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Poor man’s Majorana Bound States (MBS) arise in minimal Kitaev chains when the parameters
are fine-tuned to a sweet spot. We consider an interacting two-site Kitaev chain coupled to a single-
mode cavity and show that the sweet spot condition can be controlled with the cavity frequency and
the hopping between sites. Furthermore, we demonstrate that photon-mediated effective interactions
can be used to screen intrinsic interactions, improving the original quality of the MBS. We describe
experimental signatures in the cavity transmission to detect their presence and quality. Our work
proposes a new way to tune poor man’s MBS in a quantum dot array coupled to a cavity.

Introduction.— The Kitaev chain is the canoni-
cal model for the appearance of Majorana bound states
(MBS) [1]. Theoretical proposals to realize the Kitaev
chain Hamiltonian in an array of quantum dots con-
nected by superconductors were put forth in [2–4]. In
a two-site Kitaev chain ”poor man’s MBS” emerge when
the parameters are fine-tuned to a sweet spot, such that
the chemical potential is tuned to zero and the hopping
equals the superconducting pairing [3]. In its simplest
form, the coherent single particle tunneling is externally
controlled by the gate voltages between dots, while the
tunneling of Cooper pairs happens via virtual states in
the superconductor, when electrons or holes are simulta-
neously created or annihilated in pairs. Hence, in realiza-
tions involving quantum dots, tuning to the sweet spot
can be achieved by controlling the tunneling with gate
voltages, while the pairing will typically be fixed micro-
scopically from the superconductor properties. Recently,
a number of theoretical works [5–13] offered new insights
into the quantum dot-based platform and a new route
towards the experimental realization of MBS [14]. On
the experimental side, a minimal Kitaev chain of two-
sites has been realized in a platform based on quantum
dots in nanowires [15, 16] and a two-dimensional elec-
tron gas [17], while a three-site Kitaev chain was real-
ized in [18]. The effect of electron-electron interactions
in quantum dots-based platforms is important as they
can lead to the hybridization between MBS, deteriorat-
ing their quality [6, 14]. Several markers and strategies
have been proposed to minimize these effects. For exam-
ple, on top of the degeneracy between even and odd par-
ity ground states, a large Majorana polarization suggests
good quality MBS [6, 14]. However, none have found a
way to completely remove the detrimental role of many-
body effects.

In this Letter, we show that coupling a minimal inter-
acting Kitaev chain to an off resonant cavity mode offers
a new and largely tunable platform to control poor man’s
MBS. Cavity embedding has been recently introduced as
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/ eig(a+a†)

FIG. 1. The setup consists of a two-site Kitaev chain de-
scribed by the Majorana operators γ1 − γ4 (brown circles)
coupled to a single mode cavity with frequency ωc through a

Peierls phase ∝ eig(a+a†) (black arrows). The strength of the
light-matter coupling is g. The on-site chemical potential is
µ, the hopping amplitude between two sites is t, the p-wave
pairing is ∆, and the strength of electron interaction is U
(green lines).

a novel way for probing and controlling quantum mat-
ter [19, 20], with applications ranging from topological
materials [21–29] to strongly correlated systems [30, 31]
and mesoscopic systems [32–44], including those hosting
MBS [45–54]. In the microwave regime the cavity is typ-
ically implemented by a superconducting resonator [55],
whose frequency [56] or number of photons can be tuned.
Having this setup in mind we consider a model for a dou-
ble quantum dot (DQD), realising a minimal two-site in-
teracting Kitaev chain, coupled to a single mode cavity
(see Fig. 1). In the large detuning regime, when the cav-
ity is off resonant with respect to the DQD transitions,
we can adiabatically eliminate the photons and obtain
an effective Hamiltonian for the interacting Kitaev chain.
We show that the cavity photons renormalize the chemi-
cal potential, the hopping and the interaction, leading to
MBS that can be externally controlled. We demonstrate
that the condition for the fine-tuned sweetspot is modi-
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fied in the presence of the cavity. In particular, that by
tuning the cavity frequency and the DQD hopping it is
possible to obtain isolated MBS for a wide range of light-
matter couplings and superconducting pairings. Further-
more, we find that interdots interactions, that are always
detrimental for the existence of MBS, can be screened by
photon mediated interactions, enhancing the localization
properties and overall quality of the original MBS. Our
results perfectly agree with exact diagonalization results
for the full many-body spectrum.

Two-site Kitaev chain coupled to cavity.— We
consider an interacting, two-site Kitaev chain coupled to
a single mode cavity

H =− µ
(
c†1c1 + c†2c2

)
− t

(
e−ig(a†+a)c†1c2 + h.c.

)
+∆(c1c2 + h.c.) + ωca

†a+ Uc†1c1c
†
2c2, (1)

where c†1,2 (c1,2) are fermionic creation (annihilation) op-

erators at site 1, 2 and a† (a) are photonic creation (an-
nihilation) operators. Here, µ is the chemical potential,
t is the hopping, ∆ is a p-wave superconducting pairing
potential, ωc is a cavity frequency, U is the inter-dot in-
teraction, and g is the light-matter coupling that we write
in the form of a Peierls phase modulating the inter-dot
hopping. This model arises as an effective description of
a DQD architecture interfaced with a s-wave supercon-
ductor [2, 3], integrated in a microwave resonator.

