the rest of input files are in textual format
with.stl/param extension. These files must comply with the StlEval format. In future
versions, we aim at adding a selector which chooses the monitoring tool directly in
the user interface (i.e., StlEval or AMT).

Fig. 7 Illustration for Pareto algorithms

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

273Formal Methods in System Design (2024) 62:260–284

1 3

Then, the user chooses the values of the parameter range (if any) and configure the
execution in the option area. For instance, the user can select the type of interpola-
tion, whether the STL specification is parametric or not, or the mining algorithm in
case it is parametric (mining algorithms are BBMJ19 [4], BDMJ20 [5] or BMNN23
[7]). In case of running the BDMJ20 method, the user must provide two STL specifi-
cation files: one for each oracle, as described in Sect. 4.3.

Running the evaluation of a non-parametric STL formula opens a pop-up window with
a message saying if the property is satisfied or violated. If ParetoLib receives a parametric
STL formula, it learns the parameter valuations and returns a window that plots the results
(Figs. 11, 12 and 13).

Finally, the GUI offers a menu bar with useful options. For instance, it includes
buttons for creating, loading and saving ParetoLib projects in a JSON file: this file
will contain references to the input file paths and current configuration (e.g., mining
method). In case that we desire to compare several Pareto fronts, the classification
button will show the most characteristic element of the green region for each validity
domain. This feature requires a list of validity domains in ParetoLib file format (see
line 26 in Listing 1). Then, it internally computes the Haussdorf distance among the
set of points.

4.5 Example

Using the new version of StlEval, ParetoLib can solve non-parametric and parametric
formulas involving quantitative operators via the GUI or the Python terminal. As previ-
ously stated in the motivating examples in Sect. 2, some properties in cyber-physical
systems are easier expressed in terms of these quantitative primitives than using other
STL approaches. Let’s consider again two common scenarios: decaying signals (Fig. 9)
and periodic signals (Fig. 10). Detecting whether the signal stabilises or not is equiva-
lent to check that the wave is almost flat, i.e., the derivative bounds are near zero in the

Fig. 8 Main window of ParetoLib 2.0

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

274 Formal Methods in System Design (2024) 62:260–284

1 3

future. The usage of a parametric STL expression allows the inspection of the stabilisa-
tion property over a period of time and oscillation amplitudes:

Fig. 9 Decaying signal

Fig. 10 Triangular signal with
4000 time units period

Fig. 11 Parameter valuation
result for Eq. (3).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

275Formal Methods in System Design (2024) 62:260–284

1 3

The parameters in the PSTL equation are p1 and p2 , x0 is the first component of the input
signal, D is the derivative operator and | ⋅ | computes the absolute value.3 The parameter
p1 corresponds to the upper time bound of the sliding window, and p2 corresponds to the
oscillation amplitude.

As a result, ParetoLib returns the parameter valuation (Fig. 11) that shows the combi-
nations of parameters p1 and p2 that satisfy the property (green region) or falsify it (red
region). Figure 12 shows the Boolean signal produced replacing p1 and p2 by 100 and 0.05
in Eq. (3). It also textually reports if the STL property is satisfied at time instant 0 (i.e.,
True).

(3)F[0,p1]
|D x0| ≤ p2

Fig. 12 Boolean signal
resulting from substitution of
(p1, p2) = (100, 0.05) in Eq. (3)

Fig. 13 Parameter valuation
result for Eq. (4)

3 For the sake of readability, the equation uses infix notation.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

276 Formal Methods in System Design (2024) 62:260–284

1 3

Similarly, an example of parametric expression involving integrals is Eq. (4). In this
case, On[0,p1] refers to the integration interval for the I operator. If p1 is multiple of the peri-
odicity of oscillation of the signal around x0(t) = 0 , then the integral should also be zero.
Figure 13 shows the parameter valuation for Eq. (4) when evaluated over the triangular
signal (Fig. 10). Figure 14 shows the integral of the triangular signal (blue) over time. The
Boolean signal (orange) is produced replacing p1 and p2 by 4000 and 50 in Eq. (4).

The files for running the previous examples are located in the Test folder of the git
repository of ParetoLib. These files include the STL specifications, the signals and a file
containing the names of the parameter variables. Depending on the monitoring tool (i.e.,
StlEval or AMT), the file format of the STL specification and signal may change. Addi-
tional examples are located in the doc folder, as well as a video demo.

