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Controlling the flow of energy and heat at the microscale is crucial to achieve energy-efficient quantum
technologies, for on-chip thermal management, and to realize quantum heat engines and refrigerators. Yet, the
efficiency of current quantum technologies is affected by thermal noise, and efficient cooling of quantum devices
remains challenging in various solid-state implementations such as superconducting circuits. Collective effects,
such as the Dicke superradiant emission, have been exploited to enhance the performance of quantum devices.
However, the inherently transient nature of Dicke superradiant emission raises questions about its impact on
steady-state properties. Here, we study how to enhance the steady-state heat current flowing between a hot bath
and a cold bath through an ensemble of N qubits, that are collectively coupled to the thermal baths. Remarkably,
we find a regime where the heat current scales quadratically with N in a finite-size scenario. Conversely, when
approaching the thermodynamic limit, we prove that the collective scenario exhibits a parametric enhancement
over the noncollective case. We then consider the presence of a third uncontrolled parasitic bath, interacting
locally with each qubit, that models unavoidable couplings to the external environment. Despite having a
nonperturbative effect on the steady-state currents, we show that the collective enhancement is robust to such an
addition. Finally, we discuss the feasibility of realizing such a Dicke heat valve with superconducting circuits.
Our findings indicate that in a minimal realistic experimental setting with two superconducting qubits, the
collective advantage offers an enhancement of approximately 10% compared to the noncollective scenario.

DOI: 10.1103/PhysRevResearch.6.043128

I. INTRODUCTION

Quantum thermodynamics [1–6] is the study of heat and
work management in quantum systems. Within the recent
blooming of quantum technologies, the critical aspect of en-
ergy management becomes increasingly crucial [7] due to the
natural interest in building energy-efficient quantum technolo-
gies and limiting associated energy waste. In this context, it
is particularly relevant to investigate quantum heat transport
in superconducting circuit quantum electrodynamics (circuit
QED) [8], which is among the most promising platforms for
quantum technologies and quantum computation [9]. The heat
current flowing across circuit QED devices has been recently
measured across various designs [10–14], and circuit QED is
emerging as a platform to realize quantum heat engines and
refrigerators [15–27].

Two recent circuit QED experiments have investigated the
heat transport of microwave photons scattering off a single
qubit, realizing a photonic heat valve [28,29]. In these ex-
periments, a single transmon qubit was capacitively coupled
to two microwave resonators, each of them in contact with a
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resistance acting as a heat bath. A natural question is therefore
whether the performance of such a device could be enhanced
in the presence of multiple qubits interacting among each
other. Indeed, the transport of heat and energy are well known
to be sensitive probes of collective and many-body effects
[30–35]. A notable example where collective phenomena re-
sult in an enhanced emission and superextensive scaling is
provided by the Dicke model [36], where an ensemble of
N atoms in an optical cavity collectively radiates with a su-
perextensive intensity that scales as N2, i.e., enhanced by a
factor N with respect to ordinary fluorescence, where atoms
emit independently. In the Dicke model, the electrical dipoles
of the atoms synchronize thanks to their collective coupling
to the optical cavity modes, leading to an enhanced emission
which has been dubbed “superradiance” [37,38]. Superradiant
emission has been observed in various systems, including
Rydberg atoms in cavities [39], color centers in diamonds
[40], and superconducting qubits [41].

Collective effects, including Dicke superradiance, have
been proposed to improve the performance of thermometers
[42–44], quantum heat engines [45–56], quantum batteries
[57–61], refrigerators [62], heat transfer [63], and energy
transfer between quantum devices [64] and to reduce the
dissipated work in finite-time thermodynamics [65].

In this work, we investigate the role of collective superra-
diant coupling in enhancing the heat current flowing between
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FIG. 1. This figure shows an illustration of our system, where a
heat current Q̇h flows from a hot bath, characterized by a temperature
Th, to a cold bath with a temperature Tc. This heat current is mediated
by an ensemble of N qubits, that are not directly coupled. The
collective coupling to the baths leads to a collective enhancement
of the heat current.

two thermal baths through an ensemble of artificial atoms
(qubits), as depicted in Fig. 1. This is a nontrivial question,
particularly since superradiance is typically a transient phe-
nomenon observed in emission and absorption, whereas our
focus is on a nondriven, steady-state situation. Remarkably,
we find that even under these conditions, the collective cou-
pling between the qubits and the thermal bath can lead to
the emergence of superextensive scaling in the heat current
for systems of finite size. While the superextensive scaling
vanishes in the thermodynamic limit, we find that the heat
current is nonetheless enhanced by a temperature-dependent
prefactor that diverges as the temperature increases.

While many previous proposals have examined the influ-
ence of collective effects on thermal machines [42–62,64] and
heat transport [63], it remains crucial to discuss the robustness
of these effects to noise. Noise can hinder the coherence
of the dynamics, potentially undermining the collective en-
hancement. Here, we show that this collective enhancement is
robust to the addition of a third uncontrolled parasitic bath,
which interacts locally with each qubit. This finding is crucial
since, as we will show, the presence of an infinitesimally
small local noise has a finite and nonperturbative effect on
the steady-state heat currents, and removes the dependence of
the steady-state heat current from the initial state preparation.
Furthermore, we demonstrate the resilience of the superradi-
ant effect in this realistic noisy environment.

Despite the intense theoretical interest in exploiting
collective effects in quantum thermodynamical machines
[42–58,60–64], only a few experiments have been conducted
in this context [59,66]. Hence, we discuss the feasibility of
measuring such a Dicke enhancement of the heat current
in an experimental setup. Such a device can be realized
within the framework of circuit QED [8,28,67,68], where
N transmons are capacitively coupled to two RLC circuits
where the dissipative nature of a thermal bath stems from
the presence of the resistive elements. Our findings indicate
that using experimentally realistic parameters in the mini-
mal case of N = 2 superconducting qubits, the collectively

FIG. 2. This figure shows a lumped-element circuit diagram of
a circuit-QED realization of this system. The circuit features two
LC resonators, with associated voltages Vi where i = h, c. Each
resonator consists of an inductance L and a capacitance C, and is
coupled to a resistance Ri. The ensemble of N transmons is repre-
sented by fluxes φ j for j = 1, . . . , N , and their time derivatives φ̇ j .
Each transmon is made up of a Josephson junction with an associated
inductance LJ and a capacitance CT. The transmons are capacitively
coupled to the resonators via capacitors C (i)

c .

enhanced heat current is approximately 10% higher than in
scenarios where collective effects are absent. This highlights
the potential of leveraging collective quantum behaviors in
practical thermodynamic applications, offering a measurable
enhancement over more traditional designs, and providing
a platform to experimentally observe superradiant effects in
measurable steady-state heat currents. Our proposed device
also represents a many-body collective version of a heat valve,
a device that has been previously implemented in the context
of circuit QED [28]. A heat valve is a device designed to
control the flow of heat between two baths. Indeed, the circuit
pictured in Fig. 2 can function as a heat valve. The LC circuits
in Fig. 2 (left and right elements) act as a filter; when the
qubits are tuned to resonate at the LC frequency, there is an
efficient flow of heat between the two baths. Conversely, if
the qubits are detuned from the LC frequency, the heat flow
is effectively impeded due to the frequency mismatch. This
dynamic tuning capability allows for controlled manipulation
of heat transfer, embodying the core function of a heat valve.

