
HAL Id: hal-04794752
https://hal.science/hal-04794752v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calibration of Gipps’ car-following model for trucks and
the impacts on fuel consumption estimation

Johana Cattin, Ludovic Leclercq, Florian Pereyron, Nour-eddin El Faouzi

To cite this version:
Johana Cattin, Ludovic Leclercq, Florian Pereyron, Nour-eddin El Faouzi. Calibration of Gipps’ car-
following model for trucks and the impacts on fuel consumption estimation. IET Intelligent Transport
Systems, 2018, 13 (2), pp.367 - 375. �10.1049/iet-its.2018.5303�. �hal-04794752�

https://hal.science/hal-04794752v1
https://hal.archives-ouvertes.fr


IET Intelligent Transport Systems

Research Article

Calibration of Gipps’ car-following model for
trucks and the impacts on fuel consumption
estimation

ISSN 1751-956X
Received on 5th June 2018
Accepted on 24th September 2018
doi: 10.1049/iet-its.2018.5303
www.ietdl.org

Johana Cattin1, Ludovic Leclercq1, Florian Pereyron2 , Nour-Eddin El Faouzi1
1University of Lyon, ENTPE, IFSTTAR/LICIT, UMR_T 9401, 69518 Lyon, France
2Renault Trucks, Volvo Group, 69806 Saint-Priest, France

 E-mail: florian.pereyron@volvo.com

Abstract: Calibration of car-following models plays an important role not only in traffic simulation but also in the estimation of
traffic-related energy consumption. However, the majority of calibration studies only focus on errors on position or speed,
whereas these models are used to evaluate environmental parameters associated with road traffic (e.g. pollutant emissions,
energy consumption). Then, this study focuses on the ability of Gipps’ car-following model calibrated on trajectory parameters to
estimate properly the fuel consumption of a heavy vehicle. First, the shape of one of the most used Goodness-of-Fit function,
Theil's inequality coefficient, is investigated. It will be demonstrated that optimal domains are flat and large, and so many
combinations of parameters could accurately reproduce the vehicle trajectory. Then, the authors found that Gipps model,
calibrated via a multi-objective particle swarm optimisation is relevant to simulate the trajectory of a heavy vehicle, but fuel
consumption estimation resulting of these trajectories exhibits large discrepancies. To solve this issue, it is proposed to add the
fuel consumption estimation directly in the calibration process as a further dimension. The results show an improvement in the
value of energy consumption estimation without increasing too much the error on the trajectory.

1 Introduction
The reduction of fuel consumption, and more generally pollutant
emissions, is one of the major challenges of vehicle manufacturers.
With the increase of communicating systems, new technologies
such as intelligent transportation systems (ITS) and advanced
driver assistance system (ADAS) play now an important role in the
reduction of pollutant emissions. In order to reduce prototyping
costs, it is important to have powerful and relevant simulation tools
for project development phases.

There are different ways to estimate fuel consumption of a
vehicle. If we consider an individual vehicle, the calculation of its
energy consumption requires only the knowledge of its own
kinematics. This can be done on real data but for prototyping new
solutions on doing test at large scale it is very useful to boost the
simulation. However, to estimate it in a road traffic environment, in
order to assess the benefit of new driving strategies, for example, it
is necessary to assess how vehicle kinematics derived from traffic
simulation model is accurate enough for such an application.

The study of car-following models calibration has already a
long history, but very few studies focus specifically on heavy duty
vehicles (HDVs) behaviour [1, 2], although truck's reactions to
traffic are different from those of cars as shown in [3–5]. For the
truck's trajectory, one can observe that spacing would be larger,
acceleration capabilities are smaller, speed profiles are more
complex due to more complex engine chains. Inertia also modifies
the driving behaviour of HDVs due to the important weights of
vehicles. The main studies taking into account truck following
behaviour focus on the differences in following reactions [2, 3, 5,
6] depending of the follower and the leader type (passenger car or
HDV). Other existing studies which consider truck following
behaviour describe the influence of heterogeneous traffic flow on
traffic instability [7–9].