Isolated chain.— The isolated two-site Kitaev
chain Hamiltonian can be exactly diagonalized in
the many-body basis: {|0102⟩, |1102⟩, |0112⟩, |1112⟩} =

{|0102⟩, c†1|0102⟩, c†2|0102⟩, c†1c†2|0102⟩}, with |0102⟩ being
the state with no electrons. The pairing term, propor-
tional to ∆, mixes particles and holes, making the to-
tal number of particles no longer a conserved quantity.
Instead, the state parity is conserved and allows us to
separate the electronic part of the Hamiltonian into even
{|0102⟩, |1112⟩} and odd parity sectors {|1102⟩, |0112⟩},
with energies Eeven

± = U/2− µ±
√
∆2 + (U/2− µ)

2
and

Eodd
± = −µ± t, respectively.
If we express the isolated chain Hamiltonian in the

Majorana basis, cj = 1
2 (γ2j−1 + iγ2j) with {γj , γk} =

2δj,k,

H =
g→0

U

4
− µ− i

2

(
µ− U

2

)
(γ1γ2 + γ3γ4) (2)

+ i
∆− t

2
γ1γ4 + i

∆+ t

2
γ2γ3 −

U

4
γ1γ2γ3γ4,

it can be seen that at the sweet spot t = ∆ and µ = U/2,
isolated MBS γ1,4 will only emerge for the case U = 0.
Otherwise, the last term hybridizes their wave func-
tions and spoils their properties [3]. Experimentally, this
strict condition requires fine tuning and to completely
screen particle interactions, although recent works [6]
have shown that in the presence of interactions, one can

simultaneously require a ground state degeneracy and a
large Majorana polarization [57] in order to still create
good quality MBS.
In this work we demonstrate that coupling the chain to a
cavity allows to control the sweet spot condition required
to find MBS, and that even for the case of U ̸= 0, one
can use photon-mediated interactions to effectively screen
the interactions between the QDs, giving rise to isolated
MBS.
Effective Hamiltonian.— We write an effective

matter Hamiltonian for the subspace with n photons us-
ing the projectors method [58], which to lowest order
reads (details in the SM):

H̃(n, τ) = PH0P − i

∫ τ

0

dτ ′PH1e
−iH0τ

′
H1e

iH0τ
′
P, (3)

where P is the projector onto the n-photons Fock sub-
space, Q = 1−P is the projector onto the n± 1-photons
subspace, H0 is the diagonal part of the Hamiltonian (1)
in each Fock subspace and H1 describes photon transi-
tions between different Fock subspaces. Importantly, as
in the presence of a cavity Eq. (1) shows that the DQD
couples to photons via the hopping term only [54, 59],
we can simplify the analysis and restrict the study to
the odd subspace. The projection onto a Fock subspace
with a well-defined number of photons is justified in the
large detuning regime ωc ≫ t,∆, where photon transi-
tions are very unlikely and their effect can be efficiently
encoded via adiabatic elimination to lowest order. Inter-
estingly, this leads to an n-dependent expression, indicat-
ing that the effective Hamiltonian depends on the number
of photons in which the cavity is initially prepared. Also,
Eq. (3) generally is a time-dependent effective Hamilto-
nian, but for the large detuning regime one can perform
a Rotating Wave Approximation (RWA) and ignore the
time-dependent terms, which approximately average to
zero at relevant time-scales. In this regime the effective
Hamiltonian reads:

H̃ (n) =Ũ (n) c†1c1c
†
2c2 − µ̃ (n) (c†1c1 + c†2c2)

+ ∆(c1c2 + c†2c
†
1)− t̃ (n) (c†1c2 + c†2c1). (4)

Eq. (4) shows that the cavity affects the chemical poten-
tial, the hopping and the interaction between particles.
In particular, their expressions are:

Ũ (n) =U − 2nωc +
2 (n+ 1)ωcκ̃

2
n+1

ω2
c − ω̃2

n+1

− 2nωcκ̃
2
n

ω2
c − ω̃2

n

, (5)

µ̃ (n) =µ− nωc +
(n+ 1)ωcκ̃

2
n+1

ω2
c − ω̃2

n+1

− nωcκ̃
2
n

ω2
c − ω̃2

n

, (6)

t̃ (n) =te−
g2

2 Ln(g
2)− (n+ 1)ω̃n+1κ̃

2
n+1

ω2
c − ω̃2

n+1

− nω̃nκ̃
2
n

ω2
c − ω̃2

n

,

(7)

where κ̃n = gte−
g2

2 1F1

(
1− n; 2; g2

)
and ω̃n =

te−
g2

2

[
Ln−1

(
g2
)
+ Ln

(
g2
)]
. Also, Ln(g

2) is the nth La-
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guerre polynomial and 1F1(−n; 2; g2) the Kummer con-
fluent hypergeometric function. Eqs. (5) to (7) show that
the original Coulomb interaction, chemical potential and
hopping can be externally tuned by changing the light-
matter interaction g, the cavity frequency ωc and the
cavity state preparation n. Again, it is also useful to
express Eq. (4) in terms of Majorana operators:

H̃ (n) =
Ũ (n)

4
− µ̃ (n)− Ũ (n)

4
γ1γ2γ3γ4

− i

2

[
µ̃ (n)− Ũ (n)

2

]
(γ1γ2 + γ3γ4)

+ i
∆− t̃ (n)