This article is organized as follows, in Sec. II, we derive
the model and discuss the superextensive behavior of the heat
current in the noiseless case, i.e., when the modulus of the
collective spin operator is conserved. In Sec. III, we discuss
the resilience of this superextensive behavior to the addition
of a realistic parasitic bath, breaking the conservation of the
modulus of the collective spin. In Sec. IV, we discuss the
experimental feasibility of observing our findings and we
propose a minimal experimental setup that exhibits the su-
perextensive behavior of the heat current. In Sec. V, we draw
our conclusions. Appendices A–D contain a series of technical
details.
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II. THE DICKE SUPERRADIANT HEAT VALVE

The lumped-element circuit diagram, including capaci-
tances, inductances, resistances, and the various variables, is
depicted in Fig. 2. The quantum heat valve under study con-
sists of N transmon qubits coupled to two resistors denoted by
Ri in parallel with LC resonators. These RLC circuits form two
heat baths characterized by their temperature Ti. We denote
the two baths as “hot” (h) and “cold” (c), hence i = {h, c} and
Th � Tc. As derived in Appendix A, the total Hamiltonian of
the system can be written as

Ĥtot = Ĥ0 + Ĥint + ĤRLC . (1)

Ĥ0 and Ĥint, respectively, describe the Hamiltonian of the
qubits and their coupling to the RLC circuit. Before projecting
onto the qubit subspace, the Hamiltonian of the circuit is given
by

Ĥ0 = 1

2

N∑
j=1

[
1

Ceff
Q̂2

j − EJ cos

(
2πφ̂ j

φ0

)]
,

Ĥint = −
N∑

j=1

∑
i=h,c

C(i)
c

CT
Q̂ jV̂i, (2)

where Ceff = CT[1 − ∑
i=h,c C(i)

c /CT]−1, Q̂ j, φ̂ j are the charge
and flux associated with the jth transmon, CT (EJ) is the
transmon capacitance (Josephson energy), φ0 = h/(2e), C(i)

c
are the coupling inductances, and V̂i is the voltage of the ith
RLC circuit (for i = h, c), as reported in the lumped-circuit
diagram in Fig. 2. By projecting the Hilbert space onto the
two-level subspace of each transmon, we obtain

Ĥ0 =
N∑

j=1

h̄ω0

2
σ̂ ( j)

z , (3)

where σ̂
( j)
z represents the Pauli z operator for the jth qubit and

h̄ω0 is the qubit energy, and

Ĥint = −
N∑

j=1

∑
i=h,c

h̄Gi
σ̂

( j)
x

2
V̂i, (4)

where σ̂
( j)
x is the dipole operator of the jth qubit (the Pauli

x operator) and Gi is the coupling strength that we consider
different for the two RLC circuits, but otherwise uniform
across the qubits. This coupling plays a crucial role in the
interaction dynamics of the qubits with the thermal baths. Fi-
nally, ĤRLC describes the Hamiltonian of the two RLC circuits
as described in Appendix A.

It is useful to introduce a collective spin operator Ĵα , with
α = x, y, z, as

Ĵα =
N∑

j=1

σ̂
( j)
α ,

2
, (5)

where σ̂
( j)
α are the Pauli operators for the jth qubit. The total

Hamiltonian in Eq. (1) can thus be rewritten (up to an additive
constant) as

Ĥtot = h̄ω0Ĵz −
∑
i=h,c

h̄GiĴxV̂i + ĤRLC . (6)

This Hamiltonian conserves the norm of the collective spin
operator Ĵ2, where

Ĵ2 ≡
∑

α=x,y,z

Ĵ2
α . (7)

It is thus useful to introduce the Dicke states, given by

|J, mJ〉 =
√

(J + mJ )!(J − mJ )!

(2J )!
(Ĵ+)J+mJ |J,−J〉, (8)

where J (J + 1) (mJ ) are the eigenvalues of Ĵ2 (Ĵz), and Ĵ+ (Ĵ−)
is the raising (lowering) operator.

Since the total Hamiltonian given by Eq. (6) commutes
with Ĵ2, the system dynamics is confined to a subspace
characterized by a fixed value of J . The allowed values for
J are non-negative and follow the sequence J = N/2, (N −
1)/2, (N − 2)/2, . . .. Correspondingly, mJ can range from −J
to J in integer steps, namely, mJ = −J,−J + 1, . . . , J − 1, J .
As an example, consider a system of N = 2 qubits. Here,
the total collective spin J can either be 1 or 0. This means
that the system can either be in a triplet state (J = 1) with
mJ = −1, 0, 1 or in a singlet state (J = 0) with mJ = 0.

Motivated by existing experimental setups [28], we are
interested in a scenario where the qubits are weakly cou-
pled to the baths. In this regime, it is possible to invoke the
Born-Markov approximation and describe the open system
dynamics of the qubits with a suitable Lindblad master equa-
tion,

d ρ̂

dt
= − i

h̄
[Ĥ0, ρ̂] + D(ρ̂), (9)

where ρ̂ is the density operator of the qubits. A detailed
derivation of this Lindblad master equation is carried out in
Appendix B, while here we summarize the results needed for
our analysis. The dissipator D(ρ̂) arises from integrating out
the RLC circuits which are coupled to our system through
the voltage V̂i [see Eqs. (4) and (6)]. Within the Born-Markov
weak-coupling approximation, the dynamics of the voltage is
fully encoded in the voltage dynamical structure factor [69]
SV̂i,V̂j

(ω), defined in Eq. (B10), which describe the voltage
fluctuations occurring in the RLC circuits.

The interaction term in Eq. (6), coupling the qubits sys-
tem with the two resonators, is proportional to Ĵx = Ĵ+ + Ĵ−.
Hence, after performing the secular approximation as needed
to derive a Lindblad master equation [70], the suitable Lind-
blad operators for our system, describing transitions between
the Dicke states induced by the exchange of energy with
thermal baths, can be conveniently written using the collective
spin raising and lowering operators Ĵ+ and Ĵ−. Hence, the total
dissipator in Eq. (9) can be separated into contributions from
the hot and cold baths,

D(ρ̂) = Dh(ρ̂) + Dc(ρ̂), (10)

given by

Di(ρ̂ ) = γi(1 + ni )
(
Ĵ−ρ̂Ĵ+ − 1

2 {Ĵ+Ĵ−, ρ̂})
+ γini

(
Ĵ+ρ̂Ĵ− − 1

2 {Ĵ−Ĵ+, ρ̂}), (11)

where i = h, c and γc and γh are the transition rates for the
cold and hot baths, respectively. The rates γi, that represent
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the coupling strength between the baths and the qubits can
be expressed in terms of the microscopic parameters of the
circuit, as shown in Appendix B. The thermal occupation
numbers ni are given by the Bose-Einstein distribution,

ni = 1

exp
( h̄ω0

kBTi

) − 1
, (12)

where kB is the Boltzmann’s constant.
To summarize, after integrating out the two RLC circuits

representing the two thermal baths, we have obtained an ef-
fective description where the system of N qubits is in contact
with two structured thermal baths at finite temperature, each
providing injection and depletion of energy through global
spin-flip processes as described by Eq. (11). It is important to
notice that the Lindblad master equation in Eq. (9) correctly
inherits the conservation of Ĵ2 from the total Hamiltonian in
Eq. (6). Specifically, this becomes a strong symmetry of the
Lindbladian superoperator since Ĵ2 commutes both with H0

as well as with each jump operator Ĵ±. As such, this corre-
sponds to a conserved quantity of the Lindblad dynamics [71].
Interestingly, analogous Lindblad master equations have been
derived to describe dissipative (boundary) time crystals [72],
where usually one considers a single bath at zero temperature.

