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Reshaping and enzymatic activity may allow
viruses to move through the mucus

Falko Ziebert, ab Kenan G. Dokononc and Igor M. Kulić de

Filamentous viruses like influenza and torovirus often display systematic bends and arcs of mysterious

physical origin. We propose that such viruses undergo an instability from a cylindrically symmetric to a

toroidally curved state. This ‘‘toro-elastic’’ state emerges via spontaneous symmetry breaking under

prestress due to short range spike protein interactions magnified by surface topography. Once surface

stresses are sufficiently large, the filament buckles and the curved state constitutes a soft mode that can

potentially propagate through the filament’s material frame around a Mexican-hat-type potential. In the

mucus of our airways, which constitutes a soft, porous 3D network, glycan chains are omnipresent and

influenza’s spike proteins are known to efficiently bind and cut them. We next show that such a non-

equilibrium enzymatic reaction can induce spontaneous rotation of the curved state, leading to a whole

body reshaping propulsion similar to – but different from – eukaryotic flagella and spirochetes.

1. Introduction

Thin fibers are common structural elements in biology, from
biofilaments to body shapes of viruses and bacteria. Notably,
biological filaments like the bacterial flagellar hook,1–3

microtubules,4,5 and intermediate filaments6 exhibit an unusual,
common motif: their straight ground state can become unstable,
reshaping them into polymorphic toroids and superhelices. Not
less surprisingly, when driven out of equilibrium, stimuli-
responsive but otherwise straight fibers can acquire a dissipative
toroidal steady state of spontaneous rotation.7,8 Visually inspect-
ing the shapes of filamentous viruses like influenza C (IV-C)9,10 or
Torovirus,11 see Fig. 1a and c, the natural question arises if viral
envelopes posses a similar symmetry-broken, toroidal ground
state. And as viruses like influenza A (IV-A) and C,12–14 as well as
paramyxovirus15 have been shown to be able to roll on surfaces
due to their spike proteins’ catalytic activity, can their toroidal
state be driven catalytically and used for virus propulsion?

In the following we consider a plausible model for the
emergence of curved states, that arise via a spontaneous
symmetry breaking, represent a soft mode around the virus
axis and which we call the ‘‘toro-elastic’’ state of the viral

envelope. It relies on surface switchability via spike protein
contacts and a mismatch-stress with layers further inside the
virus. Notably, recently resolved surface structures of influenza
C17 have shown extensive spike–spike contacts, establishing a
hexagonal lattice on the envelope. The switch corresponds to
the making-and-breaking of any reversible physical bond –
including hydrogen bonds, screened-electrostatic, van der
Waals bonds – as well as protein-tail-mediated interactions.
After demonstrating the mechanism giving rise to the toro-
elastic state, we explain how its continuous ground state can act
as a ‘‘wheel within the material’’,7 mirroring the ‘‘universal
joint’’ model of the bacterial flagellar hook.1–3

Finally, we consider such a filamentous virus with a toroidal
mode embedded into a loose 3D mucus network, cf. (Fig. 1d). In
this environment, polymeric ligands that can be bound to and cut
by the enzymatic spikes on the viral envelope can induce dynamic
force imbalances. This situation reflects what influenza is con-
fronted within the mucus of our airways, a highly viscous environ-
ment containing polymers with sugary ends (glycans) the virus
spikes interact with. We show that the cutting of glycans by
enzymatic spikes can force the toroidally curved state to sponta-
neously rotate, once enzymatic activity surpasses a certain thresh-
old. This dynamic shape rotation should allow the virus to move
at small but noticeable speeds, and could explain why catalytic
activity increases mucus penetration so strongly for influenza.18,19

2. Toro-elastic state

We focus here on influenza C, whose spike protein is called
Hemagglutinin-esterase-fusion protein (HEF), for which
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spike–spike interactions have been experimentally evidenced.17

We consider a virus whose surface is covered with radial spikes
with initial axial spacing l0 (see Fig. 1e). If the virus curves,
variations of strains e and thus distances along the axis between
spikes are amplified proportional to the effective radius of the
cylindrical virus, R, and the centerline curvature k like l(k) E
el0 = kRl0. In addition, there is a geometric ‘‘shortcut factor’’ for
finite deformations: For spiky surface elements that interact
along the shortest spatial distance, this distance is given by the
secant line, see Appendix A for details.

Introducing the vectorial curvature perpendicular to the
axis j = (kx, ky) = k(cosf, sinf) with orientation angle f and
magnitude k, and parameterizing the material-fixed spike
positions with angle y (with y = f corresponding to the
orientation of the curvature vector, i.e. towards the bend), the
spacing between surface contacts along the axis is given by, see
Fig. 1f and Appendix A,

lðk; y� fÞ ¼ l0
sin kl0=2ð Þ
kl0=2

ð1� Rk cos y� fð ÞÞ: (1)

Here the first term is the shortcut factor described above and
the second reflects the dependence on angle differences. At this
point we fix j to point in the x-direction (f = 0).

The spikes are assumed to be uniformly distributed over the
surface, cf. Fig. 1f on the right, and every spike can interact with
its axial neighbors that are within range, letting them gain a
binding energy (per unit length), v(l). On the flip side, binding
along its long axis implies a curving of the cylindrical virus,
which costs elastic bending energy. Modeling the latter con-
tribution as a harmonic term with bending stiffness B, the total

energy per cross section is hence given by

E ¼ Ebend þ Ebind ¼
1

2
Bk2 þ

ð2p
0

v lðk; yÞð Þdy: (2)

While HEF-spikes have been shown to strongly interact,17 their
detailed binding potential v(l) is yet unknown. However, as the sum
of many small interactions between different regions along the
spikes’ surfaces, it will be of short-ranged nature. Interestingly, apart
from its magnitude and short ranged nature, the detailed form of v
turns out to be non-essential for the emergence of the toro-elastic
state. For demonstration, we here use a linear-exponential potential,

vðlÞ ¼ �v0
l

s
exp 1� l

s

� �
; (3)

as sketched in Fig. 2a. It has a minimum, corresponding to the
bound state, at l = s with v(s) = �v0 and quickly flattens for l 4 s.

Inserting eqn (1) and (3) into eqn (2), the energy can be
calculated analytically.† Importantly, for suitable parameters
its shape is of Mexican-hat-type, see the inset showing the
energy shape in the light green region of Fig. 2b. This is what
we call the ‘‘toro-elastic’’ state: a finite curvature is preferred,
whose direction (i.e., angle f) is arbitrary and hence corre-
sponds to a soft mode. Fig. 2b shows the different energy
landscapes/shapes when varying the depth, v0, and the

Fig. 1 Emergent toroidal shapes of various biofilaments (a)–(c), a filamentous influenza virus in its natural environment – the mucus (d), and geometry of
the virus and the toroidal mode (e) and (f). (a) Torovirus.16 (b) The bacterial flagellar hook.2 (c) Influenza C: long filamentous viruses display both straight
and oscillatory shapes10; the inset shows a shorter, curved influenza C that is actively rolling on a glycan-coated surface.13 (d) The mucus environment
that the influenza virus has to bypass forms a loose protein fiber network decorated with sticky glycan chains. (e) In the considered filamentous virus,
spike proteins are arranged on a typically staggered column lattice with spacing l0 and effective radius R (including the spikes). (f) Curving the lattice by a
curvature j allows some spikes to interact at the inside of the bend (left). Which particular spikes can interact depends on their orientation angle y (right)
with respect to the angle f of the curvature vector j.

