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Reduced density matrix functional theory (RDMFT) and coupled cluster theory

restricted to paired double excitations (pCCD) are emerging as efficient method-

ologies for accounting for the so-called non-dynamic electronic correlation effects.

Up to now, molecular calculations have been performed with real-valued orbitals.

However, before extending the applicability of these methodologies to extended

systems, where Bloch states are employed, the subtleties of working with complex-

valued orbitals and the consequences of imposing time-reversal symmetry must be

carefully addressed. In this work, we describe the theoretical and practical impli-

cations of adopting time-reversal symmetry in RDMFT and pCCD when allowing

for complex-valued orbital coefficients. The theoretical considerations primarily

affect the optimization algorithms, while the practical implications raise fundamen-

tal questions about the stability of solutions. Specifically, we find that complex

solutions lower the energy when non-dynamic electronic correlation effects are pro-

nounced. We present numerical examples to illustrate and discuss these instabilities

and possible problems introduced by N -representability violations.

ERDMFT / pCCD=2∑
p

nphpp+∑
pq

(2D pq , pq J pq+
2D pq ,qpK pq )

Lpq=K pq
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I. INTRODUCTION

In quantum chemistry, accurately describing the so-called electronic correlation effects1

remains an open problem. For practical purposes, it has been convenient to classify these

effects as dynamic and non-dynamic, where the former can be interpreted as small cor-

rections on top of the Hartree-Fock (HF) reference determinant and the latter refers to

major changes in the electronic wave function caused by (near-)degeneracies in the single-

particle states.2 Accounting for the so-called non-dynamic electronic correlation effects in

quantum chemistry has been routinely tackled using multiconfigurational self-consistent

field methodologies,3,4 such as complete-active-space self-consistent field (CASSCF),5–7

complete-active-space configuration interaction (CASCI), or density-matrix renormaliza-

tion group (DMRG).8–11 However, their applicability is limited due to the exponential

growth of their computational cost with respect to the system size.

Alternative methodologies like reduced density matrix functional theory12,13 (RDMFT)

and coupled-cluster theory restricted to paired double excitations14 (pCCD) are recently

gaining practitioners in the electronic structure community.14–29 Within these method-

ologies, diagonalization of large matrices is replaced by the optimization of occupation

numbers or amplitudes, which reduces drastically the computational cost. Furthermore,

these methodologies are cost-effective approaches to deal with the so-called non-dynamic

electronic correlation effects14,15,18,19,22,25 because the optimization procedure introduces

fractional occupation numbers that adjust to the degeneracies present in the system un-

der investigation. For this reason, the most simple RDMFT approximations, the Müller30

and power31,32 functionals, have already been employed to study strongly correlated ma-

terials such as nickel oxides,31,33 where these methods describe precisely the characteristic

Mott-insulator nature of these materials. The success of pCCD can be attributed to its

connection with seniority-zero methods, particularly perfect pairing and generalized va-

lence bond approaches.34–39 However, to achieve quantitatively meaningful results, pCCD

must be combined with an orbital optimization procedure.14

It is known that the usual operators employed in quantum chemistry are real-valued in

time-independent applications. Hence, the use of complex orbitals has been less explored

in favor of real orbitals. Nevertheless, complex orbitals have attracted attention from
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the community due to the extra flexibility provided by the complex parameterization.40–46

Specifically, it has shown to be an efficient alternative to multiconfigurational methods

to account for non-dynamic electronic correlation effects with single-determinant wave

functions.44–46 However, complex-valued orbitals must be used carefully because they break

symmetries among the spin-up (↑) and spin-down (↓) electrons trivially granted by real-

valued orbitals.

In the absence of spin-orbit coupling contributions to the Hamiltonian or external mag-

netic fields, the spin-with orbitals (χp↑ and χp↓) are typically constructed as the direct

product between a spin function (↑ or ↓) and a spatial function χp(r) =
∑

µ cµpψµ(r)

built as a linear combination of real atomic orbitals ψµ(r), where the matrix c gathers the

molecular orbital coefficients. In general, real orbitals (c ∈ R) are constructed to preserve

fundamental symmetries such as spin symmetries (Ŝz and Ŝ2), complex conjugation (K̂),

and time-reversal symmetry (Θ̂). On the contrary, working with complex orbitals (c ∈ C),

one is forced to preserve either Ŝ2 and Ŝz (charge current wave in Fukutome’s classifica-

tion) or Θ̂ and Ŝz (axial spin current wave in Fukutome’s classification).40,43,44,46 In the

former case, the spatial part of the orbitals, χp(r), for the spin-up and spin-down electrons

is identical, which guarantees the correct value of ⟨Ŝ2⟩. In the latter case, the spin-up

orbitals, χp↑(r), are related to the spin-down orbitals, χp↓(r), as

Θ̂χp↑(r) = Θ̂χp(r)

1

0

 = −i σy K̂χp(r)

1

0


= −i

0 −i

i 0

K̂χp(r)

1

0

 = χ∗
p(r)

0

1

 = χp↓(r),

(1)

where i =
√
−1 and σy is a Pauli matrix. This option preserves time-reversal symmetry,

that is, Θ̂χp↑(r) = χp↓(r) and Θ̂χp↓(r) = −χp↑(r), but not Ŝ2.

Before proceeding further, let us express the spin-with orbitals obtained by imposing

time-reversal symmetry in matrix form as

χσ = C ·ψ =

c 0

0 c∗

 ·ψ, (2)

where χσ represents all the spin-with orbitals organized in a single column, and ψ =

4



{

ψ
0

,
0

ψ

} contains the spin-with atomic orbitals, ordered such that all spin-up or-

bitals are listed first. As previously mentioned, this convention also preserves Ŝz (i.e., it

fixes the number of spin-up and spin-down electrons). However, the axis chosen for the

quantization is irrelevant for Hamiltonians that do not account for spin-orbit coupling ef-

fects or external magnetic fields. Therefore, we equally well may have chosen to preserve

Ŝy whose eigenstates (χy
p↑ and χy

p↓) are given as a linear combination of their spin-up and

spin-down counterparts quantized with respect to the z axis, i.e.,

χy
p↑(r) =

χp↑(r) + iχp↓(r)√
2

, χy
p↓(r) =

iχp↑(r) + χp↓(r)√
2

, (3)

which also preserves time-reversal symmetry. Next, let us write the corresponding eigen-

states in matrix form as

χy
σ =

1√
2
Cy ·ψ =

1√
2

c ic∗

ic c∗

 ·ψ =

 Re(c) Im(c)

− Im(c) Re(c)

 ·ψ, (4)

where we have summed the coefficients (Cy) with their complex conjugate to obtain the

final form. Note that this selection leads to pure real coefficients at the expense of intro-

ducing 2-component spinors, which shows that working with complex orbitals that preserve

time-reversal symmetry is equivalent to using 2-component real spinors that also preserve

time-reversal symmetry. In particular, when applied to the HF approximation, the latter

corresponds to the real-paired generalized HF method.47

In this work, we have preferred to work with complex orbitals (instead of 2-component

real spinors) and preserve Ŝz. Also, we have enforced the spin-up and spin-down orbitals to

be related by complex conjugation of the spatial part to preserve time-reversal symmetry.