A. Steady-state density matrix and effective temperature

Since we are interested in computing the steady-state heat
current flowing across the device, we start discussing the
steady-state solution of the Lindblad master equation (9). In
the case of a single reservoir, i.e., D(ρ̂) = Di(ρ̂) for i = h
or i = c, the steady-state solution corresponds to the thermal
distribution (within each subspace with fixed J) characterized
by the corresponding temperature Ti since the rates satisfy the
detailed balance condition,

γini

γi(1 + ni )
= exp

(
− h̄ω0

kBTi

)
, (13)

capturing the equilibrium relation between absorption and
emission rates in each bath. This result, consistent with the
laws of thermodynamics, comes from using a master equa-
tion written in terms of the global jump operators for the
coupled qubits (see Refs. [73–75] for a discussion of this
point). In the case of two baths, the total dissipator in Eq. (10)
can be expressed as

D(ρ̂) = [γc(1 + nc) + γh(1 + nh )]
(
Ĵ−ρ̂Ĵ+ − 1

2 {Ĵ+Ĵ−, ρ̂})
+ [γcnc + γhnh]

(
Ĵ+ρ̂Ĵ− − 1

2 {Ĵ−Ĵ+, ρ̂}). (14)

For clarity in this discussion, we introduce a temperature T0

associated with the qubit frequency ω0, T0 ≡ (h̄ω0)/kB. The
dissipator in Eq. (14) defines a detailed balance equation,

γcnc + γhnh

γc(1 + nc) + γh(1 + nh)
= exp

(
− T0

T ∗

)
, (15)

which, in turn, defines an effective temperature T ∗, such that
Tc � T ∗ � Th. We can invert the previous equation to get an

explicit expression for the effective temperature,

T ∗ = T0

ln
[

γc(1+nc )+γh(1+nh )
γcnc+γhnh

] . (16)

The steady-state solution ρ̂ (s), determined setting
D(ρ̂ (s) ) = 0, is thus a thermal state at temperature T ∗
within each subspace with fixed J . However, since Ĵ2 is
conserved, the relative occupation of different subspaces is
fixed by the initial state. Assuming that the initial state does
not contain any coherence between subspaces with different
J , the stationary state ρ̂ (s) is given by

ρ̂ (s) =
∑

J

PJ

∑
mJ

P(mJ |J )|J, mJ〉〈J, mJ |, (17)

where mJ are the eigenvalues of Ĵz compatible with J , PJ

is the occupation probability of subspace J determined by
the initial state, and |J, mJ〉 are the Dicke states, given in
Eq. (8). It should be noted that the summation over J in
Eq. (17) incorporates the degeneracies associated with J , as
is customary in angular momentum composition [76]. For
example, considering a system composed of three qubits, each
characterized by a spin of 1

2 , the resultant collective angular
momentum can exhibit values of J = 1/2, 1/2, 3/2, with the
J = 1/2 appearing twice. This is due to the composition rule
that three spin- 1

2 entities combine to yield collective angular
momenta of 3

2 and two instances of 1
2 . This composition

rule is customarily represented as 1
2 ⊗ 1

2 ⊗ 1
2 = 3

2 ⊕ 1
2 ⊕ 1

2 .
The dissipator in Eq. (14) fixes the occupation within each
subspace J , i.e., it fixes the conditional probabilities P(mJ |J )
to be thermal at the effective temperature T ∗,

P(mJ | J ) = exp
( − mJ T0

T ∗
)

ZJ,T ∗
, (18)

where ZJ,T ∗ = ∑
mJ

exp[−mJT0/T ∗] is the partition function.

B. Heat current

The general expression for the total heat current Q̇ flowing
out of the thermal baths can be defined as [5,77]

Q̇ ≡ Tr

[
Ĥ0

d ρ̂

dt

]
= Tr[Ĥ0D(ρ̂)]. (19)

The second equality has been obtained by enforcing the dy-
namics of the Lindblad master equation, given by Eq. (9).
The total heat current Q̇ can be split into two contributions
corresponding to the different baths,

Q̇ = Q̇h + Q̇c, (20)

where

Q̇i ≡ Tr[Ĥ0Di(ρ̂ )]. (21)

Here, we are interested only in the steady-state dynamics
where Q̇ = 0 and Q̇h = −Q̇c.

Using the specific forms of the dissipators for the cold and
hot baths [in Eq. (11)], as detailed in Appendix C, we arrive
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at the following expressions for the heat currents:

Q̇i = h̄ω0γi[−(1 + ni )〈Ĵ+Ĵ−〉 + ni〈Ĵ−Ĵ+〉], (22)

where 〈x̂〉 ≡ Tr[ρ̂x̂]. This result is reminiscent of the well-
known superradiant energy emission in an ensemble of
excited qubits [37,38,78,79]. In such a context, the system is
typically considered to be in contact with a single cold bath at
zero temperature, corresponding to setting γh = 0 in our case,
and is initially prepared in a highly excited state, such as the
state with J = N/2 and M = J . Consequently, the superradi-
ant heat current flowing into the cold bath is given by Q̇c =
−h̄ω0γc〈Ĵ+Ĵ−〉. The term 〈Ĵ+Ĵ−〉 can be expressed in terms
of the individual qubit raising and lowering operators, σ̂

( j)
+

and σ̂
( j)
− , as

∑
j, j′ 〈σ̂ ( j)

+ σ̂
( j′ )
− 〉. This summation encompasses N

local population terms ( j = j′), and ∼N2 nonlocal coherent
terms ( j 
= j′) that may enable a superextensive scaling ef-
fect. However, it is important to notice that this superradiant
effect is only present in the transient dynamics. Over time,
the qubits will eventually reach thermal equilibrium with the
zero-temperature bath, resulting in the cessation of the heat
current.

Going back to the case under study, our primary focus is on
the steady-state heat current that flows between the two baths.
Using that Q̇c = −Q̇h, we can express the heat current as

Q̇h =
(

1

γh
+ 1

γc

)−1( 1

γh
Q̇h − 1

γc
Q̇c

)
(23)

= 2γhγc

γh + γc
h̄ω0〈−Ĵz〉(nh − nc), (24)

where we used that [Ĵ+, Ĵ−] = 2Ĵz. Notice that the case of
a single qubit can be obtained from this equation setting
J = 1/2.

Notably, Eq. (24) reveals that the steady-state heat current
does not explicitly depend on the sum of the nonlocal coherent
terms that are present in 〈Ĵ+Ĵ−〉 and 〈Ĵ−Ĵ+〉, which are typi-
cally associated with a superextensive behavior in the context
of superradiant emission. Instead, the steady-state heat current
is controlled by the operator Ĵz, which can be represented as a
sum of N local terms, Ĵz = ∑N

j=1 σ̂
( j)
z . This would suggest the

absence of a superextensive scaling due to superradiant effects
in this context. Indeed, upper bounding the expectation value
〈−Ĵz〉 in Eq. (24) with N/2, we find the following exact upper
bound:

Q̇h � Q̇max
h ≡ γhγc

γh + γc
h̄ω0N (nh − nc), (25)

revealing that for large values of N , the heat current cannot
scale more than linearly in the number of qubit. It is interest-
ing to notice that the bound in Eq. (25), which is saturable
in the thermodynamic limit N → ∞ (see Sec. II C), has a
“Landauer-Büttiker-like” dependence on the temperature of
the baths [80,81] and is analogous to the heat current flowing
through a harmonic oscillator coupled to bosonic heat baths
[82]—but enhanced by a factor N . Intuitively, this can be
expected because, in the thermodynamic limit, the collective
spin operators effectively become bosonic operators [83] and
should thus behave similarly to a harmonic oscillator. How-
ever, the rates here are increased by a factor N since the qubits
are coupled in parallel.