2
γ1γ4 + i

∆+ t̃ (n)

2
γ2γ3. (8)

It shows that in order to have isolated MBS one must si-
multaneously fulfill the three conditions: µ̃(n) = Ũ(n)/2,
∆ = t̃(n) and Ũ(n) = 0. The first condition leads to
µ = U/2, which fixes the chemical potential in terms of
the inter-dot interaction. The second and third deter-
mine the values of the hopping t and cavity frequency
ωc, required to isolate MBS in terms of the given micro-
scopic values of light-matter coupling g, pairing ∆, and
interaction U .
Crucially, these MBS effectively are analogous to those
of the isolated chain due to the large detuning between
the cavity and the system, which efficiently suppresses
hybridization with the cavity mode. On top of this, the
intrinsic interactions can now be completely screened, im-
proving the quality of the original MBS.

Results.— The simplest scenario involves a cavity
in its ground state (n = 0) coupled to the interacting,
minimal Kitaev chain. The photon-mediated interaction
Ũ(n = 0) from Eq. (5) takes a particularly simple form,
and the condition to screen the interactions Ũ(n = 0) = 0
reads:

U = − 2ωcg
2t2e−g2

ω2
c − t2e−g2 (2− g2)

2 . (9)

In addition, Eq. (7) requires t̃(n = 0) = ∆, or equiva-
lently:

∆ = te−
g2

2 − g2t3
(
2− g2

)
e−3g2/2

ω2
c − t2e−g2 (2− g2)

2 , (10)

in order to find isolated MBSs. We solve Eqs. (9) and
(10) for fixed microscopic parameters U , g and ∆, to
find the necessary values for the hopping and the cavity
frequency (t, ωc), that drive the system to the sweet spot.
Importantly, the rhs of Eq. (9) for large detuning can only
take negative values, which indicates that for the cavity
in its ground state, it is only possible to screen attractive
interactions or equivalently, that the photonic vacuum
only mediates repulsive interactions between MBSs. This
case is analyzed in detail in the SM.

0. 0.1 0.2 0.3 0.4 0.5

FIG. 2. Sweet spot values in an interacting minimal Kitaev
chain. The color of the curve indicates the value of g. The
cavity is prepared in a n = 1 photon state and the other
parameters are µ = U/2 and U = 10∆.

We now consider a more relevant situation for the real-
ization of minimal Kitaev chains with interacting DQDs,
which is the case of repulsive interactions. Screening re-
pulsive interactions for a largely detuned cavity requires
to prepare the cavity with an average number of pho-
tons n > 0. In that case, the second term in Eq. (5)
makes the photon-mediated interaction attractive, such
that it can compensate for intrinsic repulsive interactions
between particles U > 0. This can be done by driving the
resonator until the average value of photons in the iso-
lated cavity is approximately one. In this large detuning
regime the cavity will remain in this meta-stable state
until photon losses drive it to its ground state. We as-
sume a cavity prepared in the Fock subspace with n = 1
and numerically find the sweet spot values (t, ωc) from
the conditions to find isolated MBS: Ũ(n = 1) = 0 and
t̃(n = 1) = ∆, with µ = U/2. In Fig. 2 we show the re-
gion of existence of these solutions for different values of
the hopping and the cavity frequency. In the absence of
the cavity the sweet spot is just a vertical line at t = ∆,
only valid for the case U = 0. Instead, the coupling
to the cavity photons transforms the sweet spot into a
curve where interactions between MBS are completely
screened. Note that the color code shows that for a wide
variety of microscopic light-matter couplings, the sweet
spot can be reached by adjusting the DQD hopping and
the cavity frequency.

Fig. 3, shows the spectrum for a particular case in-
dicated with a black dot in Fig. 2. For the isolated
case g = 0 (blue dot-dashed), the condition µ = U/2
(equivalent to require a maximum Majorana polariza-
tion), pushes the even subspace levels Eeven

± high in en-
ergy due to the large repulsive interaction. Hence, in this
case it is not possible to find the degeneracy between the
even and the odd ground states of the sweet spot by
just tuning the hopping. This changes for g ̸= 0, as the
preparation of the cavity in the one-photon state and the
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FIG. 3. Spectrum of the interacting two-site Kitaev chain
coupled to a cavity with one photon n = 1. The blue dot-
dashed line corresponds to the isolated case (g = 0) given by
Eodd

± and Eeven
± . Red solid and black dashed lines correspond

to exact diagonalization for Nmax = 20 for the case g = 0.3
and its analytical approximation with Eq. (4), respectively.
The green dashed vertical line indicates the sweet spot hop-
ping. The other parameters are ωc = 5.02∆, U = 10∆ and
µ = U/2.

subsequent interaction with the Kitaev chain produces
a copy of the odd-subspace energy band close to zero
energy (red solid line). It is now possible to tune the
hopping to the sweet spot ts (green dashed vertical line)
and find an exact degeneracy between even and odd sub-
spaces. Crucially, if the system is correctly tuned to the
sweet spot (i.e. ωc = ωs and t = ts), the degeneracy
occurs simultaneously for the excited states, indicating
a symmetry around zero energy, as expected for isolated
MBS. In this configuration, the resulting MBSs are of
high quality and display maximum Majorana polariza-
tion. At large t/∆ the analytical approximation (black
dashed line) deviates from exact diagonalization because
the bandwidth approaches the cavity frequency and the
system abandons the large detuning regime. It is im-
portant to stress that although the cavity is prepared in
an excited state with one photon, in the large detuning
regime the system will be in a long-lived meta-stable state
only decaying via photon losses. This is because the large
detuning makes the resulting many-body state close, but
not identical, to a product state of the cavity and the Ki-
taev chain. This is crucial, because the hybridization is
small enough to adiabatically eliminate the photons from
the effective Hamiltonian and not change the number of
photons initially prepared in the cavity, but also to allow
the existence of photon-mediated interactions between
particles that can be used to screen the ones intrinsic to
the system. Therefore, for time-scales shorter than the
photon losses, we can consider the MBSs as identical to
those present in isolated Kitaev chains.