5 Case study

The goal of this section is to illustrate the new features of ParetoLib. In particular, we will
show the benefits of the quantitative operators for simplifying the specification of STL
properties as well as the computational speed up compared to the first release of ParetoLib.

In this case study, we design a disease detector for electrocardiograms (ECG) using par-
ametric STL. Informally speaking, an ECG is composed of a sequence of approximately
flat regions followed by a pulse or heat beat. If the patient suffers from arrhythmia or other
kind of heart diseases, the pulse exhibits an anomalous shape. In the following experi-
ments, we use the MIT-BIH Arrhythmia Database of Physionet [23, 24], a public library
that contains several annotated ECG’s with thousands of pulses per sample. A portion of
ECG 221 is depicted as in Fig. 15 where the signal (blue) and the annotations (orange)
come from the database. The annotations for the normal peaks are modelled into a label-
ling signal that is 1 when a normal peak occurs and 0 everywhere else.

Our aim is to develop a pattern predictor (i.e., classifier) that identifies normal peaks and
mimic the labelling a doctor would manually make for an input ECG. The learning procedure
presented in [5] relies on the �-count operator for mining a classifier that minimises the num-
ber of mismatches (either false positives, �+ , or false negatives, �−) with respect to the annota-
tions of the samples in the training set. The inferred classifier consists of a PSTL formula and
the solution of the parameter space. Obtaining a classifier that mimics a doctor labelling is

(4)On[0,p1]I x0 ≥ 5000 − p2

Fig. 14 Boolean signal
resulting from substitution of
(p1, p2) = (4000, 50) in Eq. (4)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

277Formal Methods in System Design (2024) 62:260–284

1 3

hence translated into an optimisation problem that minimises both �+ and �− . The problem is
solvable by the BDMJ20 method in Sect. 4.3 that deals with two, maybe opposing, optimisa-
tion criteria.

Firstly, let’s introduce some formal definitions and notation. A labelled signal (s, �s) is a
pair of signal s and labelling signal �s . We use S to denote the given set of labelled signals.
We use IPPP to mean Increasing Parametric Pattern Predictor (defined formally in [5]). To
put it in simple terms, increasing the parameter values for an IPPP makes the true predic-
tions become more common. We aim at learning parameters p for an IPPP Ψp so that for
every given labelled signal (s, �s) , the labelling signals Ψp(s) and �s should match together
as much as possible. We measure two kind of mismatches by measuring “how often” the
two following signals are true. The false positive signal ¬�s ∧ Ψp(s) indicates when the
predictor predicts an occurrence when there is none. The false negative signal �s ∧ ¬Ψp(s)
indicates when the predictor misses an actual occurrence.

Given bounds �+ , �− on the allowed �-count of false positives and false negatives, we are
interested in the following three sets:

For convenience, we call them respectively the positive, negative and intersection solution
sets. In addition, we are interested in a relaxed version of the identification problem for
false positive bounding, by tolerating a difference of � time units in matching the labels.
This can be done by replacing �s with the signal4 F[−�,�] �s in (5). More concretely, the
solution set of the corresponding �-relaxed problem is:

Hence, the corresponding relaxed version of the intersection solution set (7) is

Note that ���+(Ψ,S, �+) and ���+�(Ψ,S, �+) are downsets and ���−(Ψ,S, �−) is an
upset because Ψ is increasing (recall definitions of upset and downset from Sect. 4.3). The
sets ��������(Ψ,S, �+, �−) and ���������(Ψ,S, �+, �−) are intersections of an upset
and a downset, which we can compute from the intersection of two Pareto fronts using
BDMJ20 algorithm.

It is also of great interest to compute the set of couples (�+, �−) , called set of feasible
error bounds, for which a solution exists:

The set P(Ψ,S) is an upset and its minimal elements form a Pareto front. We compute it
via membership-queries for couples (�+, �−) . They are done via non-emptiness checking of
���������(Ψ,S, �+, �−) which is an easier problem than computing the whole set.