Thus, deviations from the physical ⟨Ŝ2⟩ value (i.e., spin contamination) might occur. This

selection is motivated by three reasons: (i) time-reversal symmetry is typically imposed

in codes that can deal with complex orbitals/one-body states for extended systems (e.g.

ABINIT48 or QUANTUM ESPRESSO,49,50 see also Appendix B in Ref. 51), (ii) the simplification

in the RDMFT and pCCD equations facilitates their extension to complex-valued orbitals,

and (iii) it corresponds to the correct non-relativistic limit when time-reversal symmetry

is employed to build the 4-component spinors that are employed in the solution of the

Dirac-Coulomb/Coulomb-Gaunt Hamiltonians.52
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To gain further insights into this limit, let us first mention that the relativistic 4-

component spinors are complex-valued and can be chosen to preserve time-reversal sym-

metry in the absence of external magnetic fields (i.e., forming Kramers’ pairs53–57). They

are usually expanded in two distinct basis sets, one for the upper (large) components and

one for the lower (small) components of the Dirac wave function. For better comparison

with non-relativistic basis set expansions, it is therefore convenient to perform an exact

transformation to the 2-spinor (X2C) form.58–60 The expansion coefficients for these X2C-

spinors are complex and the preservation of time-reversal symmetry is easily visible when

they are written in matrix form as  cL↑ cL↓

−c∗L↓ c∗L↑

. (5)

This corresponds to the torsional spin current wave (TSCW) in Fukutome’s classification.40,44

In the X2C form, it is possible to use the Dirac identity to remove spin-orbit coupling

terms from the Hamiltonian. This simplifies the matrix representation of the Hamiltonian,

making it real-symmetric, and thus, one typically proceeds using real coefficients, as seen

in Eq. 4. It is important to note that taking either real 2-spinors or (equivalently, as dis-

cussed before) complex orbitals, corresponds to a reduction of the variational freedom that

complex 2-spinors possess compared to real spatial orbitals. Despite this, both choices

still retain more freedom than real spatial orbitals. Real spatial orbitals are thus only

obtained during orbital optimization if the additional freedom provided by the complex

coefficients does not lead to a lower energy solution according to the variational principle

(see Sec. IV C).

Here, we examine the role of complex orbitals in extending the applicability of the most

recently developed RDMFT functionals and pCCD to systems described by complex single-

particle states. In Sec. II, we briefly introduce RDMFT (Sec. II A), pCCD (Sec. II B), and

the orbital optimization procedure proposed by Ugalde and Piris (Sec. II C),61 which is

currently applied in most RDMFT calculations. Then, in Sec. III, we discuss the effect

of time-reversal symmetry on the RDMFT and pCCD energy expressions and its impact

on the orbital optimization procedure. Finally, in Sec. IV, we present some numerical

examples that illustrate the consequences of using complex-valued orbital coefficients and
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time-reversal symmetry in practical calculations for spin-compensated systems. Our con-

clusions are drawn in Sec. V. Unless otherwise stated, atomic units are used throughout.

II. THEORETICAL BACKGROUND

A. Reduced Density Matrix Functional Theory

In 1975, Gilbert12 proposed an extension of the Hohenberg-Kohn theorem62 for non-local

external potentials, which introduces the energy as a functional of the first-order reduced

density matrix (1RDM) γ. It generalizes the functional based on the electronic density ρ

that is employed in density-functional theory.63 A compact representation of γ is obtained

by expressing it in the natural orbital basis

γ(r, r′) =
∑
p

∑
σ=↑,↓

npσχ
∗
pσ(r)χpσ(r′), (6)

where npσ ∈ [0, 1] is the occupation number associated with the natural spin-orbital χpσ.

For r = r′, it reduces to the electron density, that is, ρ(r) = γ(r, r). In practical realiza-

tions of RDMFT, the matrix elements of the second-order reduced density matrix (2RDM)

2Dσσ′
pq,rs = ⟨Ψ|ĉ†pσ ĉ

†
qσ′ ĉsσ′ ĉrσ|Ψ⟩ (with σ′ = ↑ or ↓) are expressed as functions of the occupa-

tion numbers and the natural orbitals are employed to compute the two-electron repulsion

integrals. Here, ĉ†pσ (ĉpσ) is the usual creation (annihilation) operator and Ψ is the exact

N -electron wave function. In the most basic RDMFT approximations, the 2RDM elements

of the opposite-spin (σ ̸= σ′) and same-spin (σ = σ′) blocks read

2Dσσ′

pq,rs =
npσnqσ′

2
δprδqs, (7a)

2Dσσ
pq,rs =

npσnqσ

2
δprδqs −

f(npσ, nqσ)

2
δpsδqr, (7b)

with f(npσ, nqσ) being a simple function of the occupations numbers. For example,

f(npσ, nqσ) =
√
npσnqσ in the Müller functional64–66 and f(npσ, nqσ) = (npσnqσ)α with

α ∈ R+ in the power functional31,32. Note that the elements 2Dσσ′
pq,pq = npσnqσ/2 correspond

to Hartree contributions while the terms 2Dσσ
pq,qp = −f(npσ, nqσ)/2 are modified exchange

contributions that account for electronic correlation effects. Hence, these approximations

are JK-only functionals67 because only Hartree (J) and exchange (K) integrals are required
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in the evaluation of the electronic energy. However, more advanced RDMFT functionals

based on the reconstruction of the second-order cumulant matrix, such as PNOFi15,68,69

(i = 5, 6, and 7) and GNOF,17 include the additional L integrals70, defined below. Thus,

they are usually referred to as JKL-only approximations. For spin-compensated systems

(np = np↑ = np↓), the electronic energy functional of PNOFi and GNOF takes the following

form

ERDMFT = 2
∑
p

nphpp +
∑
pq

(
2Dpq,pqJpq + 2Dpq,qpKpq + 2Dpp,qqLpq

)
, (8)

where the one-electron integrals are

hpq =

∫
drχ∗

p(r)ĥχq(r), (9)

with ĥ = −∇2
r/2 + vext(r) being the (one-electron) core Hamiltonian and vext(r) is the

external potential. The various types of two-electron integrals

Jpq = ⟨pq|pq⟩ , Kpq = ⟨pq|qp⟩ , Lpq = ⟨pp|qq⟩ , (10)

are expressed in terms of the spatial part of the natural orbital basis,

⟨pq|rs⟩ =

∫∫
drdr′

χ∗
p(r)χ∗

q(r
′)χr(r)χs(r

′)

|r − r′|
. (11)

Note that, here, we have employed the spin-summed 2RDM elements, i.e., 2Dpq,rs =∑
σσ′

2Dσσ′
pq,rs. It is worth mentioning that Löwdin normalization is used throughout this

work, that is, Tr [2D] = N(N − 1)/2 with N being the number of electrons.