† The result is

E ¼ 1

2
Bk2 � 2pv0

a

kR
e 1� a

kRð Þ I0ðaÞ � kRI1ðaÞð Þ;

where a ¼ 2R

s
sinðkl0=2Þ and I0, I1 are the modified Bessel functions of the first

kind.
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minimum position, s, of the potential for fixed spike distance l0

and virus stiffness B. This phase diagram displays: (i) an elastic
state (dark green) where j = 0 is the energy minimum, corres-
ponding to a straight virus; (ii) the toro-elastic region (light
green), where the minimum is a circle with |j| = ktor and
arbitrary angle f; and (iii) a coexistence region (yellow), where
both previous states are local minima, with a barrier in
between. Fig. 2c shows a similar phase diagram in the plane
spike distance l0 vs. minimum position of the potential s, now
for fixed potential depth v0.

To understand when the straight state becomes unstable,
we expand the energy up to second order in curvature, yielding

E ¼ E0 þ
1

2
Beffk2 with E0 ¼ �

2pl0v0
s

e1�
l0
s and an effective

bending stiffness Beff = B + Bbind with Bbind ¼

2pv0l02e1�l0=s
R2

s2
1� l0

2s

� �
þ l0

12s
1� l0

s

� �� �
. This binding-

induced part of the effective stiffness can become negative. In
fact, this can be always satisfied for l0 \ 2s if in addition the
interaction is sufficiently large, v0 c el0/sB/l0

2: then Bbind over-
rules B and the filament curves, with higher order terms
stabilizing a finite toroidal curvature ktor.

This toro-elastic state generically appears for short ranged
potentials; a general condition can be determined by expanding
an arbitrary potential v(l) around its straight state l0, see Appendix

B. Then for
R2

l02
� 1, Beff = B + pv00(l0)l0

2R2, implying that the

curvature v00(l0) of the potential must be sufficiently negative,

v00 l0ð Þo �
B

pl02R2
: (4)

This is in fact fulfilled by many short ranged potentials, when
crossing over from the minimum to the plateau at large distances.

The virus curvature in the toro-elastic state adjusts such that
a significant portion of the cross-section (typically half of it),

benefits from the surface interactions. For that, the elements of
the surface need to shift from their unperturbed distance l0 to
s, i.e. by an amount l0 � s B ktorRl0, which yields an estimate
for the curvature of the toro-elastic state

ktor B R�1(1 � s/l0). (5)

The stiffness of the toroelastic state (i.e. the curvature orthogo-
nal to the rim of the ‘‘Mexican hat’’) is dominated by surface
interactions. To estimate it, we assume a curvature variation dk
around ktor, such that the binding distance changes by Bs,
implying dk � s

Rl0
, and the binding energy by dE E |E0|.

Equating
1

2
Ktor dkð Þ2� E0j j then yields

Ktor � 4p
l0

s

� �3

e1�
l0
sR2v0 (6)

up to subdominant contributions from bending elasticity.
Considering numbers, typical scales are l0 = 25 nm,

s = 10 nm and R = 50 nm; potential strength around v0 =
1kBT nm�1. The bending rigidity of a virus is hard to measure,20

but considering the virus as a membrane tube we estimate B =
2pR � 10kBT C 3kBT mm. Using these values, one finds Bbind C
�5.7kBT mm, hence indeed Beff o 0 is at reach. Further we
estimate from eqn (5) and (6) that ktor C (100 nm)�1 and the
toro-elastic stiffness Ktor C 100kBT mm, which is much larger
than the usual bending rigidity.

3. Toroelastic state driven by ligand
dynamics

Having seen how the toro-elastic, curved state arises, we now show
how the orientation angle of the curved state – representing a soft
mode due to the Mexican-hat-type potential – can be driven to
rotate in an out-of-equilibrium situation. For this we assume that
the virus is embedded in a solvent that contains a substantial

Fig. 2 (a) Spike interaction potential with a minimum at a finite distance s. (b) ‘‘Phase diagram’’ in the plane potential depth, v0, vs. potential minimum
position, s. The straight ground state (dark green) has Beff 4 0 (usual elasticity) and its energy minimum is at k = 0. However, it can become unstable
through spike–spike interactions and give rise to a Mexican-hat-type potential (light green), where Beff o 0 and the energy minimum is at finite k and
arbitray angle, reflecting a soft mode (‘‘toro-elastic’’ mode). There also exists a coexistence region (yellow) where k = 0 and the toro-elastic state are
separated by an energy barrier. Parameters: s in nm and v0 in kBT nm�1 for fixed l0 = 25 nm. Virus radius R = 50 nm; bending rigidity B = 3kBT mm. (c) Phase
diagram as function of the unperturbed spike spacing, l0 (in nm) vs. potential minimum position, s (in nm), for fixed contact potential strength v0 = 1kBT
nm�1, other parameters as in (b).
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concentration of glycan-coated polymers which the virus spikes’
can attach to and enzymatically cut. This reflects the situation in
the mucus, which is a gel/network of long and heavily (up to 80%)
glycosilated mucins,21 having a pore size of 100–500 nm,22 hence
larger than the virus diameter. For simplicity, we model this
situation via di-glycan ‘‘dumbbells’’ floating in solution, repre-
senting attachment to glycans from the same mucin backbone.
We would like to stress that we consider the virus to be embedded
in a 3D environment, cf. (Fig. 1d). This should be contrasted to the
catalytic spike-induced motion of viruses on surfaces.12,13,23 In the
latter case, strategies like the burnt-bridge mechanism, employing
the trail of cut glycans behind to rectify the motion, or rolling14,24

can be used. In contrast, in the absence of surfaces both mechan-
isms are not possible or not effective (with the trail in 3D having a
mathematical measure close to zero).

The argument for rotation involves two steps: first, when
glycan dumbbells attach to two axially neighboring spikes, they
introduce longitudinal tensions on top of the toro-elastic state,
creating a torque. Second, the cutting of the glycan dumbbells
leads to a release of tension with a certain dead time for new
binding, since cut glycans have yet to detach. Like that, torque
is maintained by breaking of detailed balance and the dead
time gives the system a ‘‘directional memory’’, once a direction
of rotation is picked.‡

To calculate the torque due to dumbbell attachment, we
assume the di-glycans to be harmonic polymer springs with
spring constant S and vanishing preferred length. They can be
unbound (state B0), bound to one spike (state B1) or to two
neighboring spikes – along the backbone – defining the double
bound state D, see the upper part of the reaction scheme in
Fig. 3b. In the double bound state, glycans stretch out to a non-
zero length given by eqn (1), with f the orientation of the
curvature j and y the angular position of the spike it attaches to
in the considered cross-section.

Note that, for simplicity, we consider here only relevant
spike-glycan interactions, which are the ones along the virus
axis, or having, when projected, a component along the axis.
Couplings along the azimuthal direction are neglected, since
they do not contribute to axial bending. Note that this simpli-
fication introduces effective, phenomenological binding rates.