(5)���+(Ψ,S, �+) = {p ∣ ∀(s, �s) ∈ S, c�(Ψp(s) ∧ ¬�s) ≤ �+},

(6)���−(Ψ,S, �−) = {p ∣ ∀(s, �s) ∈ S, c�(¬Ψp(s) ∧ �s) ≤ �−},

(7)��������(Ψ,S, �+, �−) = ���+(Ψ,S, �+) ∩ ���−(Ψ,S, �−).

���+�(Ψ,S, �+) = {p ∣ ∀(s, �s) ∈ S, c�(Ψp(s) ∧ ¬ F[−�,�] �s) ≤ �+}.

(8)���������(Ψ,S, �+, �−) = ���+�(Ψ,S, �+) ∩ ���−(Ψ,S, �−).

(9)P(Ψ,S) = {(�+, �−) ∣ ��������
�(Ψ,S, �+, �−) ≠ �}.

4 where (F[−�,�] �s)(t) = 1 iff ∃t� ∈ [t − �, t + �], s(t�) = 1.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

278 Formal Methods in System Design (2024) 62:260–284

1 3

Equation (10) gives a simple and rough characterisation of a normal ECG peak using
min/max operators of extended STL [3]. For the sake of readability, the syntax has been
slightly simplified by replacing On[a,b]Max x by Max[a,b] x . Equation (10) is equal to 1 if the
maximum of x on [t − p1, t + p1] is above −p3 , and its variation is within the bound p2 on
[t − c, t − p1] and on [t + p1, t + c] . The parameter domains are p1 ∈ [0, 70] , p2 ∈ [0, 1] and
p3 ∈ [−1, 0] . Here, c = 70 is a constant representing an upper limit on p1 . Note that if one
increases p1 , p2 or p3 , the property is easier to achieve. Alternatively, Eq. (11) characterises
ECG pulses in terms of derivatives and integrals in a simpler and more readable way.

For ECG 221, the predictor in Eq. (10) can match the labelling with no false negatives
(�− = 0) and only a single false positive (�+ = 1): it identifies the blue peak in the right
hand side of Fig. 15 as a valid pulse. We denote the singleton signal set containing the
labelled ECG 221 signal as S221 . Table 1 shows the execution time that ParetoLib requires
for computing the solution set (���������(Ψch1 ,S221, �+ = 1, �− = 0)) of the parametric
space (p1, p2, p3) with different accuracy. The value of V� represents the percentage of the
parametric space that remains unexplored. For instance, the green area in Fig. 16 repre-
sents the solution set of the parameters when the unexplored area is less than 0.01%.

(10)

Ψ
ch1
(p1,p2,p3)

(x)(t) ∶=((Max[−c,−p1] x −Min[−c,−p1] x) ≤ p2) ∧

((Max[p1,c] x −Min[p1,c] x) ≤ p2) ∧

((Max[−p1,p1] x) ≥ −p3)

(11)Ψ
ch2
(p1,p2,p3)

(x)(t) ∶=(|Dx| < 1) U[0,p1]
(I[0,p2]x) < p3

Fig. 15 Excerpt from ECG221

Table 1 Execution time
(seconds) of the solution set of
the parametric space for different
scenarios

ECG 221 V� = 1% V� = 0.1% V� = 0.01%

Python 97.66 403.58 1974.56
Cython 93.66 391.22 1940.21
Multicore Python 55.05 185.67 861.70

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

279Formal Methods in System Design (2024) 62:260–284

1 3

The Cython code is around 3% faster than pure Python: the evaluation of the STL
expressions, which is the most time consuming part of the mining method, was already
externalised to StlEval in previous versions of ParetoLib. Additionally, ParetoLib 2.0 sup-
ports the parallel execution of the BDMJ20 method in multicore CPU’s, while ParetoLib
1.0 did not. The experiments are run in a Intel(R) Core(TM) i5-3570K CPU @3.40GHz
16GB, Ubuntu 22.04 and Python 3.10.