The energy contribution involving L integrals arises from the interaction of opposite-spin

electrons, i.e. ∑
pq

2Dpp,qqLpq =
∑
pq

∑
σ ̸=σ′

2Dσσ′

pp,qqLpq, (12)

because the same-spin contributions cancel due to the Pauli exclusion principle (i.e.,

2Dσσ
pp,qq = 0). For real orbitals, it is easy to verify that Lpq = Kpq. Thus, the last term in

Eq. 8 is usually combined with the second term and the electronic energy is written using

only J and K integrals. However, the K and L integrals differ for complex orbitals unless

one imposes time-reversal symmetry (see below). It is easy to show that J and K integrals

are real even for complex orbitals. On the contrary, L integrals are complex-valued in

general.
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B. Coupled Cluster With Paired Doubles

The pCCD approximation belongs to the coupled-cluster (CC) family of methods, which

aims to go beyond the single-determinant wave function |0⟩ to describe the many-body state

using the wave operator eT̂ to produce excited determinants from the reference determinant.

In pCCD, for spin-compensated systems, the many-body wave function is expressed as

|Ψ⟩ = eT̂ |0⟩, where the excitation operator is restricted to paired double excitations14

T̂ =

N/2∑
i

M∑
a=N/2+1

tai ĉ
†
a↑ĉ

†
a↓ĉi↓ĉi↑, (13)

where M is the total number of spatial orbitals and the tai ’s are the so-called amplitudes

that are optimized by solving the so-called amplitude (or residual) equations

0 = ⟨0|ĉ†i↑ĉ
†
i↓ĉa↓ĉa↑H̄|0⟩

= Lai + 2

(
fa
a − f i

i −
∑
j

Ljat
a
j −

∑
b

Libt
b
i

)
tai

− 2(2Jia −Kia − Liat
a
i )t

a
i +

∑
b

Lbat
b
i +
∑
j

Ljit
a
j +

∑
jb

Ljbt
a
j t

b
i ,

(14)

where H̄ = e−T̂ ĤeT̂ is the similarity-transformed Hamiltonian, f q
p are the Fock matrix

elements evaluated with |0⟩, and i and j (a and b) refer to occupied (virtual) orbitals with

respect to |0⟩. The amplitude equations, which are quadratic in t, can be solved in M3

computational cost by building the intermediate yji =
∑

b Ljbt
b
i .

Let us introduce the pCCD energy functional as

EpCCD = ⟨L|H̄|0⟩ , (15)

where ⟨L| = ⟨0| (1 + Ẑ) is the left eigenvector of H̄ and Ẑ =
∑

ia z
a
i ĉ

†
i↑ĉ

†
i↓ĉa↓ĉa↑ is a de-

excitation operator. The stationary conditions ∂EpCCD
/
∂zai = 0 yield the t-amplitude

equations [see Eq. 14] while the additional conditions ∂EpCCD
/
∂tai = 0 allows us to write

the (linear) residual equations for the left amplitudes {zai } as

0 = Lia + 2

(
fa
a − f i

i −
∑
j

Ljat
a
j −

∑
b

Libt
b
i

)
zai − 2(2Jia −Kia − 2Liat

a
i )z

a
i

+
∑
b

Labz
b
i +

∑
j

Lijz
a
j +

∑
jb

tbj
(
Libz

a
j + Ljaz

b
i

)
− 2Lia

(∑
j

zaj t
a
j +

∑
b

zbi t
b
i

)
.

(16)
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Next, with the aid of the t- and z-amplitude equations, one can easily compute the 1RDM,

which is diagonal within the pCCD approximation14

1Dσ
p,q = ⟨0|(1 + Ẑ)e−T̂ ĉ†pσ ĉqσe

T̂ |0⟩ δpq = npσδpq, (17)

and directly linked to the occupation numbers that can be written as niσ = (1 − xii) and

naσ = xaa with xji =
∑

a t
a
i z

a
j and xba =

∑
i t

b
iz

a
i . Similarly, we may write the matrix elements

of the spin-summed 2RDM

2Dpq,rs =
∑
σσ′

⟨0|(1 + Ẑ)e−T̂ ĉ†pσ ĉ
†
qσ′ ĉsσ′ ĉrσe

T̂ |0⟩ , (18)

as

2Dii,jj = xji + δij(1− 2xii), (19a)

2Dii,aa = tai + xai − 2tai (x
a
a + xii − tai zai ), (19b)

2Daa,ii = zai , (19c)

2Daa,bb = xba, (19d)

2Dij,ij = 2(1− xiix
j
j) + δij3(xii − 1), (19e)

2Dia,ia = 2Dai,ai = 2(xaa − tai zai ), (19f)

2Dab,ab = δabx
a
a, (19g)

2Dpq,qp =
2Dpq,pq

2
for p ̸= q, (19h)

where we have employed the additional intermediate xai =
∑

jb t
b
it

a
jz

b
j .

Noticing that the non-zero spin-summed 2RDM elements are the same as in PNOFi/GNOF

and that the 1RDM is expressed in its diagonal representation, we recognize that the pCCD

energy can also be written as

EpCCD = 2
∑
p

nphpp +
∑
pq

(
2Dpq,pqJpq + 2Dpq,qpKpq + 2Dpp,qqLpq

)
, (20)

which exactly matches Eq. (8). Once more, the contributions involving the time-reversal

integrals L arise from the interaction of opposite-spin electrons as in RDMFT approxima-

tions. Finally, let us remark that the L integrals are also present in the definition of the

t and z amplitudes [see Eqs. (14) and (16)]. Therefore, if one relies on complex-valued

orbitals, the resulting amplitudes are also complex in general.

10



C. Orbital Optimization

It is well-documented14,71,72 that the JKL-only RDMFT approximations and pCCD are

not invariant with respect to orbital rotations (even for the occupied-occupied and virtual-

virtual blocks). Thus, orbital optimization is required to correctly describe the electronic

structure, especially in spatial regions where non-dynamic electronic correlation effects are

dominant. Since the electronic energies of JKL-only RDMFT approximations and pCCD

have the same form, as readily seen in Eqs. (8) and (20), the same orbital optimization

machinery can be employed. Here, we consider first the algorithm proposed by Piris and

Ugalde61, which optimizes the occupation numbers and the orbitals in a two-step iterative

process (i.e., by neglecting the coupling between occupations and orbitals).