Surprisingly, despite the linear scaling of Q̇max
h with N , be-

low we show that the heat current Q̇h can nonetheless exhibit
a superextensive scaling in the finite-size regime. Indeed, if
the qubit were in a global thermal state, it can be shown from
Eq. (24) that the scaling would be linear since the thermal state
is a tensor product of local qubit states. However, since Ĵ2 is
conserved, the steady-state density matrix ρ̂ (s), as indicated
by Eq. (17), may not be purely thermal, and the presence
of coherence between different qubits can enable a nonlinear
dependence of the heat current on the qubit number N .

As a benchmark for our study, we will compare our re-
sults to the case where N qubits (with equal frequency ω0)
are independently coupled to a hot bath and a cold bath.
This scenario serves as a reference case, allowing for a clear
comparison of our collective case described by a collective
Lindblad master equation, given by Eq. (9). To compute the
heat current associated with a single qubit, we employ the
Lindblad master equation in Eq. (9), along with the expression
of the steady-state heat current given in Eq. (24), by setting
J̄ = 1/2, corresponding to N = 1. As all qubits in our model
are identical, the total heat current in this independent case,
denoted as Q̇ind

h , is determined by multiplying the heat current
of a single qubit by the total number of qubits, N . This leads
us to the following expression for the total heat current in the
independent scenario:

Q̇ind
h = Nh̄ω0

[
γhγc

γc(2nc + 1) + γh(2nh + 1)

]
(nh − nc). (26)

An analogous result for N = 1 was previously derived in the
spin-boson model [82,84].

C. Results for the heat current in a fixed subspace

For the remainder of this section, we focus on scenarios
where the initial state has a well-defined J = J̄ , meaning that

PJ = δJ,J̄ , (27)

in Eq. (17). Notice that in general, J̄ � N/2, and the case
J̄ = N/2 can be implemented by initializing all the qubits
in their ground states

⊗N
j=1 |0〉 j , corresponding to the Dicke

state |N/2,−N/2〉 and hence the system’s dynamics is con-
strained to the subspace with J = N/2. While this simplified
case may not be directly applicable in experimental settings, it
is a useful starting point for gaining insights into this problem
before exploring more realistic scenarios.

In this setting, the steady-state heat current Q̇h, as given in
Eq. (24), can be analytically derived by averaging the current
operator over the thermal state at an effective temperature
denoted by T ∗ and given in Eq. (16). In the general case,
the detailed calculation of this quantity is provided in Ap-
pendix C.

Analogously to the derivation of Eq. (25), we can upper
bound the expectation value 〈−Ĵz〉 in Eq. (24) with the con-
served value of J̄ , yielding a generally tighter bound,

Q̇h � Q̇lim
h ≡ 2γhγc

γh + γc
h̄ω0J̄ (nh − nc). (28)

Interestingly, as derived in Eq. (C10), the heat current satu-
rates this bound in the limit J̄T0 
 T ∗. Physically, this can
be interpreted as the low-temperature regime, i.e., when the
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effective temperature T ∗ is considerably lower than J̄T0, or as
the thermodynamic limit N → ∞, choosing J̄ = N/2. Indeed,
in these cases, the majority of spins are in the inverted state,
corresponding to 〈Ĵz〉 ≈ −J̄ . Since J̄ is, at most, linear in N ,
this reveals that the heat current cannot scale superextensively
in the number of qubits both in the low-temperature regime
and in the thermodynamic limit.

Nonetheless, in the thermodynamic limit N → ∞, we still
find a parametric advantage in the heat current. In this limit,
the ratio between the heat current in the collective case Q̇lim

h in
the J̄ = N/2 case and the heat current in the independent case
Q̇ind

h is given by Eq. (C12), i.e.,

Q̇lim
h

Q̇ind
h

= coth

[
T0

2T ∗

]
. (29)

The ratio Q̇lim
h /Q̇ind

h is always greater than 1, indicating that
the collective scenario yields a strictly larger heat current
than the independent case. In the limit T0/T ∗ 
 1, the ratio
approaches one. Conversely, in the limit where T0/T ∗ � 1,
the ratio becomes Q̇lim

h /Q̇ind
h ≈ (2T ∗/T0), which can be arbi-

trarily large. This indicates that even in the thermodynamic
limit, collective effects can provide an unbounded parametric
enhancement to the heat current.

We now consider the high-temperature regime, i.e., J̄T0 �
T ∗. Using Eq. (C11), we find that

Q̇h ≈ 2

3

γhγc

γh + γc

T0

T ∗ (h̄ω0)J̄ (1 + J̄ )(nh − nc). (30)

In this scenario, the heat current exhibits a superlinear scaling
with J̄ . This scaling behavior is derived from the nonlinear
dependence of the thermal populations P(mJ̄ | J̄ ) on J̄ , given
in Eq. (18), as shown in Appendix C. In the case J̄ = N/2,
this corresponds to a superextensive scaling in the number
of qubits, N . However, it is crucial to recognize that in the
thermodynamic limit (N → ∞), the condition J̄T0 � T ∗ is
never met when J̄ = N/2 since, as N approaches infinity,
J̄ = N/2 eventually surpasses T ∗/T0 and the upper limit Qlim

h
in Eq. (28), linear in J̄ , becomes tight.

In Figs. 3(a) and 3(b), we plot the steady-state heat current
Q̇h (normalized by J̄ h̄ω2

0) (14) focusing on system sizes of
experimental relevance, specifically considering a system size
up to N = 16, which corresponds to J̄ = 8. For convenience,
we fix the temperature of the cold bath to be Tc = T0/3 and
tune the ratio T0/Th, which, according to the discussion of
the steady-state’s effective temperature, allows tuning the ef-
fective temperature across the relevant scale T0 as discussed
above. In Fig. 3(a), we see that in the low-temperature regime,
T0 > 1.5Th (corresponding to T0 > T ∗), the ratio Q̇h/(J̄ h̄ω2

0 )
does not depend on J̄ , i.e., the heat current scales linearly in J̄ ,
and thus in N . However, in the high-temperature regime, i.e.,
T0 < 1.5Th (corresponding to T0 < T ∗), a superlinear scaling
emerges. In Fig. 3(a), we also show as a dotted line the
heat current obtained in the thermodynamic limit Q̇lim

h (taking
J̄ = N/2), as given in Eq. (28), which is also an upper bound
to the heat current. While, as expected, a saturation to the
extensive limit Q̇lim

h is seen for low temperatures, there is
no saturation for very high temperatures, T0/Th � 1, where
the superlinear scaling persists up to N = 16. The scaling
with the size is explicitly shown in Fig. 3(b), where the
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FIG. 3. (a) The heat current as a function of the ratio T0/Th

(where T0 ≡ h̄ω0/kB) for various values of J̄ . The black dashed line
indicates the independent current Q̇ind

h , whereas the red dotted curve
represents the heat current in the thermodynamic limit, denoted as
Q̇lim

h . (b) The heat current is plotted as a function of J̄ for various
ratios of T0/Th. The dotted lines in this panel correspond to the heat
current in the thermodynamic limit, Q̇lim

h , in the case J̄ = N/2. Each
of these dotted lines corresponds to the same temperature ratio T0/Th

of the data points of matching color. The temperature of the cold
bath is chosen to be T0/Tc = 3 in both panels. Other parameters are
γh = γc = ω0/10.

dependence of the ratio Q̇h/(J̄ h̄ω2
0 ) on J̄ is plotted for different

temperatures, highlighting the superlinear scaling for small
values of T0/Th. Again, the heat current in the thermodynamic
limit Q̇lim

h is shown as dotted lines of correspondent color.
Analogously to Fig. 3(a), for low temperatures T0/Th � 0.7,
the heat current saturates the bound given by Q̇lim

h . Instead,
in the high-temperature regime, i.e., for T0/Th � 0.3 and for
realistic system sizes, the heat current always shows a super-
linear behavior, far from saturation.