Detection.— A relevant feature of c-QED systems
is that properties of the setup interacting with the cavity

FIG. 4. Density of states of the photon propagator from exact
diagonalization, as a function of ω and t. The horizontal
dashed line shows the sweet spot hopping predicted from the
effective Hamiltonian. The vertical dashed line indicates the
position of the bare resonator frequency ωc.

can be inferred from the photons themselves [55, 60]. The
photon propagator is proportional to the cavity trans-
mission [23] and can be measured in the transmission
line of standard quantum optics experiments using ho-
modyne detection. We calculate the photon propaga-
tor D(t) ≡ −iθ(t)⟨[a(t), a†]⟩ to detect the presence of
MBS in the chain and find that the cavity frequency
shift strongly depends on the parity of the ground state.
In particular, as the even subspace does not couple to
the cavity, the photon propagator is unaffected when the
Kitaev chain is in its ground state. Instead, when the
Kitaev chain is in the odd ground state the cavity fre-
quency shifts from ωc. This is shown in Fig. 4 for a
Kitaev chain with repulsive interactions and a cavity ini-
tially prepared with one photon. For small hopping t/∆,
the ground state of the system is even and the cavity
frequency is not affected by the presence of the Kitaev
chain. Hence, the density of states DOS = −ImD(ω)/π
displays a single resonance peak at the bare resonator
frequency ωc (vertical dashed line). At the sweet spot ts
(horizontal dashed line), the ground state becomes odd
and the DOS displays two resonance peaks with opposite
sign. This feature can be reproduced by considering the
effective Hamiltonian for the odd subspace to lowest or-
der. For a cavity with n photons the photon propagator
reads Dn (ω) = (n + 1)/ (ω − ωn+1) − n/ (ω − ωn), with

ωn ≡ ωc + te−
g2

2

[
Ln−1

(
g2
)
− Ln

(
g2
)]

(for more details
see the SM). Therefore, for a cavity in the vacuum only
one resonance is present, but for n > 0, two peaks with
opposite sign emerge. Notice that transmission spec-
troscopy of the cavity allows us to find the degeneracy
point between ground states, but it does not confirm that
the interactions between MBS are completely screened.
That is, the cavity frequency shift predicts a change in
the parity of the ground state, but not necessarily that
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the frequency of the resonator is exactly the one of the
sweet spot. To determine its value from the experimen-
tal measurement one can also study the distance between
the two peaks in the odd parity ground state, which is
given by ∆ωn = ωn+1 − ωn and it is a polynomial only
on g. Another alternative would be to perform resonance
experiments to extract the Rabi splitting, although here
one must take into account the nonlinear nature of the
system. Other possibilities would include non-local mea-
surements of the MBS [61, 62].

Conclusions.— We have studied an interacting
minimal Kitaev chain coupled to a single mode cavity
as a platform to engineer isolated MBS. We have shown
that in the large detuning regime one can adiabatically
eliminate the cavity and produce an effective Hamilto-
nian for the minimal Kitaev chain where the chemical
potential, hopping and inter-dot interaction can be ex-
ternally controlled. This produces a tunable sweet spot
for the appearance of MBS that crucially, due to photon-
mediated effective interactions, can completely screen the
detrimental inter-dot interactions that are ubiquitous is
these systems and hybridize the MBS. In particular we
have demonstrated that ground state degeneracy and
maximum Majorana polarization are necessary, but in-
sufficient conditions to completely isolate the MBS when
interactions are present. An additional condition must
be imposed and can only be fulfilled when photon medi-
ated interactions are present.
Our work paves the way for the creation and detection of
MBS in minimal Kitaev chains and highligths the impor-
tant role of cavity-mediated interactions. In the future it
would be interesting to study higher order photon corre-
lations for the characterization and the presence of MBS
or to extend this analysis to larger Kitaev chains.
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S1

Supplemental Material to ‘High-quality poor man’s Majorana bound states from
cavity embedding’

DERIVATION OF THE EFFECTIVE HAMILTONIAN

An effective description of the 2-sites Kitaev chain coupled to a cavity, in terms of the matter degrees of freedom only,
can be obtained by means of the projectors method [S58]. To lowest order, the effective Hamiltonian in the relevant
subspace described by a projector P , once the irrelevant subspace described by the projector Q (with P +Q = 1) is
adiabatically eliminated, can be expressed as:

H̃ (n, τ) = PH0P − i

∫ τ

0

dτ ′PH1e
−iH0τ

′
H1e

iH0τ
′
P (S1)

where H0 corresponds to the unperturbed part of the Hamiltonian and H1 = H − H0 to the perturbation terms.
Importantly, for this expression to be valid we must separate H0 and H1 such that they fulfill PH0Q = 0 = QH0P ,
PH1Q = PH1 and QH1P = H1P . Note that the effective Hamiltonian will generally be time-dependent, because the
effect of the subspace Q might be complex, and that the description will fail if the perturbation resonantly couples
levels of the unperturbed Hamiltonian (can be shown by working in the eigenstates basis of H0). Intuitively this is
due to the fact that resonant levels actively contribute to the dynamics, so it is not possible to obtain the effective
dynamics of the subspace P .