The central quantity of the Piris-Ugalde constrained optimization procedure is the fol-

lowing Lagrangian which reads, for fixed occupation numbers and spin-summed 2RDM

elements,

Ω = EpCCD/RDMFT −
∑
pq

λpq(⟨χp|χq⟩ − δpq), (21)

where ⟨χp|χq⟩ is the overlap of the spatial part of the natural orbitals and the λpq’s are

Lagrange multipliers which enforce the orthogonality of the natural orbitals during the

optimization process. The Lagrangian Ω must be stationary with respect to the orbital

variations, which is enforced by the following condition:

∂EpCCD/RDMFT

∂χ∗
p(r)

= 2npĥχp(r) + 2
∑
r

2Drr,rr
∂Jrr
∂χ∗

p(r)

+ 2
∑
r ̸=s

[
2Dsr,sr

∂Jsr
∂χ∗

p(r)
+ 2Dsr,rs

∂Ksr

∂χ∗
p(r)

+ 2Dss,rr
∂Lsr

∂χ∗
p(r)

]
=
∑
s

λpsχs(r).

(22)

Multiplying from the left by χ∗
q(r) and integrating over the spatial coordinates leads to

λpq = 2
(
nphqp + 2Dpp,pp ⟨qp|pp⟩

)
+ 2

∑
r ̸=p

(
2Dpr,pr ⟨qr|pr⟩+ 2Dpr,rp ⟨qr|rp⟩+ 2Dpp,rr ⟨qp|rr⟩

)
.

(23)

Then, imposing the Hermiticity of the matrix λ at the stationary solution (i.e., λpq = λ∗qp),
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the auxiliary Hermitian matrix F , with elements

Fpq =

λqp − λ
∗
pq for p > q,

λ∗pq − λqp for p < q,
(24)

is built to perform orbital rotations (see Fig. 1 for more details). The diagonal elements of

λ read

λpp = 2
(
nphpp + 2Dpp,ppJpp

)
+ 2

∑
r ̸=p

(
2Dpr,prJpr + 2Dpr,rpKpr + 2Dpp,rrLpr

)
. (25)

Therefore, for real elements 2Dpp,qq that satisfy 2Dpp,qq = 2Dqq,pp (as it happens in RDMFT

approximations), the diagonal elements of F are zero for real orbitals, i.e.,

λpp − λ∗pp = 2
∑
r ̸=p

2Dpp,rr(Lpr − Lrp) = 4
∑
r ̸=p

2Dpp,rr ImLpr, (26)

where ImLpr is the imaginary part of the matrix element Lpr (which is zero for real orbitals).

Hence, λpp−λ∗pp = 0. Consequently, it has been proposed to define the initial elements of the

Fock matrix as Fpq = (λpq +λ∗qp)/2. Then, the iterative construction and diagonalization of

F for fixed occupation numbers and 2RDM elements produce a set of optimal orbitals. Let

us mention that, at a given iteration, the eigenvalues ε obtained from the diagonalization

of F are used as its diagonal elements for the next iteration (see Fig. 1).

The orbital optimization algorithm is preceded by the optimization of the occupation

numbers, n, in RDMFT approximations or of the sets of amplitudes, t and z, in pCCD.

Therefore, the optimization procedure consists of an algorithm composed of two uncoupled

steps that are controlled by two thresholds, τλ and τE, that monitor the deviation from

Hermiticity of λ and the energy convergence, respectively (see Fig. 1).
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c = cHF

Optimize n or (t, z) & eval E

Build λ & eval E

i = 0

c← U · c

Fpq = (λpq + λ∗
qp)/2

∑
pq

∣∣λpq − λ∗
qp

∣∣ < τλ Fpp = εp

Diag. F to get U & ε

Build Fpq for p ̸= q

|E − E| < τE

EpCCD/RDMFT

i = 0

E = E

yes

no

no

yes

yes

i← i+ 1

no

FIG. 1: Orbital optimization procedure based on the Piris-Ugalde algorithm61 employed

in pCCD and RDMFT. The matrix c gathers the spin-up natural orbital coefficients, n is

the set of occupations in RDMFT, t and z contain the right and left amplitudes in pCCD,

respectively, while the matrices U and ε gathers the eigenvectors and eigenvalues of F ,

respectively. Two thresholds are introduced. One of them, τλ, controls the deviation from

Hermiticity of λ while the other, τE, monitors the energy convergence.

An alternative algorithm for the optimization of the orbitals employs the unitary matrix

eκ to perform orbital rotations, which is built as the exponential of an anti-Hermitian

13



matrix κ with elements κpq ∈ C and κpq = −κ∗qp. Additionally, one may introduce the

corresponding rotation operator eκ̂ that is applied to the wave function to obtain the

transformed wave function |Ψ̃⟩ = eκ̂ |Ψ⟩ built with from these rotated orbitals, where3

κ̂ =
∑
pq

∑
σ

κpq ĉ
†
pσ ĉqσ

=
∑
p

∑
σ

i Imκppĉ
†
pσ ĉpσ +

∑
p>q

∑
σ

(Reκpq + i Imκpq)
(
ĉ†pσ ĉqσ − ĉ†qσ ĉpσ

)
,

(27)

with Reκpp = 0. Assuming that ⟨Ψ|Ψ⟩ = 1, the energy of |Ψ̃⟩ can be written as

E(κ) =
⟨Ψ̃|Ĥ|Ψ̃⟩
⟨Ψ̃|Ψ̃⟩

= ⟨Ψ|e−κ̂Ĥeκ̂|Ψ⟩ , (28)

that has to be made stationary with respect to the orbital rotation parameters κpq, i.e.,

∂E(κ)/∂κpq
∣∣
κ=0

= 0, for each orbital pair.