As the spikes are assumed to be uniformly distributed over the
surface, all states have to be described by a function of the
azimuthal angle y. In general, a cross-section will have an azi-
muthal imbalance of the (double-)bound density D(y). The total
glycan stretching energy per cross-section of thickness l0 then reads

Estr Dð Þ ¼
S

2

Ð
D yð Þl2ðk; yÞ. Assuming small curvatures kR, kl0 { 1

and applying a mode ansatz D(y) = D0 + Ds siny + Dc cosy, to linear

order Estr Dð Þ � S

2
l0
2 D0 � Rk Dc cosfþDs sinfð Þð Þ. The corres-

ponding torque (per l0 section) is given by Mdr ¼ �
@Estr

@f
and in

the frame co-moving with the toro-elastic curvature evaluates to

Mdr ¼
Sl0

2

2
RkDs ¼ mdrDs: (7)

This is the driving torque from the inhomogeneously distrib-
uted double bound glycans, with mdr the characteristic torque
scale. Assuming a Kuhn length of a glycan chain of b B 0.5 nm25

and a number of bonds of N B 40 or larger one expects typical

spring constants S ’ kBT

bN2
� 0:01� 0:1kBT nm�2. Together with

the above parameters and k = ktor, we estimate mdr C 2–20kBT,
which is much larger than the hydrodynamic resistance of such a
small cross-section.§ In view of this, we will first study the case,
where resistance can be completely neglected, implying that the
total torque is zero. It should be however noted that the attach-
ment–detachment dynamics to the sticky mucin network elements
of the mucus can contribute an additional friction term due to
dragging a portion of the mucins along with the virus. Therefore,
in a next step, we will add the (rotational) resistance perturbatively.

To describe the possible steady-state torque generation, we now
consider the enzymatic glycan cutting activity of the HEF spike. The
reaction scheme just discussed has to be extended by two more
states associated to the cutting reaction, as sketched in the lower
part of Fig. 3(b): First, a double bound glycan can be cut into two, to
a state C2 that still blocks both spikes for further attachments. If
one of these cut parts detaches, or if a single bound glycan is cut,
this yields state C1. Importantly, only if all cut parts have left, one
recovers state B0 and the spike can be ‘‘reused’’ for attachment.

The full reaction scheme of Fig. 3b translates into

d

dt
B1 ¼ k1GB0 � k�1 þ k2 y� fð Þ þ kcutð ÞB1 þ k�2D;

d

dt
D ¼ k2 y� fð ÞB1 � k�2D� kcutD;

d

dt
C1 ¼ kcutB1 þ k�1C2 � k�1C1;

d

dt
C2 ¼ kcutD� k�1C2;

(8)

where all considered states are functions of y. An additional
equation for the unbound state B0 can be eliminated via B0 +
B1 + C1 + C2 + D = 1, since all quantities are site population
fractions. These dynamic equations can be directly deduced
from the scheme in Fig. 3b. Exemplarily, the equation for the
single bound state B1 has a gain term from the attachment of a
glycan (G) to a free spike (B0) with rate k1; loss terms propor-
tional to B1 and reflecting detachment (with rate k�1), attach-
ment to a second spike (with rate k2) and getting cut (with rate
kcut), and another gain term if a double bound state (D)
detaches from the adjacent spike (rate k�2). Importantly, the
double binding rate k2(y � f) depends on the position relative to

‡ Jumping bit ahead, as we will see later in this section, the direction of rotation
is set by the phase-shift of certain ligand-binding populations introduced in Fig. 3
and plotted in Fig. 4.

§ Note that this value is large, considering that it acts on a short section of size l0.
As a reference, the rotational friction at an angular frequency o = 2ps�1 in a rather
viscous medium of Z = 0.1 Pa s (100 times of water) for R = 50 nm is approximately
M E 0.05kBT, i.e. largely subdominant compared to the linker-induced torque Mdr

for not too low Ds.
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the curvature vector: for a bent virus, di-glycans bind more easily
at the inside of bent regions where they stretch less, cf. (Fig. 3a).

We now consider the steady-state, where the virus curvature
j is rotating with constant angular frequency o – that has to be
determined, and could of course be zero – implying f(t) = ot,
and where k = const. as suggested by the high stiffness of the
toroidal state estimated above. We hence transform eqn (8) into
the co-moving frame, f = 0, where steady states become time
independent and the total time derivative transforms into an

advective derivative
d

dt
! o

@

@y
.

The double binding rate, k2(y) in the co-moving frame, can
be specified as follows: we expect a relation

k2(y) = k0
2(1 + a cos y), (9)

with a coupling constant a 4 0 that that will depend on
the stretching constant of the glycan polymer chains that
connect neighboring spikes. For small curvatures kR, kl0 { 1,
one can relate the binding rates on the two opposing

sides
k2 yð Þ

k2 yþ pð Þ ¼ e

S

2

�l2 yð Þ þ l2 yþ pð Þ
kBT � 1þ 2Sl0

2

kBT
Rk

� �
cos y.

Matching this result with eqn (9),
k2 yð Þ

k2 yþ pð Þ ¼
1þ a cos y
1� a cos y

’ 1þ 2a cos y, yields the estimate

a ¼ Sl0
2

kBT
Rk (10)

for the dimensionless coupling constant, which in the follow-
ing is assumed to be small for simplicity.

The equations for the steady state dynamics in the co-
moving coordinate system can be solved by applying a mode
ansatz, similar as above for the driving torque. Now all
chemical species are expressed as X = X0 + Xc cos y + Xs sin y
for X = B1, D, C1, C2. In the case of negligible fluid friction, and
fast binding of the second bond of the dumbbell, k0

2 c kothers,
the solution can be given analytically, see appendix C. One
finds that o = 0 – i.e. no rotation – is always a solution.
However, solutions with finite angular velocity, given by

o2 ¼ k1Gkcut

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k�1

2

k1Gkcut

s0
@

1
A� k�1

2; (11)

bifurcate from the no-rotation branch for sufficiently rapid
glycan cutting rate

kcut 4 kc;0cut ¼
k�1

2

3k1G
: (12)

Rephrasing eqn (12) as
k1G

k�1

kcut

k�1
4

1

3
, the first ratio demands

a sufficiently large effective attachment rate (k1G) to supply for
new D (for large k2, B1 converts to D fast) and the second a
sufficiently large cutting rate to maintain non-equilibrium. Due
to the product, faster attachment can compensate for slower
cutting and vice versa. Notably, the rotating state also requires a
sufficiently long ‘‘dead time’’ interval tdt = 1/k�1, i.e. a suffi-
ciently small off-rate k�1 compared to kcut. This is intuitively
understandable, as large dead times allow for the maintenance
of the angular direction (clockwise/anticlockwise rotation),
while too short dead times would effectively erase the direc-
tional memory of the main force-generating ‘‘power-stroke’’
sequence B0 - D - Ci - B0 and the time-ordering of the force-
generating state D(y, t) in the azimuthal direction necessary for
persistent rotation.

It is also possible to solve the problem in the presence of the
small, hydrodynamic rotational resistance. Assuming a hydro-
dynamic (Stokes) rotational friction torque Mh = xho = 4pZR2l0o
and equating it with the driving torque, eqn (7), one gets kc

cut =
kc,0

cut + kc,1
cut(Z). The correction is to leading order linear in fluid

viscosity Z, proportional to
R

a2Sl0k
and in addition depends on

the chemical rates. See Appendix C for the result, eqn (46), and
how it is obtained.