To model the heterogeneity of real road traffic, several modified
car-following models were previously developed. Previous studies
about truck-following rule were based either on specific mode
formulation [3, 8], on quite complex existing car-following rules
[3] or on new developed models based on the local linear mode
tree approach, LOLIMOT [10, 11]. All of these studies used data
from the Next Generation Simulation project. The trajectories used
were collected on the Hollywood freeway (U.S.101) and on the

Berkeley Highway (I-80) in California. They were, respectively,
640 and 503 m long. Here, we want to assess if a simpler
expression, the Gipps’ model, with dedicated parameter settings
can accurately reproduce truck's behaviour under different
applications: urban or regional. This would be very useful in
practice as the Gipps model is widely used in traffic simulation
because it is a good compromise between accuracy and the number
of parameters for calibration.

A second contribution of this paper is about the connection with
fuel consumption. First, we want to know if a calibration based on
traffic objective function provided accurate results when
calculating the fuel consumption. This is important because it is a
common practice to calibrate the model for traffic applications and
then determinate the fuel consumption as an output. Second, we
will determine the improvements related to a direct integration of
fuel consumption in the calibration process through multi-objective
(MO) optimisation.

The first part of the paper presents the data used for the study.
Then, Gipps’ car-following model is detailed and its parameters to
calibrate are highlighted. The following section is about calibration
method and a particular attention is given to the Goodness-of-Fit
(GoF) function and indicators on which computing the error
between measured and simulated data. Then, the results of the
calibration of the Gipps’ car-following model are presented and
resulting trajectories are used to estimate the fuel consumption of
the vehicle. Finally, a solution is proposed to improve the
calibration results and particularly the results on fuel consumption
estimation.

2 Data description
Data were recorded in Lyon (France), with a vehicle weighted at 19
tons and equipped with sensors measuring the truck speed and the
spacing to the vehicle ahead. The route driven by the vehicle is
about 80 km (Fig. 1). The data is sampled with a time step of 0.1 s.
For each sub-cycle, a lot of information is available at each time
step: the position of the vehicle, its speed, its acceleration, the fuel
injected (the instantaneous fuel consumption) and the slope. The
instantaneous fuel consumption is used to compute the cumulated
fuel consumption along the sub-cycles, and the fuel consumption
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expressed in L/100 km which will be, respectively, used in
calibration and for comparison between the measure and the
simulation. 

Over the all route, the output of the sensor measuring the
spacing is processed to extract sub-cycles with a situation
following. First, the cycle is divided into sub-cycles separated by a
stop (speed <0.1 m/s). Then, sub-cycles in which there is no
following situation (if the sensor has not detected a leader) are
deleted. In the remaining sub-cycles, if some of them contain
several following situations, they are divided into different sub-
cycles. From the entire cycle, 35 sub-cycles have been created,
with distances varying from 166 m to 2.6 km.

Among the extracted sub-cycles, ten cycles are presented in this
paper. Five of the cycles are located in urban areas; the five others
are regional cycles. The characteristics of those cycles, such as
length, average and legal speeds in km/h, are presented in Table 1. 

3 Gipps’ car-following model
Gipps model was first introduced in 1981 [12]. This model is
defined as a safe distance model because it is based on the choice
of a safe following distance to avoid possible collision with the
leader vehicle. The empirical model developed by Gipps consists
of two components. The first represents the intention of a driver to
achieve a certain desired speed, while the second reproduces the
limitations imposed by the leader when trying to drive at the
desired speed. The output of Gipps’ car-following model is the
speed. The expression of the speed is presented in (1) [13]. In the

rest of the paper, index n refers to the studied truck (the following
vehicle), index n − 1 refers to its leading vehicle: (see (1)) . Gipps’
car-following model has six parameters to calibrate: an is the
maximum acceleration rate of the follower;
Sn − 1 = Ln − 1 + safetymargin represents the length of the leader
vehicle including a minimum safe distance; τn is the reaction time
of the follower; Vn

des is its desired speed; bn is its maximum braking
rate; and bn − 1 is the assumed braking rate of the leader. Gipps’
model also includes a safety margin time θ [13, 14]. This parameter
represents the ability of a driver to always stop safely if he begins
to brake at τn + θ after a change in the leader's behaviour. As
demonstrated by Gipps [12], a good value for θ to ensure safety is
τn/2.

4 Calibration method: study of goodness-of-fit
function and choice of calibration indicators
The calibration of car-following models aims at finding the set of
parameters which would minimise the errors between the simulated
trajectory of the truck and the measured one. The function
computing the errors between the measure and the simulation will
be named GoF function in the rest of the paper. Moreover, the
trajectory of a vehicle can be described by different parameters: its
position, the spacing to the vehicle ahead, its speed or its
acceleration. The errors can be computed on each of these
indicators, called Measure-of-Performance (MoP) in the rest of the
paper.