To summarize, for experimentally relevant cases where
N � 10, a superextensive scaling of the heat current is always
achievable provided the hot bath is sufficiently warm (high-
temperature regime). In these scenarios, the value of Q̇lim

h
essentially serves as an upper limit. Below we show that such
a temperature regime that yields a superextensive scaling of
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the heat current is within experimental reach and, importantly,
this behavior remains robust in the presence of noise.

III. IMPACT OF A PARASITIC BATH

The dynamics governed by the Lindblad master equation in
Eq. (9) preserves the norm of the collective spin operator
Ĵ2. Consequently, the steady-state current depends on the
probabilities PJ , which are fixed by the initial state as de-
scribed in Eq. (17). However, a dependence of the steady-state
heat current on the initial state preparation of the qubits is
not realistic in practice. Although short-term dynamics could
be influenced by the initial state preparation, the long-term
steady state is likely to be dominated by factors such as noise
and local dissipation. These effects would eventually erase the
memory of the initial state. Indeed, as we now show, such
parasitic effects have a large impact on the steady-state heat
current, even in the limit of vanishing small parasitic coupling,
thus a nonperturbative effect. To address this effect, we in-
troduce a third, parasitic thermal bath that interacts locally
with each qubit. Unlike the collective interactions from the
primary thermal baths, this parasitic bath interacts uniformly
but locally with each qubit, thereby breaking the conservation
of Ĵ2. This parasitic bath is characterized by a temperature Tp

and a coupling strength γp.
The dissipator associated with the parasitic bath, Dp(ρ̂),

can be expressed as

Dp(ρ̂) =
N∑

j=1

D( j)
p (ρ̂), (31)

and

D( j)
p (ρ̂) = γpnp

(
σ̂

( j)
+ ρσ̂

( j)
− − 1

2 {σ̂ ( j)
− σ̂

( j)
+ , ρ})

+ γp(1 + np)
(
σ̂

( j)
− ρσ̂

( j)
+ − 1

2 {σ̂ ( j)
+ σ̂

( j)
− , ρ}). (32)

Here, np = 1/{exp[h̄ω0/(kBTp)] − 1} represents the mean
thermal occupation number of the parasitic bath. The overall
dissipative dynamic of the system influenced by all three baths
is thus described by

d ρ̂

dt
= − i

h̄
[Ĥ0, ρ̂] + Dh(ρ̂) + Dc(ρ̂) + Dp(ρ̂). (33)

Although we assume that this parasitic bath is weakly coupled
to the system compared to the primary baths (γp � γh, γc),
its main effect is breaking the conservation of Ĵ2. Therefore,
while the coupling strength γp can be neglected when calcu-
lating the population within a given subspace, its influence is
nonperturbative in determining the steady-state probabilities
PJ of different subspaces. Hence, once we extract the values
of PJ from the numerics, we can still use the results of Sec. II C
to determine the occupations P(mJ |J ) inside a given subspace.

In Figs. 4(a) and 4(c), we show how the heat current Q̇h,
divided by N , is influenced by the parasitic bath. Figure 4(a)
focuses on the low-temperature regime, i.e., when both pri-
mary thermal baths have temperatures lower than T0, with
T0/Th = 1 and T0/Tc = 3. This corresponds to the system be-
ing effectively colder than T0, T0/T ∗ ≈ 1.42. As we can see, a
hot parasitic bath T0/Tp � 1 (blue and orange dots) suppresses
the heat current even below the independent case in Eq. (26)

(plotted as a black dashed line). In the particular case where
Tp ≈ T ∗ ≈ 1.42T0 (green dots), the heat current coincides
with the value derived for independent qubits, according to
Eq. (26). Under this condition, the parasitic bath has the only
effect of suppressing the coherence between different qubits,
rendering them effectively independent. However, when the
parasitic bath is sufficiently cold, T0/Tp � 10 (red and purple
dots), the heat current Q̇ind

h coincides with the one observed
when the dynamics are constrained to a single subspace with
J = N/2 (represented by black triangles). Even in this single
subspace, a superextensive scaling in N is absent. This ab-
sence is attributed to the low-temperature regime of the baths,
which maintains the system close to its ground state, leading
to 〈−Ĵz〉 ≈ N/2 in Eq. (24), which corresponds to a linear
behavior.

Figure 4(c) illustrates the high-temperature scenario where
T0/Th = 1/3 and T0/Tc = 3. In this case, the system has an
effective temperature bigger than T0, T0/T ∗ ≈ 0.57. Similar to
the case in Fig. 4(a), a hot parasitic bath (blue dots) negatively
impacts the heat current. If Tp ≈ T ∗ ≈ 0.57T0 (orange dots),
the heat current reverts to the value computed for independent
atoms using Eq. (26). However, when the parasitic bath is
sufficiently cold (T0/Tp � 3, red and purple dots), the heat
current exhibits superextensive scaling with N .

Despite this, a discernible gap remains between the heat
current Q̇h calculated in the presence of the parasitic bath and
the ideal one without the parasitic bath calculated assuming
Eq. (27) with J̄ = N/2 (represented by black triangles). This
gap exists because the parasitic bath redistributes the popula-
tion across various subspaces characterized by different values
of J , whereas in Eq. (27) we assume that a single value of
J̄ = N/2 is occupied.

To further interpret our results, in Figs. 4(b) and 4(d), we
show the dependence of the total angular momentum 〈Ĵ2〉,
divided by ∼N2, on the temperature of the parasitic bath. In
both panels, we see that a hot parasitic bath (blue, orange,
and green dots) corresponds to low values of 〈Ĵ2〉, which
is consistent with low values of the heat currents shown in
the corresponding Figs 4(a) and 4(c). This can be interpreted
in the following way. Let us consider the high-temperature
regime of the main baths, which is the one that can exhibit the
superlinear scaling of the heat current (see Sec. II C). In the
limit of infinitely hot parasitic bath, all states would be equally
populated. As N increases, the states with J ∼ 0 exponentially
outnumber the other states, leading to the observed decrease
of Ĵ2. This, in turn, implies a vanishing 〈Ĵz〉, which, using
Eq. (24), implies a vanishing heat current even below the
independent qubits case—as observed, e.g., in the orange and
blue dots in Figs. 4(a) and 4(c).