Employing the Baker–Campbell–Hausdorff formula3

E(κ) = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|[Ĥ, κ̂] |Ψ⟩+
1

2
⟨Ψ|[[Ĥ, κ̂] , κ̂] |Ψ⟩+ · · · , (29)

and introducing the elements of the gradient

gpq =
∂E(κ)

∂κpq

∣∣∣∣
κ=0

=
1

2

(
∂

∂ Reκpq
− i

∂

∂ Imκpq

)
E(κ) = 2(λqp − λ∗pq), (30)

and the Hessian (see Appendix A for its expression in the case of real orbitals)

Gpq,rs =
∂2E(κ)

∂κ∗pq∂κrs

∣∣∣∣
κ=0

=
1

4

(
∂

∂ Reκpq
+ i

∂

∂ Imκpq

)(
∂

∂ Reκrs
− i

∂

∂ Imκrs

)
E(κ)

= G̃pq,rs − G̃qp,rs − G̃pq,sr + G̃qp,sr − G̃pq,rs − G̃qp,rs − G̃pq,sr − G̃qp,sr

+ 2(G̃pq,sr − G̃qp,rs)

= −4G̃qp,rs,

(31)
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with G̃pq,rs defined as

G̃pq,rs = ⟨Ψ|

[[
Ĥ,
∑
σ

ĉ†pσ ĉqσ

]
,
∑
σ′

ĉ†rσ′ ĉsσ′

]
|Ψ⟩

=
1

2

[
δqr(λps + λ∗sp − 4nrhsp) + δps(λrq + λ∗qr − 4nphqr)

]
− 2
[
2Dqr,qr ⟨qs|pr⟩+ 2Drq,qr ⟨sq|pr⟩+ 2Drr,qq(⟨sr|pq⟩+ ⟨rs|pq⟩)

]
(1− δqr)

− 2
[
2Dps,ps ⟨qs|pr⟩+ 2Dps,sp ⟨qs|rp⟩+ 2Dpp,ss(⟨qp|rs⟩+ ⟨qp|sr⟩)

]
(1− δps)

+ 2
(
2Dqs,qs ⟨qs|pr⟩+ 2Dsq,qs ⟨sq|pr⟩

)
(1− δqs)

+ 2
(
2Dpr,pr ⟨qs|pr⟩+ 2Dpr,rp ⟨qs|rp⟩

)
(1− δpr)

+ 2δqs
∑
t

2Dtt,qq ⟨tt|pr⟩+ 2δpr
∑
t

2Dpp,tt ⟨qs|tt⟩

− 2δqr
∑
t

(
2Drt,rt ⟨st|pt⟩+ 2Dtr,rt ⟨ts|pt⟩

)
− 2δps

∑
t

(
2Dpt,pt ⟨qt|rt⟩+ 2Dpt,tp ⟨qt|tr⟩

)
,

(32)

in RDMFT and pCCD, we may approximate the energy by the following second-order

Taylor series expansion

E(κ) ≈ E(κ = 0) + κ† · g +
1

2
κ† ·G · κ, (33)

which is widely used in quadratic convergent methods and similar algorithms by updating

the parameters κpq with the Newton-Raphson step κ = −G−1 · g.3,14,52,73–77 At the sta-

tionary point, the gradient vector vanishes (g = 0) and the diagonalization of the Hessian

matrixG provides valuable information about the type of stationary point one has reached:

it is a minimum when all the eigenvalues are positive, a kth-order saddle point when there

are k negative eigenvalues, or a maximum when all eigenvalues are negative. Interestingly,

this algorithm has notably been applied to optimize both occupation numbers and orbitals

in RDMFT by (i) including the energy gradient with respect to the occupation numbers,

and (ii) building an extended Hessian matrix, which incorporates the second derivative of

the energy with respect to the occupation numbers, along with the corresponding crossed

terms. The use of this algorithm is motivated by its accelerated convergence77,78 at the ex-

pense of increasing the computational resources required for the storage and computation

(see Sec. III for more details).
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III. THEORETICAL CONSEQUENCES OF INCORPORATING

TIME-REVERSAL SYMMETRY WITH COMPLEX ORBITALS IN

RDMFT AND PCCD

Enforcing time-reversal symmetry does not alter the energy contributions [see Eqs. (8)

and (20)] involving J and K integrals, but the energy contributions involving L integrals

in Eqs. (8) and (20) become contributions involving K integrals. To show this, let us write

the energy contribution involving L integrals including the spin as∑
pq

2Dpp,qqLpq =
∑
pq

∑
σ,σ′=↑,↓
σ ̸=σ′

2Dσσ′

pp,qq

∫∫
drdr′

χ∗
pσ(r)χ∗

pσ′(r′)χqσ(r)χqσ′(r′)

|r − r′|
, (34)

where the spin restriction σ ̸= σ′ in the 2-RDM is a consequence of the Pauli exclusion

principle. Then, let us write the two-electron repulsion integral for σ =↑ and σ′ =↓ as∫∫
drdr′

χ∗
p↑(r)χ∗

p↓(r
′)χq↑(r)χq↓(r

′)

|r − r′|
=

∫∫
drdr′

χ∗
p↑(r)χp↑(r

′)χq↑(r)χ∗
q↑(r

′)

|r − r′|

=

∫∫
drdr′

χ∗
p↑(r)χ∗

q↑(r
′)χq↑(r)χp↑(r

′)

|r − r′|
,

(35)

where we used the fact that the spin-up and spin-down orbitals are related by complex

conjugation (same holds for the σ =↓ and σ′ =↑ case). Therefore, the first consequence of

imposing time-reversal symmetry is that the energy contributions involving the L integrals

become contributions involving (real) K integrals∑
pq

2Dpp,qqLpq =
∑
pq

2Dpp,qqKpq, (36)

which introduces a simplification of the RDMFT and pCCD energy expression that can be

written as a JK-only functional (as in the real case).

Next, let us focus on the t- and z-amplitude equations of the pCCD method [see Eqs. (14)

and (16)]. In both equations, L integrals are present (and involve interactions among

opposite-spin electrons). Hence, adopting time-reversal symmetry, we may replace L inte-

grals with K integrals making the t and z amplitudes real-valued also for complex orbitals

and even for complex 2-spinors that are related via time-reversal. The latter consequence

can be derived by approximating the Kramers-restricted CCSD formalism79 to pCCD. By

taking only paired excitations only one of the three excitation classes survives and these
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amplitudes are real because (taāīi )∗ = Θ̂taāīi = tāaīi = taāīi , where we have labeled as barred and

unbarred the 2-spinors related by time-reversal symmetry. Consequently, the 1RDM and

2RDM elements also become real. However, the Hermiticity of the 2RDM elements is not

guaranteed (i.e., 2Dpp,qq ̸= 2Dqq,pp) because left- and right-hand wave functions, ⟨L| e−T̂

and eT̂ |0⟩, respectively, are used to build these elements. Nevertheless, numerical evidence

indicates that the deviation from Hermiticity of the 2RDM is usually small14. In addition,

one can always impose the Hermiticy of these elements by averaging the elements 2Dpp,qq

and 2Dqq,pp before entering the orbital optimization process. The value of the energy is

not affected by this averaging because of the replacement of the L integrals by real-valued

K integrals that are symmetric with respect to index exchange (i.e. Kpq = Kqp). Fur-

thermore, imposing the Hermiticity of the 2RDM elements makes Eq. (26) equal to zero

also for the pCCD approximation, which is a crucial condition for using the optimization

procedure presented in Sec. II C.