Fig. 4a shows the angular velocity o as a function of the
cutting rate kcut: the red curve shows (the positive branch of)
eqn (11) and the black curve are numerical results including the
frictional torque. Since the kinetic parameters of IV-C have not
been characterized, we had to resort to estimates for IV-A here:
G = 3 mM; k1 = 0.1 mM�1 s�1, k�1 = 0.1 s�1;26,27 k0

2 = 1 mM�1 s�1,
k�2 = 0.1 s�1. Note that cutting rates are estimated conservatively,
IV-A’s neuraminidase reaches rates of up to kcut = 15 s�1.28

We have shown that dynamic force imbalances, caused by
interactions of the virus spikes with glycans from the 3D
environment, can lead to a rotation of the toroidal state. We
note that in Section 2, we considered the toroidal state to be
caused by spike–spike interactions. Hence the creation of the
toroidal state, and its rotation outside of equilibrium, have
different causes: spike–spike vs. spike–glycan interactions.
While the former needs localized, anharmonic interactions,
for the additional imbalance caused by the latter linear spings
are sufficient. Experimental evidence shows strong spike–spike
interactions, at least for IV-C.17 Nevertheless, one could also
imagine the toroidal state to be caused (or modulated) by spike-
glycan interactions as well. In that case, the rotation is probably
less stable: when the virus moves, its rear will be exposed to
fewer uncut glycans, and the helix at the rear may unfold. Such
effects, as well as considering a varying density of the enzymatic
spikes along the virus backbone – or a phase-separated one, as
in IV-A23 – would be interesting to investigate in the future.

Fig. 3 (a) Interaction of tension-inducing polymeric ligand springs (glycan
dumbbells) with the virus spikes. (b) The reaction kinetics of equilibrium
binding and catalytic cutting.
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4. Helix formation

Let us now come back to the helical shapes of IV-C as shown in
Fig. 1c, noting that also filamentous IV-A sometimes displays
curvature.31 So far, we considered a single cross-section, hence
the natural question arises how different cross-section are
coupled. As sketched in Fig. 1e as pairs 1–2 and 3–4, in general
viruses have staggered spike sub-lattices.

Assuming for simplicity two sub-lattices, I and II, these
experience the mean effective curvature induced by the other

sub-lattice over their length scale (l) as kII ¼
1

l

Ðþl=2
�l=2jI sð Þds

����
���� and

analogously for kI, implying a smearing-out of sectional curva-
ture over the two lattices. For a curvature vector of constant
amplitude slowly winding with a torsion rate t { l�1 like j(s) =
k(cos(ts)ex + sin(ts)ey), the total energy of the two sub-lattices
can be calculated to be, see Appendix D, as

Etot=Ktor ¼
1

4
ktor � kð Þ2þ1

4
ktor � kð Þ þ k

l2t2

24

� �2
: (13)

This energy is positive definite. Its ground state is curved
and untwisted, k = ktor and t = 0. The first term is similar to
classical bending energy, followed by a torsion–bend coupling

that is quartic for k = ktor. Notably, for curvatures larger than
optimal, k 4 ktor, the torsion becomes bistable with two new

preferred states t1;2 ¼ �
ffiffiffiffiffi
24
p

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ktor=k

p
. Hence external bend-

ing torques – like those due to the above-discussed glycan
binding – will turn the toroidal ground state into a bistable
helix. The symmetry between the two helical states is likely
broken by a geometrical chirality of the natural spike lattice –
an effect neglected here for simplicity.

5. Discussion and conclusions

There is an old question from biology asking ‘‘why nature does
not have wheel and axles’’. In the light of what we know about
the emergence of toroidal zero-energy modes in the bacterial
flagellar hook2,3 (and possibly microtubules4,5), the question
can be tentatively answered by: Nature has something better –
the ‘‘wheel within (the filament)’’. In fact, to implement and
maintain bi-component wheel-axle system is hard to achieve
biologically, but a very practical replacement exists: any elastic
object equipped with a circularly symmetric zero-energy mode.
Such structures have the great advantage of being single piece
continuous structures that are containing both an axle (the
material frame of the structure), and the wheel – the deforma-
tion propagating (rotating) with respect to the material frame at
virtually no elastic energy cost. The simplest of such ZEEMs7

(zero elastic energy modes) seems to be the toro-elastic mode
we revisited here for filamentous viruses.

We have shown that such a mode can generically appear for
any rough surface spiked cylinder – like a filamentous influenza
virus – for sufficiently strong and short ranged spike inter-
actions, competing with elastic restoring forces of the elastic
core of the cylinder. Once this toro-elastic ZEEM emerges and
equilibrium detailed balance is somehow broken – as by the
spike-catalysed glycan-cutting investigated here – it becomes
possible for this ‘‘wheel-like’’ mode to actively rotate in a
particular direction, randomly picked by a non-equilibrium
bifurcation as investigated here. The resulting spatial motion,
that could be seen as a shape invariant, constant angular
velocity ‘‘re-bending’’ dynamics of the filament perpendicular
to its axis is similar to the anholonomic body reshaping of a
falling cat32,33 and has been described in various terms and
contexts in the literature. Other examples include the ‘‘ever-
sion/inversion’’ for self-rolling polymer fibers,8,34 ‘‘wobbling
motion’’ in clamped, superhelical microtubules4 and the ‘‘ideal
joint’’ rotation for the bacterial flagellar hook driven by the
flagellar motor.3 A related active re-bending/eversion motion in
the soft, body reshaping bacterium spiroplasma has been also
recently described.35

Furthermore we have shown that the toro-elastic mode in a
long filament equipped with a sticky surface lattice can induce
helix formation in addition to toroids. The spontaneous emer-
gence of multi-stable and rearranging helices is very common in
biological filaments and their origins have been studied in various
systems including bacterial flagella,36–39 microtubules,4,5

Fig. 4 (a) The toroidal mode’s angular frequency as a function of the cutting
rate kcut (both in units s�1). Red curve: analytical result, eqn (11), obtained
without friction. Black curve: numerical result with realistic frictional torque
coefficient xh/mdr = 0.01. Parameters as described in the main text. Inset: The
angular dependence of the steady-state populations. Right hand side: Scaled
and shifted populations for visual comparison. Note their typical phase lag. (b)
The polar plot of the double-bound and cut state populations, D(y,t) and C2(y,t)
respectively, shows their characteristic phase-shift determining the direction of
toroidal rotation. Polar plots are schematic and not to scale. (c) The latter
kinetics induces a uniform, shape-invariant rotation of a short toroidal virus or
an elongated helical virus with frequency o. When embedded in a viscous fluid
the rotation leads to a swimming kinematics similar to fluid vortex lines.29,30

Paper Soft Matter



This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 7185–7198 |  7191

intermediate filaments6 and spiroplasma.35 Looking at the wealth
of examples, one is tempted to suspect that the cylindrically
symmetric filament shape could be structurally unstable against
perturbations and that the superhelical filament is the rule rather
than the exception in Nature. The common theme behind the
emergent helicity in these filaments seems to be some form of
core–shell stress mismatch combined with various forms of
elastic anharmonicity, that originates from mechanical, geometric
or molecular nonlinearities. In contrast to these previous exam-
ples, in the proposed virus model, the helical states are still
subcritical or ‘‘evanescent’’, that is, only upon (arbitrary small)
additional stresses, the straight state spontaneously breaks the
symmetry and picks one of two handed helices. However, it
appears possible or even likely that specific spike-lattice arrange-
ment and chiral spike–spike interactions would give rise to more
specific, additional effects, so far neglected here. This would lead
to definite handedness helices in the ground state of the virus
and be described by similar physics as in the other helical
systems.36,37,39,40