Therefore, to achieve superextensive scaling, a cold par-
asitic bath Tp � T0 is required to ensure that the subspace
with maximum collective spin J ≈ N/2 is occupied, corre-
sponding to 〈Ĵ2〉 ≈ N/2(N/2 + 1) in Figs. 4(b) and 4(d).
However, this requirement appears to conflict with the need
for a high effective temperature T ∗ to have the superlinear
scaling emerging from Eq. (30). Nevertheless, given that the
parasitic bath is weakly coupled to the system, it does not
significantly influence the system’s effective temperature T ∗,
which is dominated by Th and Tc. As a result, a cold parasitic
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FIG. 4. (a),(c) The heat current, divided by N , as a function of the number of qubits, N , for various values of the ratio T0/Tp. The
independent case Q̇ind

h , given by Eq. (26), is shown as a black dashed line. The ideal case without the parasitic bath, and calculated assuming
Eq. (27) with J̄ = N/2, is shown as black triangles. (b),(d) The total angular momentum Ĵ2 [normalized by N/2(N/2 + 1)] as a function of N
for various values of the ratio T0/Tp. (a),(b) Th = T0; (c),(d) Th = 3T0. Other parameters are Tc = T0/3, γh = γc = ω0/10, γp = 0.001ω0.

bath Tp � T0 does not necessarily force the system toward
its ground state, allowing for a finite window where superex-
tensive scaling of the heat current can be observed when
T ∗ 
 T0, as shown in Fig. 4(b).

IV. EXPERIMENTAL PROPOSAL

In this section, we discuss an experimental proposal to
observe the enhanced heat current in a circuit-QED platform.
In Fig. 5(a), we plot the dependence of the heat current Q̇h

on the number of qubits for different temperatures of the
parasitic bath, as in Fig. 4, but using physical parameters—
reported in Table I—that have been used to describe a previous
experiment [28]. This plot demonstrates that the collective
enhancement of the heat current is quite pronounced when
using parameters that are feasible in experimental settings, as
long as the temperature of the parasitic bath is roughly below
150 mK.

Furthermore, we propose a minimal single-device experi-
ment to demonstrate the collective advantage in a setup with

N = 2 transmon qubits. Ideally, we would like to compare
the collective current Q̇h with the independent case Q̇ind

h in
Eq. (26), where each qubit is independently coupled with its
bath. However, working with two different devices introduces
variability in Hamiltonian parameters due to the fabrication
differences, which makes a direct comparison difficult. To cir-
cumvent this problem, we devise a protocol where we exploit
the possibility of controlling the frequency of each transmon
by adjusting the external magnetic flux threading through it.
By controlling the detuning between the qubits, we can switch
between the collective and the independent coupling scheme
on the same device.

Let us assume that the two transmon qubits have tunable
frequencies, ω

(1)
0 and ω

(2)
0 . When both of these frequencies

are resonant with the LC resonator frequency (ω(k)
0 = ωLC for

k = 1, 2), the transmons are collectively coupled to the same
modes of the baths. Under this condition, the heat current is
the collective one Q̇h determined by Eq. (22) and discussed
in previous sections. However, if we detune, e.g., the second
qubit setting ω

(2)
0 = ωLC/2, while keeping the first qubit on

043128-8



DICKE SUPERRADIANT HEAT CURRENT … PHYSICAL REVIEW RESEARCH 6, 043128 (2024)

1 2 3 4 5 6 7 8 9 10
N

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Q̇
h
[f
W

]/
N

Tp= 479mK

Tp= 159mK

Tp= 95mK

Tp= 68mK

(a)

50 150 250 350 450
Tp[mK]

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Q̇
h
[f
W

]

Q̇h

Q̇ind
h

2Q̇det
h

(b)

FIG. 5. (a) The heat current Q̇h (divided by N) and expressed
in femtoWatt (fW) as a function of N , for different values of Tp in
milliKelvin (mK). Here, we choose ω0/(2π ) = 4.0 GHz, γh = γc =
0.5 GHz. (b) The heat current Q̇h in femtoWatt (fW) as a function of
Tp in milliKelvin (mK) for N = 2 qubits. In this panel, the collective
heat current Q̇h is depicted by a blue continuous line, the heat current
in the independent scenario Q̇ind

h is represented by a red dashed
line, and the heat current in the detuned scenario is indicated by
a green dotted line. For the detuned scenario, the parameters are
set as ω

(1)
0 /(2π ) = 4.0 GHz and ω

(2)
0 /(2π ) = 2.0 GHz, with γ1 =

0.5 GHz. The rate γ2 is calculated in accordance with Eq. (D5),
assuming Qi = 20. In both panels, additional parameters are νTh =
8.0 GHz, νTc = 1.0 GHz (corresponding to bath temperatures Th =
384.0 mK and Tc = 96.0 mK), and a parasitic bath coupling rate of
γp = 0.01 GHz.

resonance, ω
(1)
0 = ωLC , we can effectively “disconnect” the

second qubit. We label the heat current in this configuration
as Q̇det

h . In this detuned scenario, the qubits interact with
independent modes of the baths and behave independently.
Additionally, due to the significant detuning of the second
qubit, it negligibly contributes to the heat current. Therefore,
only the first qubit significantly contributes to the heat current,
and hence we expect that Q̇det

h ≈ Q̇ind
h /2. In Appendix D, we

detail the calculation of the heat current Q̇det
h in the detuned

scenario. This derivation allows us to quantitatively support
the previous analysis. In Fig. 5(b), we show the heat current

TABLE I. Physical parameters compatible with the experiment
in Ref. [28]. In the first line, we reported the frequencies νT associ-
ated with the relative temperatures T as νT ≡ kBT/h.

ω0/(2π ) Tc Th Tp γc γh γp

GHz 4.0 2.0 8.0 1.04–10.4 0.5 0.5 0.01
mK 96.0 384.0 50–500

as a function of the temperature of the parasitic bath for the
minimal single-device system comprising N = 2 transmon
qubits. The continuous blue line represents the collective heat
current Q̇h, while the red dashed line indicates the heat current
in the independent case Q̇ind

h , calculated as per Eq. (26). The
green dotted line depicts twice the heat current in the scenario
where one qubit is in resonance and the other is detuned,
namely, 2Q̇det

h , and determined by Eq. (D4). As we can see in
the figure, the detuned case can be used to accurately estimate
the independent scenario as 2Q̇det

h ≈ Q̇ind
h , and thus to exper-

imentally validate and quantify the heat current enhancement
in the collective case.

Significantly, Fig. 5(b) reveals that at a parasitic bath
temperature of Tp = 50 mK, the collective Q̇h exhibits an
enhancement of approximately 13% compared to the inde-
pendent scenario. In contrast, at Tp = 450 mK, the collective
heat current shows a reduction of about 4% relative to the
independent case. Concerning the experimental implementa-
tion, fabricating a multiqubit circuit is not significantly more
demanding than making a single qubit. We believe that the
main experimental challenge in realizing such a minimal
single-device experiment is ensuring that the two transmons
have the same frequency ω0 and are coupled to the same bath
with the same intensity to guarantee the conservation of Ĵ2.
Small imperfections in the physical implementation would
inevitably result in breaking the conservation of Ĵ2. However,
heuristically, these effects would be similar to the presence of
the parasitic baths that we studied earlier.

V. DISCUSSION AND CONCLUSIONS

In this work, we have illustrated how the collective inter-
actions between N qubits and two thermal baths can enhance
the heat transport across the device, compared to a scenario
where each qubit is independently coupled with the baths.

The device can be implemented within current quantum
technologies, and we focus on its circuit-QED implemen-
tation. After revealing the physical origin of the collective
enhancement of the heat current, we analyze its resilience to
a third, parasitic thermal bath that acts locally on each qubit,
modeling unavoidable single-qubit noise. We then assess the
experimental feasibility of our proposal by choosing system
parameters that have been measured in a previous experiment
[28], and we propose a minimal experimental device based
on two superconducting qubits. Our findings indicate that this
collective advantage is not only robust to local noise, but also
observable under experimental conditions.