Equation (10) is also evaluated for labelling pulses on ECG 100 and ECG 123 with
different success. We denote the singleton signal sets containing the labelled ECG 100
and ECG 123 signals as S100 and S123 respectively. Table 2 compares the number of mis-
matches, either false positives or false negatives, between the original labelling and the
one produced by Eq. (10). For the particular case of ECG 100, our solution provides 33
false positives. According to the Pareto front (corresponding to the upset P(Ψch1 ,S100))

Fig. 16 Solution set of the parametric space ���������(Ψch1 ,S221, �+ = 1, �− = 0)) for ECG221
(V� = 0.01%)

Table 2 Execution time
(seconds) and number of �−/�+ of
the solution set of the parametric
space for different ECGs

ECG n ◦ �− �+ V� = 1% V� = 0.1% V� = 0.01%

221 0 1 55.05 185.67 861.70
123 1 0 90.29 393.70 2265.52
100 0 33 507.60 3891.94 12780.00

Fig. 17 Pareto front for ECG100
using Eq. (10)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

280 Formal Methods in System Design (2024) 62:260–284

1 3

in Fig. 17, it is impossible to obtain a better solution set using the current specification.
This issue does not come from a wrong definition of peak, but from pulses that are sepa-
rated further than usual. See the first pulse after 2000 time units in Fig. 18. It is called an
Atrial Premature Beat which should not be considered a normal peak. Equation 12 enriches
Eq. (10) with explicit information about the distance between peaks, which improves the
accuracy of our peak detector and reduces the number of errors to 3 false positives and 1
false negative. peak is an alias for Eq. (10).

6 Related work

Similar tools for offline monitoring of cyber-physical systems are AMT 2.0 [18], S-Tal-
iro [25] and Breach [26]. AMT 2.0 is a Java tool while S-Taliro and Breach are MAT-
LAB/Simulink toolboxes. AMT 2.0 analyses input traces with extended Signal Tempo-
ral Logic (xSTL), which combines STL and Timed Regular Expressions (TRE). On the
other hand, S-Taliro and Breach include an explicit model of the cyber-physical system
for simulating traces. S-Taliro is specialised in falsification of temporal logic properties
by finding trajectories with minimum robustness. Breach allows the exhaustive inspec-
tion of the cyber-physical model by systematically varying configuration parameters.
Next, py-stl [27, 28] implements a similar approach to our BBMJ19 method for min-
ing parametric STL equations. The authors of py-stl apply it to compute a family of
distance metrics for a set of monotonic specifications that are mined from time-series
learning [29]. Finally, MiniPaSTeL [30] implements the BMNN23 method for mining
STL parameters [7]. It uses RTAMT [31] as monitoring tool.

However, these tools include neither the quantitative operators nor a full support
for the specification mining methods presented in this paper. Additionally, ParetoLib
2.0 has an adapter for externalising the run of non-parametric STL queries in AMT 2.0
and is also prepared for connecting with the Matlab environment. Similarly to py-stl,
ParetoLib 2.0 supports the comparison of the inferred validity domains for mined PSTL
specifications. Our tool can compute the Haussdorf distances among a set of validity
domains and return the characteristic point for each of them.

(12)Ψ
ch3
(p1,p2,p3,p4)

(x)(t) ∶= peak(p1, p2, p3) ∧ F[0,p4]
peak(p1, p2, p3)

Fig. 18 Excerpt from ECG100

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

281Formal Methods in System Design (2024) 62:260–284

1 3

Recently, tools for online monitoring of systems that cannot be statically analysed
have appeared. RTAMT [31] supports the online diagnosis with STL and IA-STL, an
interface-aware extension for defining interface properties about input/output signals
of a cyber-physical systems. Finally, RTLola [32] (previously named StreamLab) and
TeSSLa [33] complete the state of the art. These tools are focused on evaluating real-
time streams instead of signals.

7 Conclusion

This paper introduces the new features of ParetoLib 2.0, a Python tool for the evalua-
tion and parameter synthesis of Signal Temporal Logic specifications (STL). The main
changes w.r.t. the previous version of the tool consist of (1) A graphical user interface
that simplifies the usage to the end users, (2) The support of additional quantitative
operators that involve counting of events (�-count), trends (derivatives), or accumula-
tions (integrals), and (3) The implementation of new mining methods. Besides, we have
optimised the performance of the library for mining the parameter valuations of para-
metric STL specifications by completing the multi core support and compiling the ker-
nel modules into C code. The compilation of the internal Python modules into C code is
transparent to the end users as the transformation is automatically executed during the
installation of the Python library. Finally, we introduce the Haussdorf distance in order
to compare the inference of validity domains of PSTL specifications.