Finally, if – via the enzymatic drive described above – the
toroidal or helical virus uniformly rotates its body keeping its
shape invariant, see (Fig. 4c), we expect it to self-propel and
swim. Whether the motion corresponds to a toroidal or a
helical rotation depends on the presence (or absence) of
angular shift between the directions of curving of two subse-
quent cross-sections. In the case that all curvature directions
are found in a single (osculating) plane, an ideal toroidal
rotation occurs, see (Fig. 4c) on the left. If the plane of curvature
is changing along the contour, the rotation is helical, see
(Fig. 4b) on the right. The swimming kinematics will be that
of a helically shaped spinning cable. Mathematically this is a
vortex line of fixed vorticity p o, self-advecting through the
fluid.29 In leading order the self-propulsion is independent of
the (small) helical torsion and occurs at typical velocities of
spinning tori v B okR2.30,41 Note that the predicted shape
invariant swimming contrasts body-reshaping swimmers (like
spirochetes) using propagating bending waves, where the velo-
city depends on undulation amplitude and wavelength but not
on radius.42

The described motility mechanism should be directly applic-
able to IV-C. It could also be relevant for influenza A, where,
however, the two dynamic properties of the spike – the binding
to/unbinding from glycan and the cutting of glycan residues –
are not co-localized in a single HEF spike. In IV-A, these tasks
are performed by two different spike proteins, hemaglutinin
(HA) for the binding/unbinding and neuraminidase (NA) for
the cutting. This makes the surface structure of IV-A more
complex, and in fact, HA and NA are often phase-separated on
the virus surface,23 implying that the theory developed here has to
be generalized to inhomogeneous spike distributions. Our theory
is also relevant for the design of synthetic self-propelled objects,
where the adhesion–cutting mechanism has been already imple-
mented, e.g., via DNA–RNA hybridization (binding/unbinding)
and catalytic action of RNase H (selectively cutting duplexes), to
induce surface-based motion.43–46 The here-described 3D toroidal
motion should be at reach for DNA nano-tubes floating in a

solution of RNA, able to bind to two DNAs along the backbone,
and RNase H. One could also think of synthetically motorizing the
flagellar hook.2,3

Coming back to viruses, while IV-C has rarely been studied,
many studies on IV-A suggest that the enzymatic activity
(of NA in case of IV-A) is important for mucus penetration, both
on the macroscopic level,18,19 as well as by observing filamentous
viruses directly.23 For purely spherical viruses, however, it seems
that NA is less relevant and it is rather the mesh size of the
mucus that determines the diffusion, as reported in ref. 47. This
finding is in accordance with our model and the one by Vahey
and Fletcher,23 where only filamentous viruses can profit from
enzymatic mechanisms. We note that the mechanism described
in ref. 23 is ratchet-based, hence the longer the filament, the
slower the motion – since then the virus engages many links,
causing increasing friction, proportional to virus length. In
contrast, the mechanism proposed here would be effective
independent of virus length.

In future studies, the nature of the mucus as a natural
habitat environment for filamentous influenza viruses needs
some deeper considerations. Regardless of the detailed motility
mechanism, the mucus poses a significant barrier to viral
motion. Depending on its mesoscale morphological features,
like its pore size47 or glycan density and type,21 it will impose
different constraints to the viral filament in various shapes and
modes of motion. Large scale motion through such an environ-
ment would not be easily possible for a virus that is straight or a
piece of a torus, while a helical filament could easily ‘‘follow its
own footprint’’ and reptate its way through the mucus pores.

In conclusion, filamentous viruses like influenza C, posses-
sing the toro-elastic state due to axial interactions can develop
helical shapes and can attain a spontaneous rotation upon
binding and cutting interactions with the glycans floating in
the mucus. The predicted angular velocities are comparable
to the rolling angular velocities of surface attached viruses
(fractions of s�1 13,14). The expected swimming velocity of tens
of nm/s is rather modest compared to swimming speeds of
microorganisms, yet still of the order of one virus size
per second and hence preferable to staying immobilized in
the extremely viscous, sticky environment faced in the mucus.
The proposed mechanism adds another possible motility mode
– effective in 3D surroundings such as loose mucus networks –
to the existing repertoire of the influenza family and torovirus,
beyond ratchet-like motion23 and rolling,12,13 which both
employ glycan-coated surfaces.
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Appendix

A. Derivation of the ‘‘shortcut factor’’:
surface–surface contact spacing

To derive the formula for the spacing between surface contacts
from the main text, eqn (1), we assume that deformations are
linear, keeping the ‘‘neutral line’’ arc-length contour distances
unchanged, i.e. d12 = const., independent of k. After uniformly
bending the virus with a center line curvature k, cf. Fig. 5, the
surface elements on the outside of the bend (found at a radial
spacing R from the neutral line) change their distances along
the circular contour proportional to the curvature k

d
0
12 ¼ d12 1þ Rkð Þ:

For spiky surface elements that interact along the shortest
spatial distance, the relevant spatial distance s12 between two

spikes is shorter than the surface arc-length d
0
12: it is given by

the length of the secant line corresponding to an opening angle

g ¼ 1

2
ffðS1OS2Þ ¼

1

2
kd12 with length

s12 ¼
sin gð Þ
g

d
0
12 ¼

sin
1

2
kd12

� �
1

2
kd12

d12 1þ Rkð Þ:

The spatial distance can be simply generalized to any
azimuthal orientation y of the bent cylinder (where y = 0 points
to the ‘‘inside’’ of the bend) such that

s12 yð Þ ¼
sin

1

2
kd12

� �
1

2
kd12

d12 1� Rk cos yð Þ:

With d12 = l0 and giving the curvature direction another
angle, f, this is eqn (1) from the main text.

B. Influence of the potential shape on
the emergence of the toro-elastic state
Gaussian potential

We investigated a more general potential of Gaussian form,

vðlÞ ¼ �v0 exp �
ðl � sÞ2

2d

� �
; (14)

where one can vary the position of the minimum (s), the depth
(v0) and in addition the width of the potential well (variance d)
all independently.

Unfortunately, the energy cannot be calculated analytically
anymore. Fig. 6 shows results for the ‘‘phase’’ diagrams
obtained by numerical minimization. The color code is the
same as in Fig. 2. The left figure shows the plane l0 vs. variance
d for fixed s = 10 nm. One can see a certain symmetry with
respect to l0 = 10 nm: now, the spikes can also induce the toro-
elastic state by stretching out towards the minimum of the
potential. The toro-elastic state is easiest to attain for a short
ranged (variance) d of the potential, but on the other hand
its existence region shrinks for small d and the region of
coexistence increases. The right figure shows the plane l0 vs.
s for fixed d = 10 nm2. One can see interesting series of
transitions. For instance, choosing s = 15 nm, upon increasing
l0 from a small value one finds first the elastic state, then
coexistence, then the toro-elastic state, again an elastic region
and a toro-elastic region (and again coexistence for larger l0,
beyond the region visible in the figure).

The additional study of the Gaussian potential shows that
the shape of the potential of course matters, but that the three
states described in the main text – elastic, toro-elastic and
coexistence – are again found.