In our particular case we consider the full Hamiltonian H = H0 +H1 and separate the dominant and perturbative
parts as:

H0 = ωc

∞∑
n=0

nY n,n − µ
(
c†1c1 + c†2c2

)
+∆

(
c1c2 + c†2c

†
1

)
+ Uc†1c1c

†
2c2 − t

∞∑
n=0

e−
g2

2 Ln

(
g2
) (

c†2c1 + c†1c2

)
Y n,n (S2)

and

H1 = −
∞∑

n,m ̸=n

[
tm,n (g) c

†
2c1 + tm,n (−g) c†1c2

]
Y m,n, (S3)

where we have expressed the total Hamiltonian in the basis of number of photon states |n⟩ and defined their corre-
sponding bosonic Hubbard operators Y n,m ≡ |n⟩⟨m| [S63]. There, the definition of the photon-dependent hopping
is

tm,n(g) = te−
g2

2 (ig)
n−m

√
n!

m!
1F̃1

(
−m;n+ 1−m; g2

)
, (S4)

with 1F̃1 (a; b; z) is the regularized confluent hypergeometric function. The diagonal components are proportional to
the Laguerre polynomials:

tn,n(g) = te−
g2

2 Ln(g
2) (S5)

Therefore, H0 contains the diagonal Fock states elements, which include a renormalization of the hopping due to
virtual photon absorption/emission processes, and H1 the real photon transitions m ̸= n. Importantly, note that the
even subspace |01, 02⟩, |11, 12⟩ is decoupled from the cavity field. This allows us to work with the Hamiltonian for the
odd subspace only. However, the Hamiltonian for the odd subspace still is infinite dimensional due to the coupling to
the cavity. For our purposes, it will be enough to just consider the set of coupled Fock subspaces n and n ± 1, and
estimate the effective Hamiltonian in the subspace n, once the n ± 1 subspaces have been adiabatically eliminated.
Hence, in our case the projectors are particularized to P = |n⟩⟨n| and Q = |n− 1⟩⟨n− 1|+ |n+ 1⟩⟨n+ 1|.

The calculation of the effective Hamiltonian in the fermionic odd-subspace for a cavity with n photons results in
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the following expression:

H̃odd (n, τ) = (nωc − µ)σ0 − te−
g2

2 Ln

(
g2
)
σx − (n+ 1) κ̃2

n+1

ω2
c − ω̃2

n+1

(ωcσ0 − ω̃n+1σx) +
nκ̃2

n

ω2
c − ω̃2

n

(ωcσ0 + ω̃nσx)

+
(n+ 1) κ̃2

n+1e
−iωcτ

ω2
c − ω̃2

n+1

[ωc cos (ω̃n+1τ) + iω̃n+1 sin (ω̃n+1τ)]σ0

− (n+ 1) κ̃2
n+1e

−iωcτ

ω2
c − ω̃2

n+1

[ω̃n cos (ω̃n+1τ) + iωc sin (ω̃n+1τ)]σx

− nκ̃2
ne

iωcτ

ω2
c − ω̃2

n

[ωc cos (ω̃nτ)− iω̃n sin (ω̃nτ)]σ0 −
nκ̃2

ne
iωcτ

ω2
c − ω̃2

n

[ω̃n cos (ω̃nτ)− iωc sin (ω̃nτ)]σx (S6)

where we have introduced the frequency ω̃n ≡ te−
g2

2

[
Ln−1

(
g2
)
+ Ln

(
g2
)]
, κ̃n ≡ gte−

g2

2 1F1

(
1− n; 2; g2

)
and the

Pauli matrices are the standard ones acting on the odd subspace with basis elements |11, 02⟩ and |01, 12⟩. The first
line of Eq. (S6) contains the time-independent part, with the last two terms being the correction to H0. The rest
contains the time-dependent contributions, which can be neglected if ωc ≫ t. In that case, a RWA indicates that the
rapidly oscillating terms, proportional to e±iωcτ , average to zero and can be safely discarded.
In order to extract the effective interactions that the effective Hamiltonian encodes, we rewrite the effective Hamil-

tonian in terms of fermionic operators. From the even subspace we have the original Hamiltonian, because it is not
affected by the cavity (remember that we defined |11, 12⟩ = c†1c

†
2|01, 02⟩:

H̃even = (U − 2µ) |2⟩⟨2| −∆(|0⟩⟨2|+ |2⟩⟨0|) = (U − 2µ) c†1c1c
†
2c2 +∆

(
c1c2 + c†2c

†
1

)
(S7)

Instead, for the odd subspace we find:

H̃odd (n, τ) =hO (n, τ) (|1, 0⟩⟨0, 1|+ |0, 1⟩⟨1, 0|) + hD (n, τ) (|1, 0⟩⟨1, 0|+ |0, 1⟩⟨0, 1|)
=hO(n, τ)

(
c†1c2 + c†2c1

)
+ hD (n, τ)

(
c†1c1 + c†2c2 − 2c†1c

†
2c2c1

)
(S8)

where we have defined hD(n, τ) as the time-dependent coefficients that multiply σ0 in Eq. (S6) and hO(n, τ) as the ones
that multiply σx. Note that the shift in the local energies of the odd-subspace produces an energy difference with the
local energies in the even subspace, and then leads to an effective, time-dependent interaction term−2hD(n, τ)c

†
1c1c

†
2c2.