It is important to note that the circuit depicted in Fig. 2
is a simplified model. In real-world scenarios, additional fac-
tors may come into play. For example, unintended capacitive
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coupling between qubits is likely to occur in practical im-
plementations, leading to effective dipole-dipole interactions
between qubits. However, this coupling would primarily affect
the conservation of Ĵ2, leading to effects qualitatively analo-
gous to those introduced by the parasitic bath.

Another important limitation of our predictions stems from
the use of a Markovian Lindblad master equation, which
is well justified only for small transition rates compared to
the qubit frequency ω0. This is primarily required by the
secular approximation and the weak-coupling approximation
(commonly referred to as the Born-Markov approximation),
as detailed in the derivation of our master equation in Ap-
pendix B. Given that we chose relatively small rates, i.e.,
approximately 10% of the bare frequency ω0, the use of the
Lindblad master equation is reasonably justified. Additionally,
it has been shown that nonsecular terms tend to be more
relevant during transient dynamics, while their influence is
significantly reduced at the steady state [85]. Nonetheless, it
would be interesting to explore the influence of nonsecular
terms and non-Markovian effects that emerge at strong cou-
pling and can play a significant role in an experiment [86].

In the future, it will be interesting to investigate similar
collective effects when time-dependent driving is present, al-
lowing the device to also function as a heat engine [87,88] or
as a refrigerator [89,90], depending on the specific physical
parameters.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN (1)

In this Appendix, we provided a detailed derivation of the
Hamiltonian in Eq. (1). We begin by revisiting the quantiza-
tion processes for two key components of the circuits drawn
in Fig. 2(b): the LC circuit and the transmon qubit. The
derivation of these Hamiltonians is detailed in Appendices A 1
and A 2, respectively. Building upon these concepts, we then
proceed to derive the Hamiltonian in Eq. (1) from the circuit
drawn in Fig. 2.

1. Quantization of the LC superconducting circuit

The Hamiltonian for an LC circuit, where L is the induc-
tance and C is the capacitance, is given by

ĤLC = Q̂2

2C
+ φ̂2

2L
, (A1)

where Q̂ denotes the charge on the capacitor and φ̂ represents
the magnetic flux through the inductor. These two variables
fulfill the canonical commutation relation [Q̂, φ̂] = ih̄. Since
Eq. (A1) is a quadratic Hamiltonian, it is useful to express Q̂
and φ̂ in terms of ladder operators â, â† as

Q̂ =
√

h̄

2ZLC
(â + â†), (A2)

φ̂ = i

√
h̄ZLC

2
(â† − â), (A3)

where ladder operator satisfy [â, â†] = 1 and ZLC = √
L/C is

the impedance associated with the LC circuit. The Hamilto-
nian can be thus diagonalized in the form

ĤLC = h̄ωLC
(
â†â + 1

2

)
, (A4)

where the resonant frequency ωLC of the LC circuit reads
ωLC = 1/

√
LC.

2. Quantization for a transmon qubit

A transmon qubit can be modeled as a nonlinear circuit
composed of a shunt capacitance and a Josephson junction
in parallel. The Hamiltonian for the transmon qubit can be
written as

ĤT = 1

2CT
Q̂2

T − EJ cos

(
2πφ̂T

φ0

)
, (A5)

where CT is the transmon capacitor, φ0 = h/(2e), and EJ rep-
resents the Josephson energy. The variables Q̂T and φ̂T are
quantum operators representing the charge of excess Cooper
pairs and the phase difference across the Josephson junction,
respectively. Again, they satisfy the canonical commutation
relation,

[Q̂T, φ̂T] = ih̄. (A6)

Transmon qubits operate in the regime EJ 
 EC—where
EC = e2/(2C) denotes the charging energy—to minimize sen-
sitivity to charge noise. When the potential of the transmon is
examined in this regime, it can be approximated as a quasi-
harmonic potential. Linearizing around the minimum of this
potential, the cosine term in the Hamiltonian can be expanded,
leading to an almost harmonic behavior with small anhar-
monic corrections.

Neglecting the nonlinearity stemming from the Josephson
energy, Eq. (A5) can be approximated as

Ĥ ′
T = 1

2CT
Q̂2

T + 1

2LJ
φ̂2

T, (A7)

where LJ = (h̄/2e)2(1/EJ).
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This is analogous to the Hamiltonian of a quantum har-
monic oscillator in Eq. (A1). Hence, Q̂T and φ̂T can be
expressed in terms of ladder operators b̂, b̂† (fulfilling the
commutation relation [b̂, b̂†] = 1) as

Q̂T =
√

h̄

2ZT
(b̂ + b̂†), (A8)

φ̂T = i

√
h̄ZT

2
(b̂† − b̂), (A9)

where ZT = √
LJ/CT is the impedance associated with the

equivalent LC circuit. Substituting Eqs. (A8) and (A9) into
the linearized Hamiltonian Ĥ ′

T, we have

Ĥ ′
T = E ′

Tb̂†b̂, (A10)

where E ′
T = √

8EJEC is the effective frequency of the trans-
mon. This is the harmonic spectrum of the transmon, at the
lowest order in EC/EJ. However, the presence of anharmonic
terms is crucial for the transmon to function as a qubit. Specif-
ically, the anharmonicity ensures that the energy levels of
the transmon are not evenly spaced, allowing for selective
addressing of specific energy transitions.

The quartic anharmonic term in the potential, which arises
from the Taylor expansion of the cosine function in Eq. (A5),
can be expressed as

δĤT = −EJ

4!

(
2πφ̂T

φ0

)4

, (A11)

where the transmon Hamiltonian is approximated by ĤT ≈
Ĥ ′

T + δĤT. Given the relationship between φ̂ and b̂ and b̂† in
Eq. (A9), the quartic term can be reexpressed in terms of these
ladder operators. Expanding φ̂4 and neglecting off-diagonal
terms that do not conserve the number of excitations, the
perturbation δĤT becomes

δĤT = −EC

2
(b̂†b̂†b̂b̂ + 2b̂†b̂). (A12)

The term b̂†b̂†b̂b̂ in the potential introduces an anhar-
monicity, leading to unevenly spaced energy levels. This
anharmonicity—proportional to EC—is crucial for the op-
eration of the transmon as a qubit, allowing for selective
addressing of its states. The term b̂†b̂ results in a small shift in
the effective energy ET of the transmon,

ET ≈
√

8EJEC − EC . (A13)

This equation incorporates the anharmonic corrections from
the Josephson potential.