Harmonic potential

To shed some light on which properties the binding potential
has to fulfill in order for the toro-elastic instability to occur, let
us study the simplest case of a harmonic binding potential.
Note that a harmonic v(l) is not physically realistic, as every
realistic binding potential will have a finite range. Using v(l) =
a(l � b)2 with some spring stiffness 2a and preferred length b,

Fig. 5 Sketch of the geometry of a strongly bent cylinder (the virus
capsid/envelope) and the emergence of the short-cut factor.

Fig. 6 (a) l0 in nm and d in nm2 for s = 10 nm. (b) l0 and s in nm for d =
10 nm2. Color-code is according to the energy minima, as in Fig. 2b and c.
Dark green: elastic state, straight state is stable; light green: toro-elastic
state, with an energy minimum at finite k; yellow: coexistence region.
Parameters: virus radius R = 50 nm; virus bending rigidity B = 3kBT mm;
contact potential strength v0 = 1kBT nm�1.
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the binding energy reads (note that l = l(k,y))

Ebind ¼
ð2p
0

vðlðk; yÞÞdy ¼ constþ a

ð2p
0

l2dy� 2ab

ð2p
0

ldy

The two integrals can be evaluated

L1 k; yð Þ ¼
ð2p
0

lðk; yÞdy ¼ 2pl0
sinðkl0=2Þ
kl0=2

;

L2 k; yð Þ ¼
ð2p
0

l2ðk; yÞdy ¼ l0
2 sinðkl0=2Þ

kl0=2

� �2

2pþ pR2k2
� 	

;

(15)

and dropping the constant energy shift, one gets

Ebind ¼ 2pal02
sinðuÞ
u

sinðuÞ
u

1þ 2
R

l0

� �2

u2

 !
� 2

b

l0

 !

with u = kl0/2. Expanding for small u shows that in the relevant
limit R 4 l0 and for any positive preferred length b of the
harmonic spring, the quadratic term is always positive.

But in principle, a negative quartic term could still induce
an instability. To investigate this, adding the bending stiffness

term
B

2
k2 ¼ B

2
2
u

l0

� �2

¼ 2B

l02
u2 yields the total energy

Etot uð Þ
2pal02

¼ gu2 þ sinðuÞ
u

sinðuÞ
u

1þ 2r2u2
� 	

� 2b
� �

(16)

with the three dimensionless constants

g ¼ B

pal04
; r ¼ R

l0
; b ¼ b

l0

where r 4 1, typically even r c 1.
Taylor expanding for small u yields, neglecting a constant,

Etot uð Þ
2pal02

¼
3gþ 6r2 þ b� 1
� 	

u2

3
�

120r2 þ 3b� 8
� 	

u4

180
:

When the (negative) quartic and the (positive) quadratic
term become comparable, we expect a barrier u E ubar to occur
which for the special case of b = 0 can be given as

ubar ’
3gþ 6r2 � 1

2r2 � 2

15

0
B@

1
CA

1=2

which typically is c1. That means in practice this case is not
relevant, as excluded volume effects should enter way before, at
u of order 1.

In summary, we have just shown that for a harmonic
potential, the straight state increases in stability and cannot
show an instability.

Criterion for toro-elasticity for a general potential

Let us now assume a general potential v(l) and investigate,
when the straight state can become unstable. For that we

expand v(l) around its straight state l = l0,

vðlÞ ¼ v0 þ v0 l0ð Þ l � l0ð Þ þ 1

2
v00 l0ð Þ l � l0ð Þ2þ::: (17)

The binding energy can again be evaluated, expanding the
functions L1, L2 defined in eqn (15) in powers of k. Again
dropping constant energy contributions, we get

Ebind ¼
1

2
l40p �

v0 l0ð Þ
6l0
þ v00 l0ð Þ

R2

l02

� �
k2 þ . . . (18)

Interestingly, going on in the expansion of eqn (17), the
contribution from v00 0(l0) cancels in O(k2). Furtheron, it is easy
to check that, using eqn (18) for the linear-exponential
potential, eqn (3), exactly recovers the criterion discussed in
the main text. This both corroborates that the contributions
from v0(l0) and v00(l0) are the most relevant contributions.

For the toro-elastic state to emerge, the prefactor of the term
pk2 in eqn (18) has to be negative. In general, the second term
is the dominant one, due to its large geometric prefactor
R2

l02
� 1. As a generic neccessary condition for the toro-elastic

instability – in the relevant parameter range for a thin virus –
one can hence state that v00(l0) o 0 should hold. A harmonic
potential is strictly convex and v00(l0) 4 0 forbids the instability,
as shown before. But v00(l0) o 0 is of course possible for a short
ranged potential in its concave region. In fact, all short ranged
potentials have a concave region, namely when crossing over
from the minimum to the zero-level plateau at large distances.

Including the bending rigidity, the total potential reads

Etot ¼
1

2
Bþ pv00 l0ð Þl02R2 � p

6
l0
3v0 l0ð Þ


 �
k2 þ :::

and for
R2

l02
� 1 is dominated by the first two terms. The

toroelastic state then emerges for

v00 l0ð Þo �
B

pl02R2
; (19)

as stated in the main text.

C. Perturbation theory for the rotating
state

We now consider the case where the toro-elastic curvature j

may rotate in the lab frame with angular velocity o, due to
the chemical reactions (attachment and cutting of glycan
dumbbells). We place ourselves in the co-moving coordinate
system where j is stationary and can rewrite the dynamics by
replacing the time derivative in terms of the advective derivative
d

dt
! @

@t
þ o

@

@y
. As we are only interested in the steady state, the

partial time derivative drops out and we are left with the
replacement rule

d

dt
! o

@

@y
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for the chemical reactions in the main manuscript. Eliminating
B0 by using B0 = 1 � B1 � C1 � C2 � D, eqn (8) in the stationary,
co-moving frame now read

o
@

@y
B1 ¼ þk1G�k1GðC1þC2Þ� k1Gþk�1þk2 a;yð Þþkcutð ÞB1

þðk�2�k1GÞD;

o
@

@y
D¼ þk2 a;yð ÞB1�k�2D�kcutD;

o
@

@y
C1¼ þkcutB1þk�1C2�k�1C1;

o
@

@y
C2¼ þkcutD�k�1C2:

(20)

Now we make the simple mode ansatz already mentioned in
the main part: all chemical species X = B1, D, C1, C2 can have a
constant, a cos- and a sin-mode,

X = X0 + Xc cos y + Xs sin y. (21)

The amplitudes X0, Xc, Xs need to be determined, except for
the Ds – mode – existing in the presence of external torques –
which is fixed by the torque balance: in the general case,
where an external torque is present, we have (in the co-
moving frame)

Ds ¼ m;m ¼ Mh

mdrive
; (22)

where m is the non-dimensional torque. Mh is the hydrody-
namic resistance torque. If any external torque is neglected, one
simply has Ds = 0.

We exemplify the method for the equation for C2. One inserts

the mode ansatz into o
@

@y
C2 ¼ þkcutD� k�1C2, to obtain

o
@

@y
C0

2 þCc
2 cosyþCs

2 siny
� 	

¼ o �Cc
2 sinyþCs

2 cosy
� 	

¼ þ kcut D0 þDc cos yþDs siny
� 	

� k�1 C0
2 þCc

2 cosyþCs
2 siny

� 	
:

Now we project on the modes by performing integrations
like

Ð
dy,

Ð
sin ydy and

Ð
cos ydy. This yields three conditions –

for the constant, sin- and cos-mode, respectively:

0 ¼ kcutD
0 � k�1C

0
2 ;

�oCc
2 ¼ � k�1C

s
2 þ kcutD

s;

oCs
2 ¼ kcutD

c � k�1C
c
2:

Note that terms p Ds are only present in the case of
an external torque. The equations can be solved and
simplified.