Fig. 1  Route driven by the vehicle
 

Table 1 Characteristics of the sub-cycles
Urban Regional

no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
length, m 409 866 350 210 306 2634 1777 1771 1717 962
average speed, km/h 12 38 38 23 29 58 63 66 60 48
legal speed, km/h 50 50 50 50 50 90 90 90 90–70 90–70
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Before calibrating Gipps’ car-following model, a particular
focus will be done on GoF function and MoPs. In the literature on
car-following calibration, many GoF functions are used [14–19].
This paper will focus on Theil's inequality coefficient, described in
(2):

U =
(1/N)∑i

N Yi
obs − Yi

sim 2

(1/N)∑i
N Yi

obs 2 + (1/N)∑i
N Yi

sim 2 (2)

with

Yi
obs, the measured MoP

Yi
sim, the simulated MoP

In Theil's inequality coefficient U = 0 indicates a perfect fit
between the measure and the simulation, whereas U = 1 indicates
worst fit.

4.1 Choice of the MoPs: the shape of Theil's inequality
coefficient

The different studies comparing the calibration of car-following
models mainly focus on error on position or speed. It has been
previously shown [20] that it is better to use MoP (the spacing or
the position) instead of the speed when we want to minimise error
on both spacing (or position) and speed. However, these studies
were done by using a single MoP [15, 16, 20] or combined MoPs
[21, 22], but not using a MO calibration. This solution is
investigated here.

Prior looking for optimal parameter values, we first investigate
the response of the GoF function to a large range of parameter
values. Actually, if this function is flat, the optimal domain is large
and so the calibration process will not lead to a narrow definition
of optimal parameters. Moreover, because we want to focus on
multiple objectives when calibrating the model, it is interesting to
evaluate the intersection of optimal domains obtained
independently for position, spacing, speed and acceleration. If this
intersection is close to the union, it means that all independent
process converges to the same consistent region for optimal
parameters. If this intersection is void, it means that a single but
MO calibration process is mandatory to determine a relevant set of
optimal parameter values.

First, a surface grid of the Theil's inequality coefficient is done.
For Gipps’ car-following model, a range of variation of the
parameters to calibrate is defined (Table 2). Then, trajectories are
simulated for each possible combination of parameters and the
error between the simulated trajectory and the measured one is
computed with Theil's inequality coefficient. To study the shape of
this function, the sizes of optimal domains are compared. 

Optimal domains are defined for each of the variables that we
want to optimise error on. Those variables are, as mentioned in
previous paragraphs, the position of the follower, the spacing
between the follower and the leader, the speed of the follower and
its acceleration. The optimal domains are defined as follows: we
search for the point which provides the minimum error on the
variable, then, five optimal domains are defined per variable we
want to optimise error on. The first one contains the points for

which the error is between the minimum error and the minimum
error plus 10%. The second domain contains points for which the
error is between the minimum error and the minimum error plus
20%, and so on until the minimum error plus 50%.

The number of points in each optimal domain, expressed as a
percentage of the total number of tested points, is compared. First
the evolution of the optimal domains size is studied. If the size of
the domain increases a lot with the percentage of accepted error, it
means that the optimal domain is quite flat, so a large range of
parameters are acceptable.

The evolution of the size of the optimal domains is similar
whatever the cycle of the category (urban or regional). This
evolution is presented in Fig. 2. Fig. 2a illustrates the evolution for
urban cycles and Fig. 2b illustrates the evolution for regional
cycles of the size of optimal domains. The first axis represents the
optimal domains for the four variables (position, speed,
acceleration and spacing) and two intersection domains. The first
intersection domain represents the common points of optimal
domains in position, speed and acceleration. The second is for
common points for optimal domains in spacing, speed and
acceleration. The second axis corresponds to the percentage of
accepted error, from 10 to 50%. The last axis (vertical) represents
the percentage of points in the optimal domain. 

For the optimal domains in position and spacing, the results are
quite identical. The sizes of the optimal domains are only
increasing slightly when the percentage of error is increasing.
Moreover, these two domains are really close to each other even if
the optimal domain for spacing is a bit larger. The optimal domains
for speed and acceleration, respectively, for urban and regional
cycle, are really sensitive to the percentage of accepted error. From
20%, their sizes increase quickly, so the GoF function is quite flat
for these two variables.