Therefore, the effective Hamiltonian for the n-photons subspace after adiabatic elimination of the n ± 1 subspaces
reads:

H̃ (n, τ) = [U − 2µ− 2hD (n, τ)] c†1c
†
2c2c1 +∆

(
c1c2 + c†2c

†
1

)
+ hD (n, τ)

(
c†1c1 + c†2c2

)
+ hO (n, τ)

(
c†1c2 + c†2c1

)
(S9)

Note that it has a time-dependent correction to the interaction term U − 2µ− 2hD (n, τ) ≡ Ũ (n, τ), the local energies
−hD (n, τ) ≡ µ̃ and the hopping −hO (n, τ) ≡ t̃.

LARGE DETUNING REGIME

The effective Hamiltonian from Eq. (S9) highly simplifies if the cavity is largely detuned to higher frequencies,
because photon transitions between the n and n + 1 subspaces are very unlikely. In that scenario, the use of the
RWA allows to neglect the time-dependent terms because they approximately average to zero at relevant time-scales.
Hence, we can simplify the effective Hamiltonian for the odd subspace to just the first line of Eq. (S6)

H̃ (n) = Ũ (n) c†1c1c
†
2c2 − µ̃ (n) (c†1c1 + c†2c2) + ∆(c1c2 + c†2c

†
1)− t̃ (n) (c†1c2 + c†2c1) (S10)

For the large detuning regime, we can use the following expression for the effective interaction:

Ũ (n) = U − 2nωc + (n+ 1)
2ωcκ̃

2
n+1

ω2
c − ω̃2

n+1

− n
2ωcκ̃

2
n

ω2
c − ω̃2

n

(S11)

Note that the original interaction U can be tuned not only in strength, but also in sign by changing the number of
photons in the cavity n, the frequency ωc and the light-matter coupling g. As a corollary, we plot in Fig. S1 a density
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FIG. S1. Cavity-mediated interaction for the n = 0, 1 subspaces (left and right, respectively) as a function of ωc = and g. The
black dashed lines show the values where the interaction changes sign.

plot that characterizes the sign and strength of the effective interaction as a function of the cavity parameters. As
predicted, for the empty cavity n = 0 and large detuning ωc, the cavity-mediated interaction can only be repulsive.
Instead, for a cavity with one photon n = 1, the effective interaction can become attractive in the large detuning
regime. These results demonstrate that the effective interaction in the system can be highly controlled via the cavity.
The other effective parameters in the large detuning regime are given by

µ̃ (n) =µ− nωc +
(n+ 1)ωcκ̃

2
n+1

ω2
c − ω̃2

n+1

− nωcκ̃
2
n

ω2
c − ω̃2

n

, (S12)

t̃ (n) =te−
g2

2 Ln(g
2)− (n+ 1)ω̃n+1κ̃

2
n+1

ω2
c − ω̃2

n+1

− nω̃nκ̃
2
n

ω2
c − ω̃2

n

(S13)

HAMILTONIAN IN THE MAJORANA BASIS

The original Hamiltonian can be expressed in the Majorana basis to explicitly show how MBS are present if the
necessary conditions are fulfilled. Starting from the general expression:

H = ωca
†a− µ

(
c†1c1 + c†2c2

)
− te−ig(a†+a)c†1c2 − teig(a

†+a)c†2c1 +∆
(
c1c2 + c†2c

†
1

)
+ Uc†1c1c

†
2c2 (S14)

we apply the transformation cj =
1
2 (γ2j−1 + iγ2j) with {γj , γk} = 2δj,k. Then, after rewriting Peierls phase in terms

of bosonic Hubbard operators we find that the Hamiltonian can be expressed as:

H =
U

4
− µ+ ωc

∞∑
n=0

nY n,n − U

4
γ1γ2γ3γ4

+
i

2

(
U

2
− µ

)
(γ1γ2 + γ3γ4) +

i∆

2
(γ1γ4 + γ2γ3)

− i

4

∞∑
n,m=0

Y m,n [tm,n (g) + tm,n (−g)] (γ1γ4 − γ2γ3)

+
1

4

∞∑
n,m=0

Y m,n [tm,n (g)− tm,n (−g)] (γ1γ3 + γ2γ4) (S15)

If we first ignore the interaction U and the coupling with the cavity, we find that the Hamiltonian reduces to:

H = −µ− iµ

2
(γ1γ2 + γ3γ4) +

i

2
[(t+∆) γ2γ3 − (t−∆) γ1γ4] (S16)

Hence, if we set µ = 0 and t = ∆, the Hamiltonian simplifies to H = itγ2γ3 and the spectrum has two isolated MBS,
γ1 and γ4, which have zero energy and are decoupled from the rest. This is the standard situation for the minimal
Kitaev chain and defines the well known sweet spot in the non-interacting case.
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FIG. S2. Spectrum of the interacting two-site Kitaev chain coupled to a cavity in its ground state. Blue dot-dashed line
corresponds to the isolated chain case (g = 0) given by Eodd

± and Eeven
± . Red solid and black dashed lines correspond to exact

diagonalization for Nmax = 20 and its analytical approximation from Eq. (4), respectively. The vertical green dashed line
indicates the sweet spot ts = 1.27∆, obtained from solving Eqs. (9) and (10). The other parameters are ωc = 5∆, g = 0.65,
U = −0.2∆ and µ = U/2.