Proceeding the same way for all equations, one gets expres-
sions for B1, C1, C2 as functions of D0, Dc, Ds

B0
1 ¼

k�2 þ kcut

k02 1� a2

2

� � D0 � a
2
Dc


 �
� a
2

o

k02 1� a2

2

� �Ds;

Bs
1 ¼ �

o
k02
Dc þ k�2 þ kcut

k02
Ds;

Bc
1 ¼

k�2 þ kcut

k02 1� a2

2

� � Dc � aD0
� 	

þ o

k02 1� a2

2

� �Ds;

(23)

C0
1 ¼

kcut

k�1
B0
1 þ C0

2 ;

Cs
1 ¼

k�1 kcutB
s
1 þ k�1C

s
2

� 	
þ o kcutB

c
1 þ k�1C

c
2

� 	
k2�1 þ o2

;

Cc
1 ¼

k�1 kcutB
c
1 þ k�1C

c
2

� 	
� o kcutB

s
1 þ k�1C

s
2

� 	
k�12 þ o2ð Þ ;

(24)

C0
2 ¼

kcut

k�1
D0;

Cs
2 ¼

okcut
k�12 þ o2

Dc þ k�1kcut
k�12 þ o2

Ds;

Cc
2 ¼

kcutk�1
k�12 þ o2

Dc � kcuto
k�12 þ o2

Ds;

(25)

and three additional equations

0 ¼ k1G� k1GC
0
1 � k1GC

0
2 þ ðk�2 � k1GÞD0

� k1Gþ k�1 þ k02 þ kcut
� 	

B0
1 þ k02a

1

2
Bc
1;

(26)

�oBc
1 = �k1GCs

1 � k1GCs
2 � (k1G + k�1 + k0

2 + kcut)B
s
1

+ (k�2 � k1G)Ds, (27)

oBs
1 = �k1GCc

1 �k1GCc
2 + (k�2 � k1G)Dc � (k1G + k�1 + k0

2 + kcut)B
c
1

+ k0
2aB0

1, (28)

for the three unknowns D0, Dc, and o – note that Ds is not an
unknown, since it is fixed by m (or zero in absence of external
torque).

Approximation of fast binding rate k2

To be able to proceed, we now assume that the binding of the
second ‘‘leg’’ of a glycan dumbbell that is already attached to
the virus, k2, is faster than all other processes. More specifically,
we assume k0

2 c kothers, o while kothersB1 - 0, oB1 - 0 and only
B1k0

2 B O(1) stays finite.
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The effect is that we can drop all terms with kothersB1, express

everything in terms of D0, Dc, Ds and get C0
1 ¼

kcut

k�1
D0 ¼ C0

2 and

Cs
1 ¼

k�1kcut

k�12 þ o2ð Þ2
2ok�1Dc þ k2�1 � o2

� 	
Ds

� 	
;

Cc
1 ¼

k�1kcut

k�12 þ o2ð Þ2
k�1

2 � o2
� 	

Dc � 2ok�1Ds
� 	

;

(29)

while the other expressions for C0
2, Cs

2, Cc
2, B0

1, Bs
1 and Bc

1 stay the
same. Eqn (26)–(28) simplify to

0¼k1G 1�C0
1�C0

2

� 	
þðk�2�k1GÞD0�k02B

0
1þk02a

1

2
Bc
1; (30)

0 = �k1G(Cs
1 + Cs

2) � k0
2Bs

1 + (k�2 � k1G)Ds, (31)

0 = �k1G(Cc
1 + Cc

2) + (k�2�k1G)Dc � k0
2Bc

1 + k0
2aB0

1.
(32)

From eqn (29), we can now extract

Cs
1 þ Cs

2

� 	
¼

okcut 3k�1
2 þ o2

� 	
k�12 þ o2ð Þ2

Dc þ 2k�1
3kcut

k�12 þ o2ð Þ2
Ds

and

Cc
1 þ Cc

2

� 	
¼ 2k�1

3kcut

k�12 þ o2ð Þ2
Dc �

kcuto 3k�1
2 þ o2

� 	
k�12 þ o2ð Þ2

Ds

and inserting all known fields into eqn (30)–(32) results in three
closed equations for D0, Dc and o for given Ds:

0 ¼ k1Gþ k�2 � k1G�
2kcutk1G

k�1
�

k�2 þ kcutð Þ 1þ a2

2

� �

1� a2

2

� �
0
BBB@

1
CCCAD0

þ a
k�2 þ kcut

1� a2

2

� �Dc þ ao

1� a2

2

� �Ds;

(33)

0 ¼ o�
k1Gkcut 3k�1

2 þ o2
� 	

o

k�12 þ o2ð Þ2

 !
Dc

� k1G2k�1
3kcut

k�12 þ o2ð Þ2
þ k1Gþ kcut

 !
Ds;

(34)

0 ¼ �k1G2k�1
3kcut

k�12þo2ð Þ2
þk�2�k1G�

k�2þkcutð Þ 1þa2

2

� �

1�a2

2

� �
0
BBB@

1
CCCADc

þ2a
k�2þkcut

1�a2

2

� �D0þ
k1Gkcuto 3k�1

2þo2
� 	

k�12þo2ð Þ2
�
o

a2

2
þ1

� �

1�a2

2

� �
0
BBB@

1
CCCADs:

(35)

Case of negligible external torque/friction

The simplest result can be obtained, if one assumes that the
external torque – which is due to hydrodynamic friction, and for
such a small object as a 100 nm thin virus should be very small –
is negligible. m = 0 then immediately implies Ds = 0, cf. eqn (22).

In this case, from eqn (34), we immediately get the following
instructive result:

0 ¼ o 1�
k1Gkcut 3k�1

2 þ o2
� 	

k�12 þ o2ð Þ2

 !
Dc: (36)

First of all, o = 0 – i.e. no rotation at all – is always a solution,
as it should. The term in brackets could yield non-trivial
solutions, but only in case that Dc a 0. This also makes sense,
since otherwise D would be constant and no torque is created.
In fact, for a a 0 one has Dc a 0 – which can be seen from
eqn (33) and (35). There is one more condition: k�1 4 0 has
also to be finite. Otherwise one can show that D(o) = 0, which
reflects a ‘‘blocking effect’’: all initially existing double bound
states were cut and the cut glycans never can detach.

In total, this yields (in case a, k�1 a 0) three possible
solutions for the angular velocity o:

o ¼ 0 or o2 ¼ k1Gkcut

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k�1

2

k1Gkcut

s0
@

1
A� k�1

2; (37)

as given in the main text. The latter yields two symmetric
branches,

o ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1Gkcut

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k�1

2

k1Gkcut

s0
@

1
A� k�12

vuuut : (38)

This is the pitchfork bifurcation explained in the main
manuscript: for sufficiently large cutting rate kcut, namely if

kcut 4 kc;0cut ¼
k�1

2

3k1G
(39)

such that the radicand becomes positive, two new branches
with finite angular velocity emerge from the trivial branch o =
0. The turning direction is spontaneously chosen, depending
on the initial conditions.