It was previously demonstrated that it is preferable to use
spacing or position as MoP [15, 16, 20]. This result is consistent
with the precedent conclusion. As illustrated in Fig. 2, the optimal
domain for spacing is really less flat than speed or acceleration
optimal domains, which ensures to find a minimum more easily
than for the other MoP. Calibrating the car-following model
according to the error on speed or on acceleration could lead to
many sets of parameters that could be considered as optimal.
However, the final objective of the calibration method developed in
this paper is to have a car-following model well calibrated to
compute the fuel consumption of industrial vehicles: the error on
speeds and accelerations must be minimised too. Moreover, we can
observe in Fig. 2 that the intersection domains are small. This
means that very few points are optimal for all MoPs. Therefore,
MO calibration is needed for the application considered in this
study: minimising errors between measurements and simulation not
only for position, but also for speed and acceleration.

Two intersections of optimal domains are defined. The second
intersection domain (spacing, speed and acceleration) is generally
greater than the first one (position, speed and acceleration) because
the optimal domain for position is a little smaller than the optimal
domain for spacing. To ensure that the MO calibration algorithm
will find the maximum of possible optimal points, it will be run
with the three variables that allow the biggest intersection domain:
spacing, speed and acceleration.

Table 2 Range of variation of Gipps’ car-following model parameters
Parameters Min Step Max
τn, s 0.2 0.3 3.8

Vn
des, km/h – urban 40 2 50

Vn
des, km/h – regional 70 3 85

an, m/s2 0.5 0.4 2.9

SafetyMargin, m 0.1 0.5 4.6

b^n − 1, m/s2 −6.1 0.5 −0.1

bn, m/s2 −4.1 0.5 −0.1
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4.2 Multi-objective particle swarm optimisation

The Gipps’ model presented in the previous section is calibrated
using a method based on the particle swarm optimisation (PSO)
algorithm. This global optimisation method was proposed in 1995
by Eberhart and Kennedy [23]. The method used here is the
standard ‘GBEST model’ [24]. As demonstrated previously, the
optimal domains are different depending on the MoP. Then, a MO
calibration is mandatory to try reducing errors on spacing, speed
and acceleration. This approach is interesting because new driving
strategies are mainly used to reduce fuel consumption, and it is
necessary in this way to simulate accurately not only position or
spacing but also speed and acceleration.

The PSO algorithm is modified into a multi-objective PSO
(MOPSO) allowing the calibration of several variables: spacing,
speed and acceleration. The algorithm is described in the following
text. The MOPSO algorithm provides a set of optimal parameters
for Gipps’ model, which dominate other possible parameters
according to the dominance definition of Pareto [25] (see the
Appendix for definitions).

At the beginning of the calibration, a set of N particles is
defined randomly inside the upper and lower bounds defined. The
MO calibration implies the use of an archive containing particles
that dominate the swarm. In our case, the particles are the vectors
of parameters of the Gipps’ car-following model to calibrate. Each
particle i is given a position xi and a speed vi. The position is the
value of the coordinates of the vector. The speed is used to update
the particle's position in the direction of the particle named GBEST
g: the best position (the lowest error) reached since the beginning
of the optimisation, and the best position PBEST reached by the
particle itself, pi. The speed at the initialisation phase is defined
randomly. At each iteration, the position and the speed are updated
according to (3) and (4), and the archive of dominating particles is
updated to include new dominants. For the MO calibration, there is
not one GBEST particle because there are several objectives. Then,

a GBEST particle is defined for each particle of the swarm. The
choice is based on the RANDOM global guides’ selection
proposed by Alvarez-Benitez and Everson [26].

If the particle is part of the dominating archive, its GBEST is
chosen randomly into the archive, if not, its GBEST is chosen
randomly among the set of particles which dominates it, including
the particles into the archive. This last choice is different from what
is proposed in [26], where they only consider as a possible GBEST
the particles in the archive which dominate the particle for which
GBEST is computed.

xi(k + 1) = xi(k) + vi(k) (3)

vi(k + 1) = K vi(k) + r1c1(pi − xi(k)) + r2c2(g − xi(k)) (4)

With i ∈ [1, N], k ∈ [1, nb_iter − 1], K = 2/ 2 − φ − φ2 − 4φ ,
and φ = c1 + c2.