Instead, if the Hamiltonian includes interactions

H =
U

4
− µ− i

2

(
µ− U

2

)
(γ1γ2 + γ3γ4) + i

∆− t

2
γ1γ4 + i

∆+ t

2
γ2γ3 −

U

4
γ1γ2γ3γ4, (S17)

the MBS hybridize and their localization is affected, because even for µ = U/2 and t = ∆, the term proportional to
Uγ1γ2γ3γ4 remains. On top of this, if the cavity also couples to the system, not only the hopping is renormalized, but
also effective interactions will be induced and create a similar many-body effect. However, this can be beneficial because
we can try to compensate the interaction term with the cavity-induced effective interaction. The full Hamiltonian in
the large detuning regime and the Majorana basis reads:

H̃ (n) =
Ũ (n)

4
− µ̃ (n)− Ũ (n)

4
γ1γ2γ3γ4 −

i

2

[
µ̃ (n)− Ũ (n)

2

]
(γ1γ2 + γ3γ4) + i

∆− t̃ (n)

2
γ1γ4 + i

∆+ t̃ (n)

2
γ2γ3 (S18)

Therefore, if we impose ∆ = t̃(n), Ũ(n) = 0 and µ̃ = Ũ(n)/2, we can cancel all terms hybridizing the MBS at
the edges. In particular, the third condition can be simplified to µ = U/2, which interestingly coincides with the
requirement to have Majorana polarization equal to one. The remaining two conditions are equivalent to require the
degeneracy between the even and odd eigenstates for both, the ground and the excited states, and can be used to
determine the experimental values ωc and t that allow us to reach the new sweet spot of this c-QED setup.
In Fig. S2 we compare the spectrum of the isolated two-site Kitaev chain (blue dot-dashed) with the case coupled

to a cavity for the large detuning regime ωc ≫ t,∆ (red solid and black dashed line for the exact result and its
analytical approximation from Eq. (4), respectively). In the isolated case, due to the interaction U = −0.2∆, the
spectrum becomes highly asymmetric around zero energy. For this reason, when the even and odd ground states
are degenerate, the resulting MBSs are still hybridized. This asymmetry is a direct consequence of interactions and
cannot be removed by tuning the single particle terms in the Hamiltonian of Eq. (2).

When the system couples to the cavity the energy levels of the even subspace are unaffected because they do not
couple to the photons. However, the energy levels of the odd subspace are modified in such a way that at the sweet
spot ts (vertical dashed line), the even and odd parity subspaces become simultaneously degenerate for both, the
ground and the excited state, restoring the symmetry of the spectrum around E = 0. The analytical approximation
(black dashed lines) agrees well with exact diagonalization (red solid lines) up to large values of t/∆ when the large
detuning regime is not valid anymore since the bandwidth becomes comparable to the cavity frequency.

CAVITY TRANSMISSION

The cavity transmission probably is the simplest method to indirectly obtain information about the system placed
in the cavity. Mathematically, it is closely related to the photon propagator D(t) = −iθ(t)⟨[a(t), a†]⟩, which can be
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FIG. S3. Density of states from the exact photon propagator for different values of the hopping t/∆ and a cavity with
n = 0 photons. Below the degeneracy point ts, the ground state is of even parity and the response is identical to that of the
unperturbed cavity. Instead, after the sweet spot value the peak shifts towards larger values due to the change of parity in the
ground state. Parameters: ωc = 5∆, µ = U/2 = −0.1∆ and g = 0.65.

calculated with exact diagonalization or by different approximate methods. For our purposes, it will be enough to
consider the Hamiltonian in each of the Fock subspaces. Hence, we will ignore photon transitions between different
Fock subspaces that will only contribute with small corrections in our results. The relevant physics comes from the
fact that the even parity subspace does not couple to the cavity photons, hence if the system is in the even parity
ground state, the DOS shows a single resonance at the bare cavity frequency ωc. Instead, when the system is in the
odd parity ground state the resonator frequency is shifted.