To analyze the next consequence, let us focus on the diagonal terms of the gradient

gpp = 2(λpp−λ∗pp), as given by Eq. (30). These are iteratively reduced towards zero thanks

to an orbital phase adjustment originating from the optimization parameters i Imκpp. This

can be illustrated by considering the particular case where both the gradient and Hessian

matrices have a diagonal structure, that is, gpp ̸= 0 and Gpq,pq ̸= 0. In this case, the

unitary matrix eκ is constructed using a matrix κ that only contains the diagonal el-

ements i Imκpp. This only alters the orbital phases during the self-consistent procedure,

i.e., χp(r)← χp(r)e−i Imκpp . When time-reversal symmetry is not enforced, we have gpp ̸= 0

which involves that the phases of the orbitals must be optimized because the diagonal el-

ements of the gradient must be, by definition, zero at the stationary solution. On the

contrary, imposing time-reversal symmetry yields gpp = 0 when the real-valued L integrals

are replaced by K integrals.

Next, let us focus on the off-diagonal elements gpq (p ̸= q), which are the “active

gradients” that must vanish at the stationary solution when one imposes time-reversal

symmetry. The “active gradients” are related to the off-diagonal elements of the matrix F

defined in the Piris-Ugalde algorithm as Fpq = gpq/2.80,81 For this reason, the Piris-Ugalde

algorithm can also be employed to optimize the complex-valued orbitals in RDMFT and
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pCCD methods when time-reversal symmetry is imposed. Furthermore, in this algorithm,

the diagonalization of F (see Fig. 1) produces a unitary matrix U that transforms the

natural orbital coefficients c from one iteration to the other as c ← U · c, making the

gradient elements equal to zero (i.e., gpq = 0 for p ̸= q) in this direction (and iteration).

Consequently, the Piris-Ugalde algorithm is equivalent to a gradient-descent method, which

explains the large number of iterations observed near the stationary solutions when com-

pared to quadratic convergent methods73,82,83 or methods that use an approximate Hessian

matrix.77,84,85

In terms of computational cost, the construction of F in the Piris-Ugalde algorithm

scales as M4 and requires M2 storage when density fitting approximations are employed.86

(The bottleneck here is the transformation of the electron repulsion integrals to the orbital

basis.) On the contrary, quadratic convergent methods require the computation of the

Hessian matrix. For the exact Hessian, the computational cost associated with its con-

struction scales as M5 [see Eq. 32] and M4 for its storage, which makes it prohibitively

expensive for large systems where the Piris-Ugalde algorithm should be preferred. Note

that the computational cost can be lowered to M4 at the expense of defining additional

intermediates that would further increase storage.

As a summary of the theoretical consequences, incorporating time-reversal symmetry

in complex orbitals within RDMFT and pCCD implies that L integrals can be replaced

by K integrals, which permits us to employ the Piris-Ugalde algorithm to perform the

orbital optimization.61 Moreover, for pCCD calculations, the t and z amplitudes become

real-valued quantities due to the replacement of L integrals by real-valued K integrals in

the amplitude equations.

IV. NUMERICAL CONSEQUENCES OF INCORPORATING

TIME-REVERSAL SYMMETRY WITH COMPLEX ORBITALS IN

RDMFT AND PCCD

To analyze the practical consequences, we present some calculations performed with

representative systems at different geometries leading to different flavors of electronic cor-

relation effects.
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A. Computational details

All calculations presented in this work were performed with the MOLGW program87 that

incorporates the stand-alone NOFT module88 based on the DoNOFT program89 that per-

forms RDMFT calculations. For this study, we have incorporated the pCCD method and

the use of complex orbitals including time-reversal symmetry into the NOFT module. The

calculations on the H2, LiH, and N2 molecules were performed using the cc-pVDZ basis

set90 including density fitting techniques. For the BeH2 system, the basis set developed

by Evangelista and collaborators91 was employed to facilitate the comparison with previ-

ous studies.20,92 We have labeled the real restricted solutions as RHF, RPNOF5, RGNOF,

and RpCCD, while for the complex solutions including time-reversal symmetry, we denote

them as THF, TPNOF5, TGNOF, and TpCCD. The THF results correspond to the axial

spin current wave in Fukutome’s labeling40 or paired unrestricted HF in Stuber-Paldus

designation.46

We employed either the real orbitals produced with the Perdew–Burke–Ernzerhof

density-functional approximation93 or the diagonalization of the core Hamiltonian as the

starting point for the RDMFT and pCCD calculations. For calculations using complex-

valued orbitals, the real orbitals were multiplied by random imaginary phases eiθ with

θ ∈ [0, 2π) being a random number. All electrons were included in the active space except

for N2, where the 1s electrons were frozen. Also, all virtual orbitals were included in the

active space. Finally, let us highlight that, for each studied system and method, we have

evaluated the eigenvalues of the real and complex Hessian matrices in the regions where

the real and the complex solutions differ (see below) to confirm that the targeted solution

corresponds to a minimum. We have also tested different starting points to make sure that

the solution found was the global minimum.

B. When the complex (with time-reversal symmetry) and the real solutions

coincide.

For some systems (e.g., H2 and LiH), the use of complex orbitals does not provide any

extra flexibility and the restricted real solutions coincide with the time-reversal-symmetric
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complex orbitals. Here we focus on the LiH case. (See the supporting information for

the H2 example.) In Fig. 2, we have represented the potential energy curve (PEC) for the

homolytic dissociation of LiH obtained with HF, pCCD, and the GNOF RDMFT functional

approximation. The real unrestricted HF (UHF) PEC is also included for comparison

purposes. In LiH, only one pair of electrons forms the bond while the 1s2 electrons of Li

remain almost unaltered at all bond lengths. In the ground state, the bond is formed by

the so-called harpoon mechanism,94 where the dominant species are Li+ and H− around the

equilibrium distance while neutral atoms are formed in the dissociation limit. As we can

observe, the GNOF functional and the pCCD approximation results are similar because

both methods accurately describe the correlation effects of the electron pair responsible

for forming the bond. In addition, as shown in Fig. 2, the real solutions coincide with

the complex ones for all bond lengths along the dissociation curve. The analysis of the

eigenvalues of the complex Hessian matrix revealed that the real orbitals also lead to a

minimum for the complex orbital optimization problem. Also, the analysis of the electronic

density shows that the real and the complex electronic densities coincide with only tiny

numerical differences caused by the finite convergence thresholds.
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FIG. 2: Potential energy curves obtained with the real (solid) and complex (dotted) ver-

sions of the HF, pCCD, and GNOF methods for the dissociation of the LiH molecule.
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C. When the complex (with time-reversal symmetry) and the real solutions

differ.