For convergence φ must be >4 [27], we chose c1 = c2 = 2.05.
The number of particles and the maximum number of iterations
are, respectively, defined equal to 50 and 500. r1 and r2 are random
values between 0 and 1.

5 Results
5.1 Ability of Gipps’ car-following model to reproduce truck's
behaviour

The Gipps’ car-following model has been calibrated using the
MOPSO algorithm presented in Section 4.2. The GoF function is
the Theil's inequality coefficient described in Section 4, the MoPs
are the spacing between the leader and the follower vehicle, and
the speed and the acceleration of the follower, a truck in our case.
The results of the calibration of the cycles presented in this paper
are summarised in Table 3. 

Fig. 2  Evolution of optimal domains for Gipps’ car-following model for Theil's inequality coefficient
(a) Urban cycle, (b) Regional cycle

 
Table 3 Errors, for the ten cycles, on position, spacing, speed and acceleration

Urban Regional
Theil's inequality coefficient
no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
position, % 1.43 0.51 0.47 1.90 1.15 0.59 0.22 0.56 0.45 0.63
spacing, % 12.16 10.93 4.71 3.10 6.62 13.70 6.98 8.30 11.75 8.76
speed, % 10.43 3.10 1.96 6.04 2.13 2.65 2.32 3.30 3.01 3.66
acceleration, % 40.83 30.47 13.19 24.23 26.46 32.60 21.50 24.88 23.22 25.53
MAE
no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
position, m 4.94 5.01 1.98 2.68 3.37 14.77 4.41 9.56 8.33 5.38
spacing, m 4.94 5.01 1.98 2.68 3.37 14.77 4.41 9.56 8.33 5.38
speed, km/h 2.10 2.13 1.33 2.43 1.09 2.53 2.19 2.93 2.18 2.34

acceleration, m/s2 0.17 0.14 0.12 0.23 0.18 0.14 0.17 0.16 0.11 0.21
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We can see that the calibration has provided good results. The
errors on position and speed are very low for all of the cycles. The
errors on acceleration are higher than on the other variables. This
can be explained by the fact that Gipps’ model output is the speed,
which is derived to obtain acceleration. Moreover, the acceleration
profile of a vehicle oscillates with a higher frequency than the
speed, which made it more difficult to model accurately.

In [11], the author proposed a new model (LOLIMOT) to
represent truck-following behaviour and compared it to Gipps’
model calibrated with a genetic algorithm (GA) using the squared
error as GoF function. The MoP used is the speed of the truck. The
results presented by Aghabayk are expressed as the root mean
squared error (RMSE, in km/h) of the speed. The results for a truck
following a car are 3.27 and 6.84 km/h, respectively, for
LOLIMOT and Gipps’ model. For comparison, we compute the
RMSE on the simulated speed defined. The results are 2.33 and
3.20 km/h in average, respectively, for urban and regional cycles.

In [8], the authors calibrated the intelligent driver model (IDM)
for the four following combinations: car–truck, car–car, truck–car
and truck–truck. IDM has been calibrated with a GA using Theil's
inequality coefficient as GoF function. The MoP is the
acceleration. The results presented in [8] are expressed using the
mean absolute error (MAE). For the truck–car combination, the
results are 5.75 m (3%), 4.32 km/h and 1.24 m/s2, respectively, for
the position, the speed and the acceleration. For comparison, the
error on the simulated trajectories defined in this paper is computed
again but with the MAE function. The results are 3.60 m (3.8%),
1.82 km/h and 0.17 m/s2 in average for the urban cycles; for
regional cycles results are 8.49 m (1.2%), 2.43 km/h and 0.16 m/s2,
respectively, for the position, the speed and the acceleration. The
calibration method proposed in this paper provides better results

than the one in the previous studies. The MAE values for the ten
cycles studied here are detailed in Table 3.

An example (cycle 1u) of the simulated trajectories compared to
the measured ones is presented in Fig. 3. 

5.2 Robustness to mean parameters

In the previous section we have seen that the Gipps’ car-following
model was calibrated on the ten selected cycles and results are
pretty good. Here we will study the robustness of the model to the
use of average parameters per category of cycles: urban and
regional.