To characterize the shift we use that the lowest order Hamiltonian for each Fock subspace can be written in the
following form:

H0 =
∑
l,µ

Eµ(l)X
µ,µY l,l (S19)

with Xµ,µ a projector onto the eigenstate |µ⟩ of the matter Hamiltonian and Y l,l a projector onto the l number of
photons subspace. The next step is to express the photon propagator in this basis (note that the photon operators
only act on the photonic subspace and that we assume that the density matrix for the Kitaev chain is in the odd
parity subspace):

D (ω) =
∑
n,m

⟨n|a|m⟩⟨m|
[
a†, ρµ,l

]
|n⟩

ω + Eµ(n)− Eµ(m) + iϵ

=
l + 1

ω + Eµ (l)− Eµ (l + 1) + iϵ
− l

ω + Eµ (l − 1)− Eµ (l) + iϵ
(S20)

with ρµ,l the density matrix of the system, prepared in a state with a number of photons |l⟩ and in the odd parity
ground state of the Kitaev chain |µ⟩. Therefore, if we particularize for the case of a cavity with n = 0, we find:

D(ω) =
1

ω − ωc − te−
g2

2 g2 + iϵ
(S21)

which shows that as soon as the ground state parity changes to odd, the cavity frequency shifts towards ω = ωc +

te−
g2

2 g2. This is shown in Fig. S3, where we can see that tuning the hopping, at the sweet spot condition ts the
resonance shifts towards the predicted value due to the change in parity. If the cavity is in a different photon number
subspace, the frequency shift changes accordingly and for example, in the case n = 1 the photon propagator reduces
to

D(ω) =
2

ω − ωc − te−
g2

2 g2
(
1− g2

2

)
+ iϵ

− 1

ω − ωc − te−
g2

2 g2 + iϵ
(S22)

The interesting feature in this case is that two peaks simultaneously emerge for n > 0, with different sign and weight.
This allows to detect the sweet spot tunneling ts, but noticing that the distance between these peaks only depends
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on the light-matter coupling g, this also provides a way to measure it from the DOS. The corresponding plot for this
situation is shown in the main text, demonstrating that even in situations where the intrinsic interactions are very
large and the degeneracy point is impossible to reach, coupling the chain to a cavity with n > 0 provides a way to
change the parity of the ground state.

MAJORANA POLARIZATION

Majorana polarization [S57] has been introduced as a way to quantify the quality of the MBS in more complex
QD-based systems that include electron-electron interactions [S6]. Defining the Majorana polarization as [S14]

Mj =
⟨o|cj + c†j |e⟩2 − ⟨o|cj − c†j |e⟩2

⟨o|cj + c†j |e⟩2 + ⟨o|cj − c†j |e⟩2
, (S23)

where |e⟩ (|o⟩) is the even (odd) ground state, we calculate Mj in a two-site Kitaev chain coupled to cavity described
by the effective Hamiltonian (4). We find that the eigenstates of (4) are independent of the light-matter coupling
strength g and cavity frequency ωc (and are the same for the cavity with n = 0 and n = 1) giving rise to the Majorana
polarization

Mj =
2∆√

4∆2 + (U − 2µ)2
. (S24)

The Majorana polarization in a two-site Kitaev chain coupled to cavity (S24) is equal to the one obtained for the
isolated Kitaev chain [S10]. This demonstrates that the MBS arising in the two-site Kitaev chain coupled to cavity
(4) are similar to those of the isolated chain. Moreover, we note that for µ = U/2 the Majorana polarization is always
equal to 1.
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materials, Phys. Rev. Lett. 131, 176602 (2023).
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T. Kontos, Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip, Phys. Rev. Lett. 107, 256804
(2011).

[S33] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta, Circuit quantum
electrodynamics with a spin qubit, Nature 490, 380 (2012).

[S34] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A. Wallraff, Dipole coupling of a double quantum dot to
a microwave resonator, Phys. Rev. Lett. 108, 046807 (2012).

[S35] J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. M. Ihn, K. Ensslin, and A. Wallraff,
Single-electron double quantum dot dipole-coupled to a single photonic mode, Phys. Rev. B 88, 125312 (2013).

[S36] M. R. Delbecq, L. E. Bruhat, J. J. Viennot, S. Datta, A. Cottet, and T. Kontos, Photon-mediated interaction between
distant quantum dot circuits, Nature Communications 4, 1400 (2013).

[S37] J. J. Viennot, M. R. Delbecq, M. C. Dartiailh, A. Cottet, and T. Kontos, Out-of-equilibrium charge dynamics in a hybrid
circuit quantum electrodynamics architecture, Phys. Rev. B 89, 165404 (2014).

[S38] J. J. Viennot, M. C. Dartiailh, A. Cottet, and T. Kontos, Coherent coupling of a single spin to microwave cavity photons,
Science 349, 408 (2015), https://www.science.org/doi/pdf/10.1126/science.aaa3786.

[S39] A. Stockklauser, V. F. Maisi, J. Basset, K. Cujia, C. Reichl, W. Wegscheider, T. Ihn, A. Wallraff, and K. Ensslin,
Microwave emission from hybridized states in a semiconductor charge qubit, Phys. Rev. Lett. 115, 046802 (2015).

[S40] X. Mi, J. V. Cady, D. M. Zajac, P. W. Deelman, and J. R. Petta, Strong coupling of a single electron in silicon to a
microwave photon, Science 355, 156 (2017), https://www.science.org/doi/pdf/10.1126/science.aal2469.

[S41] A. Cottet, M. C. Dartiailh, M. M. Desjardins, T. Cubaynes, L. C. Contamin, M. Delbecq, J. J. Viennot, L. E. Bruhat,
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[S61] F. J. Gómez-Ruiz, J. J. Mendoza-Arenas, F. J. Rodŕıguez, C. Tejedor, and L. Quiroga, Universal two-time correlations,

out-of-time-ordered correlators, and leggett-garg inequality violation by edge majorana fermion qubits, Phys. Rev. B 97,
235134 (2018).
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