As future work, we propose to include more options in the graphical user interface
that are already available in ParetoLib as command-line options (e.g., the selection
of parallel computations or the STL engine). On the other hand, we want to include
other types of interpolation beyond the constant pairwise (e.g. linear). We plan to add
new logic operators such as the probability operator Pr∼�� , where ∼∈ {<,≤,≥,>} and
� ∈ [0, 1] . Finally, we will implement a natural language processor for writing STL
specifications in natural language.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availibility The code and datasets for comparing Parma Polyhedra Library [10] and ParetoLib in
Sect. 2 is publicly available in https:// zenodo. org/ doi/ 10. 5281/ zenodo. 10156 861. The Python scripts and the
subset of electrocardiograms (ECGs) from the MIT-BIH Arrhythmia Database of Physionet [23, 24] that
are used in our case study are located in the doc/examples/OracleEpsSTLe folder of the ParetoLib tool [6].
The ParetoLib tool is publicly available at https:// gricad- gitlab. univ- greno ble- alpes. fr/ verim ag/ tempo/ multi
dimen sional_ search. The MIT-BIH Arrhythmia Database of Physionet is publicly available at https:// physi
onet. org/ conte nt/ mitdb/1. 0.0/.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

282 Formal Methods in System Design (2024) 62:260–284

1 3

References

 1. Maler O, Nickovic D (2004) Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine,
S. (eds.) Formal techniques, modelling and analysis of timed and fault-tolerant systems, joint international
conferences on formal modelling and analysis of timed systems, FORMATS 2004 and formal techniques
in real-time and fault-tolerant systems, ftrtft 2004, september 22-24, 2004, proceedings. lecture notes in
computer science, vol. 3253, pp. 152–166. Springer, Grenoble, France. https:// doi. org/ 10. 1007/ 978-3- 540-
30206-3_ 12

 2. Asarin E, Donzé A, Maler O, Nickovic D (2011) Parametric identification of temporal properties. In: Khurs-
hid, S., Sen, K. (eds.) Runtime verification - second international conference, RV 2011, September 27-30,
2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7186, pp. 147–160. Springer, San
Francisco, CA, USA. https:// doi. org/ 10. 1007/ 978-3- 642- 29860-8_ 12

 3. Bakhirkin A, Basset N (2019) Specification and efficient monitoring beyond STL. In: Vojnar, T., Zhang,
L. (eds.) Tools and algorithms for the construction and analysis of systems - 25th international confer-
ence, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, April 6-11, 2019, Proceedings, Part II. Lecture Notes in Computer Science, vol. 11428, pp.
79–97. Springer, Prague, Czech Republic. https:// doi. org/ 10. 1007/ 978-3- 030- 17465-1_5

 4. Bakhirkin A, Basset N, Maler O, Jarabo JR (2019) Paretolib: A python library for parameter synthesis. In:
André, É., Stoelinga, M. (eds.) Formal modeling and analysis of timed systems - 17th international confer-
ence, FORMATS 2019, August 27-29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11750,
pp. 114–120. Springer, Amsterdam, The Netherlands. https:// doi. org/ 10. 1007/ 978-3- 030- 29662-9_7

 5. Basset N, Dang T, Mambakam A, Jarabo JR (2020) Learning specifications for labelled patterns. In: Ber-
trand, N., Jansen, N. (eds.) Formal modeling and analysis of timed systems - 18th international conference,
FORMATS 2020, September 1-3, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12288, pp.
76–93. Springer, Vienna, Austria . https:// doi. org/ 10. 1007/ 978-3- 030- 57628-8_5

 6. Mambakam A, Jarabo JR (2022) ParetoLib, 2.X, VERIMAG Git Repository. https:// gricad- gitlab. univ- greno
ble- alpes. fr/ verim ag/ tempo/ multi dimen sional_ search

 7. Aguilar EA, Bartocci E, Mateis C, Nesterini E, Nickovic D (2023) Mining specification parameters for multi-
class classification. In: Katsaros, P., Nenzi, L. (eds.) Runtime verification - 23rd international conference,
RV 2023, Thessaloniki, Greece, October 3-6, 2023, Proceedings. Lecture Notes in Computer Science, vol.
14245, pp. 86–105. Springer, ???. https:// doi. org/ 10. 1007/ 978-3- 031- 44267-4_5