For each category, we define a unique set of parameters as the
average of the optimal set of parameters of the cycles of the
category. This set is then used to simulate the cycles of the
category and the errors are computed. Table 4 shows the results of
these simulations, the errors using optimal or average parameters
are compared. We can see that the use of average parameters does
not deteriorate too much the error values. Particularly, errors on
position are still very good. The other errors increased, but their
values are still acceptable. In practice, it is interesting to have a
generic model well calibrated for different type of roads or
different use cases. The robustness of Gipps model to the use of
average parameters allows using it in a generic simulation tool. 

5.3 Application to fuel consumption

The previous sections have allowed demonstrating that Gipps car-
following model could be relevant to simulate the behaviour of a
heavy vehicle. However, we would like now to assess if these
simulated trajectories are enough precise to estimate the fuel
consumption.

Fig. 3  Measured and simulated trajectory of the vehicle for cycle 1u
(a) Position, (b) Speed, (c) Acceleration
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The tool used to estimate the fuel consumption is an internal
tool used within Volvo Group. It takes as input the speed of the
vehicle. The speed profiles generated with the calibrated Gipps’
model are given as input to this tool which computes the
corresponding fuel consumption (at each time step and the fuel
consumption expressed in L/100 km). This tool also takes into
account the slope along the cycle and the type of vehicle (engine,
gearbox etc.).

The results of the simulations are presented in Table 5. It
presents the errors in percentage between the total fuel
consumption measured and the simulation expressed in L/100 km,
and the corresponding MAE value. 

The results of the fuel consumption estimation are not so good
because they represent a significant gap for the total consumption
over the cycles. The error values are closer to each other for
regional cycles (between −3.67 and 9.87%) than for urban cycles
where error goes from −14 to 21%.

Fig. 4 compares the cumulated fuel consumption measured and
simulated. We can observe several differences in the data. The first
one occurs between 20 and 50 s. This corresponds to a part of the
sub-cycle 1u where the simulated acceleration is not accurately
estimated compared to the measured one, and the speed is low
(<10 km/h). The emissions are very sensitive to the acceleration in
this range of speed and even if the errors on the car-following
model look minimal for the spacing and the speed, they are too

important in acceleration. Two other differences occur at time
t = 60 s and t = 90 s. At these moments, the simulated speed is far
from the measured one. At time t = 90 s, the speed has been
overestimated, which implies that the follower is too close to the
leader and needs to decelerate more than in the measurement (until
t = 110 s) to avoid collision. This longer deceleration causes a
longer time during which the follower does not use fuel which can
be observed in Fig. 4. This explains the gap at the end of the sub-
cycle 1u. 

As shown in [28] for passenger vehicles, we also see here that
good calibration results from a traffic point of view do not
necessarily imply accurate estimation for fuel consumption.
However, car-following models or traffic models are always
calibrated regarding to traffic indicators, and they are used to
estimate energy consumption or pollutant emissions. As we can see
in this study, this method can lead to bias in energy consumption
value, particularly for HDVs.

To solve this problem, we propose to add the fuel consumption
estimation into the calibration process as a fourth MoP.

5.4 Fuel consumption estimation, the fourth MoP

The calibration of Gipps’ car-following model is done again but
with four MoPs this time: the spacing between the truck and its
leader, and the speed, the acceleration and the cumulated fuel
consumption of the truck. The fuel consumption is estimated

Table 4 Errors, for the ten cycles, on position, spacing, speed and acceleration, for optimal and averaged parameters
Urban

Optimal parameters Averaged parameters
Theil's inequality coefficient
no. 1u 2u 3u 4u 5u 1u 2u 3u 4u 5u
position, % 1.43 0.51 0.47 1.90 1.15 2.20 2.21 4.16 5.68 2.66
spacing, % 12.16 10.93 4.71 3.10 6.62 23.84 33.03 29.36 11.02 13.99
speed, % 10.43 3.10 1.96 6.04 2.13 10.01 5.79 7.56 8.16 4.49
acceleration, % 40.83 30.47 13.19 24.23 26.46 44.65 42.05 23.37 38.44 36.78
MAE
no. 1u 2u 3u 4u 5u 1u 2u 3u 4u 5u
position, m 4.94 5.01 1.98 2.68 3.37 7.13 20.04 18.37 8.47 7.22
spacing, m 4.94 5.01 1.98 2.68 3.37 7.13 20.04 18.37 8.47 7.22
speed, km/h 2.10 2.13 1.33 2.43 1.09 2.34 3.63 5.33 4.04 2.27