General case and obtaining the motor relation

To treat the general case, we consider the limit of small a, i.e.
small variations of k2(y) with y. We expand eqn (33)–(35) to

Soft Matter Paper



7196 |  Soft Matter, 2024, 20, 7185–7198 This journal is © The Royal Society of Chemistry 2024

linear order in a, and notice that a certain symmetry emerges:

0 ¼ k1G� k1Gþ
2kcutk1G

k�1
þ kcut

� �
D0

þ a k�2 þ kcutð ÞDc þ aoDs;

(40)

0 = u(o)Dc � v(o)Ds, (41)

0 = �v(o)Dc � u(o)Ds + 2a(k�2 + kcut)D
0, (42)

where we introduced the quantities

uðoÞ ¼ o 1�
k1Gkcut 3k�1

2 þ o2
� 	

k�12 þ o2ð Þ2

 !
;

vðoÞ ¼ 2k1Gk�1
3kcut

k�12 þ o2ð Þ2
þ k1Gþ kcut

 !
:

(43)

From (41) we immediately get Dc ¼ v

u
Ds, inserting into (42) yields

D0 ¼
v2

u
þ u

2a k�2 þ kcutð ÞD
s:

and inserting into (40), one obtains

0 ¼ k1G� k1Gþ
2kcutk1G

k�1
þ kcut

� � v2

u
þ u

2a k�2 þ kcutð ÞD
s

þ a k�2 þ kcutð Þv
u
Ds þ aoDs:

Dropping orders O(a2) we solve for

Ds ¼ 2ak1G k�2 þ kcutð Þ
v0

u

v2 þ u2
; (44)

where v0 = v (o = 0). Remembering the relation between the
torque and Ds, eqn (22), we finally obtain the ‘‘motor relation’’

Mh ¼ mdrive
a2k1G k�2 þ kcutð Þ

v0

uðoÞ
v2ðoÞ þ u2ðoÞ: (45)

It relates any external torque (here the hydrodynamic fric-
tional torque Mh) to the kinetics of the rotation.

Dynamics under Stokes friction

Assuming the external torque is Stokes friction in a fluid of
viscosity Z, yields the explicit expression

Mh = 4pZR2l0o

and

4pZR2l0o
mdrive

¼ a2
k1G k�2 þ kcutð Þ

v0

u

v2 þ u2
:

Considering that for small torques, u is small as well – note
that u(o) = 0 was the relation determining o in the case of no
frictional torque, cf. eqn (36) – we drop the u2 – term in the
denominator and expand the r.h.s. for o2 small (close to the
onset of motion). The leading order constant term O(o0)

cancels on both sides for the motion to occur

1þ 2kcut

k�1
þ kcut

k1G

� �
k�2 þ kcutð Þ

4pR2l0

a2mdrive
Z ¼

1� 3k1Gkcut

k�12

� �
2k1Gkcut

k�1
þ k1Gþ kcutð Þ

� �2
;

where kcut is now the critical value for the onset of motion. This
condition can now be solved perturbatively, for small l.h.s., in the
relevant activity parameter kcut. The latter deviates from the case
without frictional torque, kc,0

cut, like kcut = kc,0
cut + cZ with some

proportionality constant c. Inserting this expansion we get c to
lowest order in Z. The result for the finite, but small viscosity

correction to the critical cutting rate is (inserting mdrive ¼
S

2
l0
2Rk):

kccut ¼ kc;0cut þ kc;1cut Zð Þ with kc;0cut ¼
k�1

2

3k1G
;

kc;1cut ¼
k0cut k1Gþ

2k1G

k�1
þ 1

� �
k0cut

� �3

k1G k�2 þ k0cut
� 	 8pR

a2Sl0k
Z:

(46)

D. Details on helix formation

In general a virus surface displays multiple interdigitated and
mutually staggered sub-lattices of switchable spike-pairs, as
sketched in (Fig. 1e) (pairs 1–2 and 3–4). We assume here for
simplicity just two sub-lattices, I and II.

In the following we make the intuitive assumption that the
curvature vector is a smooth function along the contour s,
regardless of how it is measured, over sub-lattice I or II. This
in particular implies that one sub-lattice will experience the
mean effective curvature of the other sub-lattice (averaged over
the smallest characteristic length scale Bl). Due to the smooth-
ness, the curvature vector felt by sub-lattice II at some position s
can be formally expressed by the mean of curvature vector over
the sub-lattice I in its close vicinity, i.e. as

jIIðsÞ ¼
1

l

ðsþl=2
s�l=2

jI s
0ð Þds0: (47)

For a constant modulus kI, and a slowly rotating curvature
vector on the sub-lattice I,

jI(s) = kI(cos(ts)ex + sin(ts)ey)

with some small torsion rate t { l�1, the effective curvature of
sub-lattice-II can be evaluated to

kII ¼ kI
1

l

1

t
sin tsð Þ

����þl=2
�l=2

ex �
1

t
cos tsð Þ

����þl=2
�l=2

ey

 !�����
�����

¼ kI

2 sin t
l

2

� �
lt

��������

�������� � kI 1� l2t2

24
þ l4t4

1920

� �
þ . . .

(48)

That is, the curvature felt by lattice II from the one at lattice I
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becomes effectively reduced by an amount �kI
l2t2

24
� l4t4

1920

� �
.

The overall energy penalty per length l can then be written as
the average over the two sub-lattices, with Ktor given by eqn (6),
and evaluates to

Etot ¼
1

2
EI þ EIIð Þ ¼ 1

2

1

2
Ktor dkIð Þ2þ1

2
Ktor dkIIð Þ2

� �

’1
4
Ktor 2 dkIð Þ2þkI2

l2t2

24

� �2

þ2 dkIð ÞkI
l2t2

24

 !
þ . . .

with dki = ktor � ki.
Dropping the index I and rearranging,

Etot ¼
Ktor

2
ktor � kð Þ2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Bending

þ 1

4

Ktor

242
k2 ltð Þ4þKtor

2
	 ktor � kð Þ 	 k 	 ltð Þ2

24|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Torsion�bend coupling

;

we see that there is a classical bending energy term followed by
an unusual torsion–bend coupling. Overall the energy is posi-
tive definite and has a minimum for k = ktor and t = 0 as seen
from the form

Etot ¼
1

4
Ktor ktor � kð Þ2þ1

4
Ktor ktor � kð Þ þ k

l2t2

24

� �2

(49)

given in the main manuscript.
The torsion–bend coupling suggests an unusual mechanics:

(i) for optimal curvature k = ktor the torsional term has a weak
quartic stiffness O(t4) indicating some flexibility in this degree
of freedom. (ii) For curvature larger than optimal, i.e. for ktor �
k o 0, a torsion (of any sign) is favorable, given by

t� ¼ �
1

l

ffiffiffiffiffi
24
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ktor
k

r
; (50)

as already stated in the main text. (iii) For curvature smaller
than optimal, ktor � k 4 0, the torsion experiences a quadratic

stiffness term
Ktor ktor � kð Þ 	 kl2

48
	 t2 in leading order, forcing it

strongly towards the t = 0 state.
Overall this indicates some highly unusual spatial dynamics

of the toro-elastic state, very much different from usual semi-
flexible filaments. Note that case (ii), i.e. larger curvature than
ktor, is the one that should be relevant for a virus in a mucus
environment, where glycan ligands cause additional tensile
stresses, leading to increased curvatures.
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