 8. Bakhirkin A, Ferrère T, Henzinger TA, Nickovic D (2018)The first-order logic of signals: keynote. In:
Brandenburg, B.B., Sankaranarayanan, S. (eds.) Proceedings of the international conference on embedded
software, EMSOFT 2018, September 30 - October 5, 2018, pp 1. IEEE, Torino, Italy . https:// doi. org/ 10.
1109/ EMSOFT. 2018. 85372 03

 9. Brim L, Dluhos P, Safránek D, Vejpustek T (2014) Stl*: Extending signal temporal logic with signal-value
freezing operator. Inf Comput 236:52–67. https:// doi. org/ 10. 1016/j. ic. 2014. 01. 012

 10. Bagnara R, Hill PM, Zaffanella E (2008) The parma polyhedra library: toward a complete set of numeri-
cal abstractions for the analysis and verification of hardware and software systems. Sci Comput Program
72(1–2):3–21. https:// doi. org/ 10. 1016/J. SCICO. 2007. 08. 001

 11. Requeno JI (2022) Detection of smart grid integrity attacks using signal temporal logic. CoRR
abs/2209.06722arXiv: 2209. 06722. https:// doi. org/ 10. 48550/ arXiv. 2209. 06722

 12. Donzé A, Maler O (2010) Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee,
K., Henzinger, T.A. (eds.) Formal modeling and analysis of timed systems - 8th international conference,
FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6246, pp 92–106. Springer, ???. https:// doi. org/ 10. 1007/ 978-3- 642- 15297-9_9

 13. Buyukkocak AT, Aksaray D, Yazicioglu Y (2021) Control synthesis using signal temporal logic specifi-
cations with integral and derivative predicates. In: 2021 American control conference, ACC 2021, May
25-28, 2021, pp 4873–4878. IEEE, New Orleans, LA, USA. https:// doi. org/ 10. 23919/ ACC50 511. 2021.
94826 51

 14. Lemire D (2006) Streaming maximum-minimum filter using no more than three comparisons per element.
Nordic J Comput 13(4)

 15. Donzé A, Ferrère T, Maler O (2013) Efficient robust monitoring for STL. In: Sharygina, N., Veith, H.
(eds.) Computer aided verification - 25th international conference, CAV 2013, July 13-19, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 8044, pp 264–279. Springer, Saint Petersburg, Russia .
https:// doi. org/ 10. 1007/ 978-3- 642- 39799-8_ 19

 16. Kolmogorov AN, Tikhomirov VM (1959) �-entropy and �-capacity of sets in function spaces. Uspekhi
Matematicheskikh Nauk 14(86):386

 17. Bakhirkin A, Mambakam A, Jarabo JR (2022) StlEval, 2.X, VERIMAG Git Repository. https:// gricad- git-
lab. univ- greno ble- alpes. fr/ verim ag/ tempo/ StlEv al

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

283Formal Methods in System Design (2024) 62:260–284

1 3

 18. Nickovic D, Lebeltel O, Maler O, Ferrère T, Ulus D (2020) AMT 2.0: qualitative and quantitative trace
analysis with extended signal temporal logic. Int J Softw Tools Technol Transf 22(6):741–758. https:// doi.
org/ 10. 1007/ s10009- 020- 00582-z

 19. Bakhirkin A, Basset N, Maler O, Requeno JI (2019) Learning pareto front from membership queries.
working paper or preprint. https:// hal. archi ves- ouver tes. fr/ hal- 02125 140

 20. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2010) Cython: The best of both worlds.
Comput Sci Eng 13(2):31–39

 21. Maler O (2017) Learning monotone partitions of partially-ordered domains (Work in Progress). working
paper or preprint. https:// hal. archi ves- ouver tes. fr/ hal- 01556 243

 22. Bakhirkin A, Basset N, Maler O, Requeno JI (2019) Learning pareto front from membership queries.
working paper or preprint . https:// hal. archi ves- ouver tes. fr/ hal- 02125 140

 23. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng
C-K, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource
for complex physiologic signals. Circulation 101(23):215–220