acceleration, m/s2 0.17 0.14 0.12 0.23 0.18 0.22 0.18 0.23 0.40 0.23
 

 
Regional

Optimal parameter Averaged parameters
Theil's inequality coefficient
no. 1r 2r 3r 4r 5r 1r 2r 3r 4r 5r
position, % 0.59 0.22 0.56 0.45 0.63 0.52 1.71 0.72 1.11 1.26
spacing, % 13.70 6.98 8.30 11.75 8.76 12.91 36.98 10.58 22.69 15.74
speed, % 2.65 2.32 3.30 3.01 3.66 3.64 4.20 3.81 3.28 3.75
acceleration, % 32.60 21.50 24.88 23.22 25.53 43.02 27.59 39.84 29.32 28.88
MAE
no. 1r 2r 3r 4r 5r 1r 2r 3r 4r 5r
position, m 14.77 4.41 9.56 8.33 5.38 12.78 37.15 12.97 21.06 10.76
spacing, m 14.77 4.41 9.56 8.33 5.38 12.78 37.15 12.97 21.06 10.76
speed, km/h 2.53 2.19 2.93 2.18 2.34 3.71 4.31 4.28 2.93 2.66

acceleration, m/s2 0.14 0.17 0.16 0.11 0.21 0.19 0.20 0.27 0.16 0.26
 

Table 5 Fuel consumption estimation relative errors between the simulation and the measure (in %), and corresponding MAE
values

Urban Regional
no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
fuel consumption relative error, % −14.22 21.13 −8.09 −9.58 −1.04 3.24 4.07 4.34 9.87 −3.67
MAE, L 0.0088 0.0276 0.0062 0.0095 0.0137 0.0164 0.0111 0.0148 0.0229 0.0096
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thanks to the tool mentioned in Section 5.3. Results are presented
in Table 6. 

We observe that the errors on position, spacing, speed or
acceleration are really close to the errors presented in previous
sections. However, the errors on fuel consumption estimations are
reduced significantly.

It means that we can reduce the error on fuel consumption
estimation without deteriorating the error on trajectory indicators.
The optimal parameters domain from a traffic point of view is large
and including another indicator in the calibration process helps to

narrow it. Fig. 5 illustrates the fact that improvement of fuel
consumption estimation does not affect other MoPs. 

Fig. 6 presents the improvement of the fuel consumption
estimation after the calibration in four dimensions. We can observe
that the majority of the errors that have been previously highlighted
in Section 5.3 has been corrected. By increasing the speed of the
follower at time t = 10 s, the simulated fuel consumption is almost
equal to the measured one between times t = 20 s and t = 50 s,
without introducing a gap before. This is because the acceleration
profile, between time t = 10 s and t = 20 s, is now better tuned for
the calculation of emission. In the same way, at time t = 60 s, the
simulated speed is higher and closer to the measured one which

Fig. 4  Measured and simulated fuel consumption for cycle 1u
 

Table 6 Errors (Theil's inequality coefficient and MAE), for the ten cycles, on position, spacing, speed and acceleration, and
relative error for fuel consumption between the simulation and the measure in %

Urban Regional
Theil's inequality coefficient
no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
position, % 1.49 0.70 0.45 1.26 1.05 0.54 0.19 0.62 0.48 0.67
spacing, % 13.82 13.82 4.78 2.05 6.12 12.71 6.48 9.44 13.22 9.27
speed, % 11.27 3.49 2.02 3.39 2.10 2.59 2.27 2.95 1.99 3.50
acceleration, % 41.29 31.56 14.30 25.58 26.75 31.56 21.69 24.16 23.25 24.79
fuel consumption, % −6.90 9.82 4.43 1.56 0.22 2.50 2.58 0.71 7.91 3.13
MAE
no. 1u 2u 3u 4u 5u 1r 2r 3r 4r 5r
position, m 4.83 13.07 2.19 2.69 12.16 40.09 5.58 10.09 12.90 5.45
spacing, m 4.83 13.07 2.19 2.69 12.16 40.09 5.58 10.09 12.90 5.45
speed, km/h 2.31 2.47 0.99 3.32 1.68 3.05 2.12 3.05 2.24 2.32

acceleration, m/s2 0.20 0.13 0.13 0.27 0.18 0.12 0.16 0.16 0.11 0.20

fuel consumption, L 0.0034 0.0053 0.0030 0.0068 0.0057 0.0168 0.0062 0.0151 0.0057 0.0043
 

Fig. 5  Error evolution between calibration without and with fuel
consumption estimation in MoPs

 

Fig. 6  Measured and simulated fuel consumption for cycle 1u
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causes that the simulated cumulated fuel consumption is close to
the measured on until time t = 105 s. At t = 90 s, the same error
occurs than previously, the vehicle speed is too high and it forces
the follower to decelerate more to avoid collision with the leader.
However, the vehicle accelerates more than in the previous
calibration and because the first errors have been corrected, the
final gap is lower.