While the time-reversal-symmetric complex and real solutions match for the H2 and

the LiH systems across all bond lengths, this correspondence does not necessarily occur in

other systems. To illustrate this, we have studied the PEC of BeH2 during the insertion of

a beryllium atom into a hydrogen molecule. In Fig. 3a, we have represented the reaction

coordinate x (in Bohr), where the Be atom is placed at the coordinate origin and the H

atoms are located at ±y = 2.54−0.46x with x ∈ [0, 4]. This system has recently been used

as a benchmark tool of different methods20,91,92,95–106 including the pCCD and RDMFT

functional approximations, where the ability of these methods to account for non-dynamic

electronic correlation effects was evaluated. For small values of x > 0, the exact wave

function is primarily governed by the electronic configuration |(1a1)2(2a1)2(1b2)2⟩. As x

increases, however, the configuration |(1a1)2(2a1)2(3a1)2⟩ becomes dominant. In the range

2.5 < x < 3, the wave function undergoes a rapid transition from |(1a1)2(2a1)2(1b2)2⟩

to |(1a1)2(2a1)2(3a1)2⟩. Therefore, in the BeH2 system, the region 2.5 ≤ x ≤ 3.5 exhibits

strong non-dynamic electronic correlation effects while the dynamic component is dominant

for all other geometries.

Focusing on the consequences of using complex orbitals with time-reversal symmetry, we

see in Fig. 3b that in regions where the dynamic electronic correlation effects are dominant

the real and the complex solutions coincide. On the contrary, the flexibility provided by

the complex natural orbital coefficients leads to a relaxation of the electronic density in

the region where non-dynamic correlation effects are dominant (i.e., x ∈ [2.5, 3.5]) making

the complex solutions lie below the real ones for all methods studied. Let us first analyze

the HF solutions. As we can observe, both solutions produce a smooth curve in the region

where non-dynamic electronic correlation effects are dominant with the THF solution lying

below the RHF one only on a very small interval. Using the real RHF orbitals to build

the complex Hessian matrix [see Eq. (31)] in the interval where the solutions differ and

proceeding to diagonalize it, we obtain one or two (depending on the geometry) negative

eigenvalues. Since the gradient is still zero, this result indicates that the real solution is

a stationary point (i.e., a saddle point) for the complex optimization problem. Thus, by
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re-optimizing the orbitals (and occupation numbers) we obtain the actual minimum. This

result is comparable to the usual ones obtained with restricted and unrestricted methods

for geometries beyond the Coulson-Fisher point.107 However, as we show in Fig. 3b, the

THF energy lies above the real UHF one, which shows that the flexibility provided by the

complex orbital coefficients is not sufficient to account for all the non-dynamic electronic

correlation effects present.

To gain more insights into the THF solution, we have computed the spin-summed oc-

cupations numbers for the THF natural orbitals as a function of the reaction coordinate x.

Note that this procedure is equivalent to the construction of the spin-summed unrestricted

natural orbitals within the unrestricted HF formalism.3 To do so, we built

P = c†↑ ·
1D · c↑ + c†↓ ·

1D · (c↓) (37)

where P is the density matrix written in the real (scalar) atomic orbital basis ψ, c↑ (c↓)

gathers the molecular orbital coefficients for the spin-up (spin-down) orbitals, and 1D is the

HF first-order reduced density matrix (with 1Dpq = δpq for p, q occupied and 0 otherwise).

Then, using the Löwdin orthonormalization (S−1/2 · P · S−1/2 with S being the overlap

matrix of the real (scalar) orbitals) and diagonalizing the resulting matrix, we obtained

the THF natural orbitals and THF natural occupation numbers (η). In Fig. 3d, we have

plotted the spin-summed occupations numbers for the THF natural orbitals for the 3rd and

4th natural orbitals (η3 and η4). The η1 and η2 occupation numbers remain equal to 2 for

all geometries. As we can observe in Fig. 3d in the region where non-dynamic correlation

effects are dominant, η3 and η4 approach 1. Therefore, the THF is capable of retrieving

some non-dynamic correlation effects present when compared to RHF, but its ability is

limited and it is unable to perform as well as real UHF in this region (see Fig. 3b).
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FIG. 3: (a) Schematic representation of the insertion reaction of Be into H2 to form BeH2.

The Be atom is placed at the origin and the hydrogen atoms are located at ±y = 2.54 − 0.46x.

(b) Potential energy curves obtained with the real (solid) and complex (dotted) versions of HF,

PNOF5, and GNOF methods for 0 ≤ x ≤ 4. The real UHF and the FCI curves are also included

for comparison. (c) Changes in the spin-summed occupations numbers (η3 and η4) for the THF

natural orbitals as functions of the reaction coordinate x. (d) Difference between the real and

complex optimized electronic densities, ρ(r), for the GNOF functional approximation along the

insertion pathway for x = 2.75 Bohr.

Moving to the PNOF5 and GNOF results, we also observe that the real and the complex
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solutions differ in the region where non-dynamic correlation effects are dominant. In the

case of PNOF5, which is a fully N -representable method108,109 thanks to its correspon-

dence with the constrained anti-symmetrized product of strongly orthogonal geminals,110

we notice that the TPNOF5 estimates (red dots) lie above the FCI energies. However, the

TGNOF results (orange dots) lie below their FCI counterparts in the x ∈ [2.5; 3.5] inter-

val, which indicates that this functional approximation can introduce N -representability

violations when non-dynamic correlation effects are pronounced. Next, the analysis of the

difference in the electronic density along the H–Be–H path for x = 2.75 Bohr reveals that,

for the GNOF functional, non-negligible changes occur in the vicinity of the nuclei and in

the bonding region. (Similar results were obtained with the PNOF5 functional approxima-

tion.) Finally, let us mention that contrary to the HF case, the analysis of the eigenvalues

of the complex Hessian matrix built with the RPNOF5 and RGNOF occupation numbers

and orbitals revealed that the real solutions correspond to local minima for the complex

optimization problem because all the eigenvalues obtained were positive.

To gain further insights into the complex solutions, let us analyze the THF as the

non-relativistic limit of the Kramers’ restricted four-component DIRAC-HF (KR-4c-DHF)

equation.52,111,112 The KR-4c-DHF equation is the relativistic extension of the HF method

for relativistic calculations, which produces 4c-spinors preserving time-reversal symmetry.

It is known that the non-relativistic limit can be approached by setting the value of the

speed of light c to a large value in the 4c-DHF.52,111,113,114 Then, as discussed in Sec. II,

in this limit the KR-4c-DHF solution approaches the THF solution (instead of the RHF

one) when the RHF and THF solutions differ because (i) the THF solution can be lower in

energy, (ii) the THF and the KR-4c-DHF methods work with the extra flexibility provided

by complex orbitals, and (iii) both methods are built to preserve time-reversal symmetry.