 24. Moody GB, Mark RG (2001) The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag
20(3):45–50

 25. Annpureddy Y, Liu C, Fainekos G, Sankaranarayanan S (2011) S-taliro: a tool for temporal logic falsifica-
tion for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools and algorithms for the construction
and analysis of systems - 17th international conference, TACAS 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011, March 26-April 3, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6605, pp. 254–257. Springer, Saarbrücken, Germany. https:// doi.
org/ 10. 1007/ 978-3- 642- 19835-9_ 21

 26. Donzé A (2010) Breach, A toolbox for verification and parameter synthesis of hybrid systems. In: Touili,
T., Cook, B., Jackson, P.B. (eds.) Computer aided verification, 22nd international conference, CAV 2010,
July 15-19, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6174, pp. 167–170. Springer,
Edinburgh, UK . https:// doi. org/ 10. 1007/ 978-3- 642- 14295-6_ 17

 27. Vazquez-Chanlatte M (2017) Py-signal-temporal-logic, 1.0, GitHub. https:// github. com/ mvcis back/ py- sig-
nal- tempo ral- logic

 28. Vazquez-Chanlatte M, Deshmukh JV, Jin X, Seshia SA (2017) Logical clustering and learning for time-
series data. In: Majumdar, R., Kuncak, V. (eds.) Computer aided verification - 29th international confer-
ence, CAV 2017, July 24-28, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426,
pp. 305–325. Springer, Heidelberg, Germany. https:// doi. org/ 10. 1007/ 978-3- 319- 63387-9_ 15

 29. Vazquez-Chanlatte M, Ghosh S, Deshmukh JV, Sangiovanni-Vincentelli AL, Seshia SA (2018) Time-
series learning using monotonic logical properties. In: Colombo, C., Leucker, M. (eds.) Runtime verifica-
tion - 18th international conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 11237, pp. 389–405. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 030- 03769-7_ 22

 30. Nesterini E (2023) MiniPaSTeL, GitHub Repository. https:// github. com/ eleon orane steri ni/ MiniP aSTeL
 31. Nickovic D, Yamaguchi T (2020) RTAMT: online robustness monitors from STL. In: Hung, D.V., Sokol-

sky, O. (eds.) Automated technology for verification and analysis - 18th international symposium, ATVA
2020, October 19-23, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12302, pp 564–571.
Springer, Hanoi, Vietnam. https:// doi. org/ 10. 1007/ 978-3- 030- 59152-6_ 34

 32. Faymonville P, Finkbeiner B, Schledjewski M, Schwenger M, Stenger M, Tentrup L, Torfah H (2019)
Streamlab: Stream-based monitoring of cyber-physical systems. In: Dillig, I., Tasiran, S. (eds.) Computer
aided verification - 31st international conference, CAV 2019, July 15-18, 2019, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 11561, pp 421–431. Springer, New York City, NY, USA . https:// doi.
org/ 10. 1007/ 978-3- 030- 25540-4_ 24

 33. Leucker M, Sánchez C, Scheffel T, Schmitz M, Schramm A (2018) Tessla: runtime verification of non-
synchronized real-time streams. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.) Proceedings of
the 33rd annual ACM symposium on applied computing, SAC 2018, April 09-13, 2018, pp 1925–1933.
ACM, Pau, France,. https:// doi. org/ 10. 1145/ 31671 32. 31673 38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

284 Formal Methods in System Design (2024) 62:260–284

1 3

Authors and Affiliations

Akshay Mambakam1 · José Ignacio Requeno Jarabo2 · Alexey Bakhirkin1,2 ·
Nicolas Basset1 · Thao Dang1

 * José Ignacio Requeno Jarabo
 jrequeno@ucm.es

 Akshay Mambakam
 akshay.mambakam@univ-grenoble-alpes.fr

 Alexey Bakhirkin
 abakhirkin@gmail.com

 Nicolas Basset
 nicolas.basset1@univ-grenoble-alpes.fr

 Thao Dang
 thao.dang@univ-grenoble-alpes.fr

1 VERIMAG/CNRS, University Grenoble Alpes, 700 Av. Centrale, 38400 Saint-Martin-d’Hères,
France

2 Department of Information Systems and Computing, Complutense University of Madrid, Calle del
Prof. José García Santesmases, 9, 28040 Madrid, Spain

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