6 Conclusion
This paper focuses on the calibration of the Gipps’ car-following
model on truck data. First, by studying the shape of the Theil's
inequality coefficient, moreover, the importance of the definition of
the MoPs is highlighted. It has been shown that the optimal
domains in position, spacing, speed or acceleration are really
different (the intersection of optimal domains is really small).
Moreover, we have seen that the optimal domains in position or
spacing are sharper than the ones in speed or acceleration, which
implies that it should be easier to converge to an optimal set of
parameters if we calibrate the Gipps’ car-following model only on
position or spacing than on speed or acceleration. The MO
calibration (on spacing, speed and acceleration) has been chosen to
find good parameters to represent truck's behaviour and dynamics.

The calibration of the Gipps’ car-following model has been
done using MOPSO with three MoPs: spacing, speed and
acceleration, and it provides good results. The errors on position
and speed are most of the time lower than 2% and 4%,
respectively. The errors on the acceleration mainly fluctuates
around 25%, and contrary to what was previously found in the
literature [29], Gipps’ model does not overestimate the acceleration
value of the truck. Moreover, we have shown that the calibrated
model is robust, because we can use average optimal parameters
instead of optimal one without losing the ability of the model to
reproduce the measured trajectory.

The calibrated model has then been used to generate simulated
trajectories on which the fuel consumption has been evaluated. It
has been shown that even if those trajectories were close to the
measurement, the resulting energy consumption was not so good.
To solve this issue, the fuel consumption evaluation has been added
to the calibration process as a fourth MoP. Taking into account the
fuel consumption estimation of the vehicle leads to better results
than previously. Since GoF function is flat for the speed and the
acceleration, we can reduce error value on fuel consumption
without increasing too much the error on the other MoPs.

This study has shown, as in [28], that car-following models
could be well calibrated from a traffic point of view but not from
an energy consumption point of view. A solution is proposed to
solve this problem.

This work points out an important issue in the way traffic
simulation tools are used. Actually, car-following models are
calibrated based on traffic data (macroscopic or microscopic) and
they were originally used to evaluate road construction new control
strategies or to predict traffic evolution. Their validity was mainly
validated in this context. However, these models are now more and
more used to estimate environmental parameters such as energy
consumption, fine particles or CO2 emissions and the effects of
new driving strategies such as ITS and ADAS on the environment.
A bias can be observed between real emissions and simulated
emissions because the simulation tools are calibrated for traffic
purposes. It is important to notice this phenomenon to calibrate the
models in a proper way for emission estimations.

7 Discussion
This study was done considering only one case: the leading vehicle
is a car and the following vehicle is a truck. However, the same
results were demonstrated in the case of a car following a car in
[28], and we can assume that is will be true for the two other
following situations. Gipps’ car-following model was here
calibrated for a particular vehicle. The optimal parameters found
could not be optimal for another vehicle, but the methodology of
the calibration could be used for any other vehicle.

Moreover, because of the small number of available cycles, the
validation of the model was not done on another set of cycle.
However, the robustness of the model to the use of averaged
parameters (per category) has been studied. This verification shows
that the spacing and the acceleration are a little sensitive to the use
of averaged parameters, whereas the errors on position and speed
stay stable. A validation of the model would be done later on
another set of cycles to complete the study.
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9 Appendix
 
 

Definition 1: Pareto optimality: x* ∈ Ω is Pareto optimal if
∀x ∈ Ω and I = 1, …, k  either

∀i ∈ I, f i(x) = f i(x*)

or

∃i ∈ I, f i(x) > f i(x*)
 

Definition 2: Pareto dominance: u = u1, . . . , uk  is said to
dominate in the sense of Pareto v = v1, …, vk , (u ⪯ v) if and only
if

∀i ∈ 1, …, k , ui ≤ vi

and

∃i ∈ 1, …, k , ui < vi
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