To show this, we have taken the BeH2 system at the x = 2.75 Bohr geometry, employed

the cc-pVDZ basis set,90 and performed calculations using the DIRAC program115 setting

the speed of light value to c = 105. In the non-relativistic limit, the KR-4c-DHF energy

(−15.57555 hartree) approaches the THF value (−15.575600 hartree), where for c = 105

the energy difference is lower than 5 × 10−5 hartree (The RHF energy is −15.563664

hartree). This result illustrates that KR-4c-DHF solutions in the non-relativistic limit

only approach the RHF ones when the RHF and the THF solutions are equivalent (which
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occurs in regions where non-dynamic correlation effects are not dominant). Otherwise, the

KR-4c-DHF solutions in the non-relativistic limit may recover the THF values.116
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FIG. 4: Potential energy curves obtained with the real (solid) and complex (dotted) ver-

sions of the HF, pCCD, and GNOF methods for the dissociation of the N2 molecule. The

real UHF results are included for comparison.

Next, let us discuss another example where the real and complex solutions differ, the

homolytic dissociation of the N2 molecule in its ground state, where three pairs of electrons

are simultaneously broken. In Fig. 4 we have collected the real and complex HF, pCCD,

and GNOF PECs. As one can observe, for all methods the real and complex solutions

are equivalent up to RN-N ∼ 1.4 Å. Then, for larger interatomic distances, the real and

the complex solutions differ, with the complex solution lying below the real one in all

cases. As in the BeH2 example, the RHF is a saddle point of the complex solution when

we evaluate the Hessian matrix. Again, the THF results can partially retrieve some non-

dynamic electronic correlation effects but are still far from the UHF results. On the

other hand, the GNOF real and complex results are very similar but the pCCD ones

present large deviations, which shows that the difference between the real and the complex

solutions is system- and method-dependent. Once more, as for the BeH2 system, all the
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eigenvalues of the complex Hessian matrix built with the real GNOF/pCCD occupation

numbers/amplitudes and orbitals (multiplied by some random phases) were positive, which

suggests that the real solutions correspond to local minima of the complex optimization

problem for the RDMFT functional approximations and the pCCD method.

V. CONCLUSIONS

In this work, we have presented and discussed the consequences of using complex orbitals

including time-reversal symmetry in RDMFT and pCCD calculations. From a theoretical

perspective, the RDMFT JKL-only functional approximations and the pCCD method

reduce to JK-only methods where only the Hartree and exchange integrals are needed to

evaluate the energy. Specifically, for spin-compensated systems, the energy expression is

given by

ETPNOFs/TGNOF/TpCCD = 2
∑
p

nphpp +
∑
pq

(
2Dpq,pqJpq +2 Dpq,qpKpq

)
. (38)

This simplification occurs because the L integrals that accompany opposite-spin interac-

tions become K integrals when time-reversal symmetry is considered. Consequently, the

t and z amplitudes of TpCCD are also real-valued. Note that Eq. (38) is also applica-

ble for other methods that use JKL-only integrals such as the antisymmetrized prod-

uct of strongly orthogonal geminals,110 the ∆NO method,75,117 and the recently proposed

methodology based on Richardson-Gaudin states.118–120 Another major advantage of in-

cluding time-reversal symmetry is that the Piris-Ugalde orbital optimization algorithm

can be applied to problems involving complex orbitals. This is because the diagonal terms

of the gradient responsible for changing the orbital phase vanish (gpp = 0). This advan-

tage can be further exploited in future implementations of the Piris RDMFT functional

approximations and pCCD methods for extended systems where several complex one-body

Bloch states are required. In such cases, quadratic convergent algorithms that require the

Hessian matrix become computationally prohibitive. Therefore, this work sheds light on

the technical and theoretical aspects encountered when implementing the Piris RDMFT

functional approximations and pCCD methods for extended systems.

From a practical perspective, our numerical examples reveal that the real and complex
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solutions may differ in regions where non-dynamic correlation effects are enhanced with

complex energies lying below the real ones in such cases. In the case of HF calculations,

the real solutions correspond to saddle points of the complex optimization problem. On

the other hand, for RDMFT functional approximations and the pCCD method, the real

solutions are local minima. Interestingly, the TGNOF energies may lie below the FCI ones

in regions dominated by non-dynamic correlation effects, suggesting that this functional

approximation introduces N -representability violations. Finally, we have shown that the

THF solution corresponds to the non-relativistic limit of the KR-4c-DHF method, where

the RHF solution is attained only when it is equivalent to the THF one in regions where

the non-dynamic electronic correlation effects are not dominant.
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Appendix A: Appendix A: The real RDMFT and pCCD Hessian

For real orbitals, the one- and two-electron integrals, the occupation numbers, second-

order reduced density matrix elements, and the parameters κpq are real. For restricted
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calculations, only the elements κpq with p > q are unique. Hence, we have

κ̂ =
∑
p>q

∑
σ

κpq(ĉ
†
pσ ĉqσ − ĉ†qσ ĉpσ), (A1)

only the gpq for p > q elements of the gradient are needed, and only p > q and r > s terms

of the Hessian are required. The Hessian is generally a Hermitian matrix (symmetric in

the real case); thus, its construction only requires building the upper diagonal part and

applying the symmetry conditions. In the case of RDMFT and pCCD calculations, the

construction of the Hessian scales as M5, which makes it reasonable in terms of compu-

tational cost when compared with more complex methods where the construction of the

Hessian scales as M7. The Hessian for real orbitals in terms of the auxiliary G̃ matrix

elements takes the following form

Gpq,rs =
∂2E(κ)

∂κpq∂κrs
= G̃pq,rs − G̃qp,rs − G̃pq,sr + G̃qp,sr (A2)

that are evaluated using Eq. (32). Notice that the real Hessian is given by the first four

elements of Eq. (31) because they correspond to partial derivatives taken with respect to

Reκpq elements. Finally, for completeness, let us mention that the 6th to the 8th elements

in Eq. (31) are obtained with partial derivatives with respect to Imκpq while the third line

is produced by crossed Reκpq and Imκpq derivatives.
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44C. A. Jiménez-Hoyos, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput.

7, 2667 (2011).

45R. Song, T. M. Henderson, and G. E. Scuseria, arXiv:2405.06776 (2004).

46J. L. Stuber and J. Paldus, Symmetry breaking in the independent particle model in

Fundamental World of Quantum Chemistry (Springer Netherlands, 2003) pp. 67–139.

47Note1, This option is not included in Ref. 44, where real coefficients are employed,

time-reversal symmetry is preserved, but not Ŝ2.
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118C.-É. Fecteau, H. Fortin, S. Cloutier, and P. A. Johnson, J. Chem. Phys. 153 (2020).
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