Due to the introduced anharmonicity, our focus can be
limited to the subspace spanned by the unexcited state |0〉T
(where b̂|0〉T = 0) and the excited state |1〉T ≡ b̂†|0〉T. In
this subspace, we can truncate the ladder operator to b̂ ≈
σ̂−, b̂† ≈ σ̂+, and subsequently b̂†b̂ ≈ (σ̂z + 1)/2. Hence, the
transmon’s observables can be expressed in the truncated

basis as

ĤT = ET

2
(σ̂z + 1), (A14)

Q̂T =
√

h̄

2ZT
σ̂x, (A15)

φ̂T = −
√

h̄ZT

2
σ̂y. (A16)

3. Derivation of the Hamiltonian of the system

Here we derive the Hamiltonian of the system introduced in
the main text. The lumped-element circuit diagram, including
capacitances, inductances, resistances, and the various vari-
ables, is depicted in Fig. 2. This circuit corresponds to the
following Lagrangian for the transmons:

L = 1

2

N∑
j=1

⎡
⎣CTφ̇2

j − 1

LJ
φ2

j +
∑
i=h,c

C(i)
c (φ̇ j − Vi )

2

⎤
⎦, (A17)

where Vi is the voltage drop occurring in the resistance Ri

and C(i)
c corresponds to the capacitive coupling between the

transmons and the RLC circuits. In the following, the ca-
pacitive couplings are assumed to be small with respect to
the transmon capacities, C(i)

c � CT. Under this approxima-
tion, in the following, we will trace out the variables Vi and
obtain a Markovian master equation for the transmons. The
Lagrangian gives rise to canonical momenta Qj (the charges),
which are the derivatives of the Lagrangian with respect to φ̇ j ,
Qj ≡ ∂L/∂φ̇ j . In terms of φ̇ j , the charges Qj can be expressed
as

Qj =
(

CT +
∑
i=h,c

C(i)
c

)
φ̇ j −

∑
i=h,c

C(i)
c Vi. (A18)

The previous equation can be inverted to obtain the voltages
φ̇ j . This relation, at the first order in C(i)

c /CT, reads

φ̇ j = Qj

(
1

CT
−

∑
i=h,c C(i)

c

C2
T

)
+

∑
i=h,c

C(i)
c Vi. (A19)

The Hamiltonian of the system can thus be obtained as the
Legendre transform of the total Lagrangian L in Eq. (A17)
as H ≡ ∑N

j=1 Qj φ̇ j − L. At this stage, it is now possible
to quantize the system Hamiltonian by promoting classical
variables to quantum ones as follows:

φ j → φ̂ j,

Qj → Q̂ j,

Vi → V̂i. (A20)

The total quantized Hamiltonian can be expressed at the
first order C(i)

c /CT as

Ĥ =
N∑

j=1

1

2

[
1

CT

(
1 −

∑
i=h,c C(i)

c

CT

)
Q̂2

j + 1

LJ
φ̂2

j

]

−
N∑

j=1

∑
i=h,c

C(i)
c

CT
Q̂ jV̂i, (A21)
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where we neglected terms V̂ 2
i that do not act on the transmons.

By truncating this Hamiltonian on the transmon qubit Hilbert
space, as in Eq. (A14), we have

Ĥ ≈
N∑

j=1

ET

2

(
σ̂ ( j)

z + 1
) −

N∑
j=1

∑
i=h,c

h̄Gi
σ̂

( j)
x

2
V̂i, (A22)

where coupling between the qubits and the voltage V̂i is de-
noted by Gi, which is defined as Gi = 2(C(i)

c /CT)(2/h̄ZT)1/2.
In the main text, we have used the notation h̄ω0 = ET to rep-
resent the qubit energy. With these definitions and notations
in place, we have completed the derivation of the Hamiltonian
of the system, given in Eq. (6).

APPENDIX B: DERIVATION OF LINDBLAD
MASTER EQUATION

In this Appendix, we derive the Lindblad master equa-
tion for the collection of transmons by tracing out the RLC
degrees of freedom. The complete system is described by the
total Hamiltonian Ĥtot,

Ĥtot = Ĥ + ĤRLC . (B1)

Here, ĤRLC represents the Hamiltonian for RLC circuits, while
Ĥ is the transmon’s Hamiltonian defined in Eq. (6). As ĤRLC

contains a resistive part, writing an explicit expression in-
volves the coupling with a collection of infinite LC elements,
as discussed, for example, in Ref. [69]. As we will show later,
here we do not need to write the full RLC Hamiltonian, ĤRLC .
Instead, thanks to the fluctuation-dissipation theorem, it will
be sufficient to know the classical equation of motion of the
RLC circuit. We further define the interaction Hamiltonian
Ĥint as

Ĥint = Ĥtot − Ĥ − ĤRLC (B2)

= −
∑
i=h,c

h̄GiĴxV̂i. (B3)

We employ the Born-Markov approximation, which as-
sumes that the qubits are weakly coupled to the modes of
the baths, to trace out the field and obtain a master equa-
tion governing the evolution of the qubits’ density matrix
ρ(t ). The calculations are facilitated by working in the inter-
action picture. For any generic operator Ô, its corresponding
form in the interaction picture is ÔI(t ) = U †

0 (t )ÔU0(t ), where
U0(t ) = exp[−iĤbaret] and Ĥbare = Ĥ0 + Ĥr. Meanwhile, the
density matrix in the interaction picture evolves according to
ρ̂I(t ) = U0(t )ρ̂(t )U †

0 (t ).
The evolution of the total density matrix in the interaction

picture, ρ̂I
tot(t ), is dictated by the following master equa-

tion [70]:

∂t ρ̂
I
tot(t ) = − 1

h̄2

∫ ∞

0
dτ

{
Ĥ I

int(t ),
[
Ĥ I

int(t − τ ), ρ̂I
tot(t )

]}
.

(B4)
In reaching this equation, we apply the Markov approxima-

tion, assuming that the environment’s correlation time τRLC

is much shorter than the timescale of the qubit’s dynamics,
ω−1

0 , namely, ω0τRLC � 1. This allows us to approximate
ρ̂I

tot(t − τ ) ≈ ρ̂I
tot(t ) under the time integral and to extend the

integration limit to τ → ∞.

Upon tracing out the field subsystem, the master equa-
tion for the matter density matrix ρ̂I(t ) is given by

∂t ρ̂
I(t ) = − 1

h̄2

∫ ∞

0
dτ

{
trr

[
Ĥ I

int(t )Ĥ I
int(t − τ )ρ̂I

r (t )
]
ρ̂I(t )

− trr
[
Ĥ I

int(t )ρ̂I
r (t )ρ̂I(t )Ĥ I

int(t − τ )
] + H.c.

}
, (B5)

where trr[·] denotes the trace on the RLC degrees of freedom.
Here, we employed the Born approximation, which assumes
that the RLC circuits serve as large memoryless reservoirs.
This lets us approximate ρ̂I

tot(t ) ≈ ρ̂I(t )ρ̂I
r (t ).

In the interaction picture, the interaction Hamiltonian de-
fined in Eq. (B2) reads

Ĥ I
int (t ) = −

∑
i=h,c

h̄Gi[Ĵ
I
−(t ) + Ĵ I

+(t )]V̂ I
i (t ). (B6)

Here, V̂ I
i (t ) are the voltage operators associated with the RLC

circuits, and Ĵ I
+(t ) and Ĵ I

−(t ) are the qubits collective raising
and lowering operators. The qubit raising and lowering oper-
ators in the interaction picture are given by

Ĵ I
+(t ) = eiω0t Ĵ+, (B7)

Ĵ I
−(t ) = e−iω0t Ĵ−. (B8)

The phase factors arise due to the transformation to the
interaction picture, where ω0 is the bare frequency of the
qubits. By substituting ladder operators in the interaction pic-
ture into the master equation [Eq. (B5)] and performing the
secular approximation, we select operators that induce transi-
tions between eigenstates. The secular approximation involves
neglecting rapidly oscillating terms in the interaction picture,
which is valid when ω0 is large compared to the system-bath
couplings. In this regime, we obtain

∂t ρ̂(t ) = − i

h̄
[Ĥ0, ρ̂(t )] −

∑
i, j

GiGj
{
SV̂i,V̂j

(−ω0)[Ĵ+Ĵ−ρ̂(t )

− Ĵ+ρ̂(t )Ĵ−] + SV̂i,V̂j
(ω0)[Ĵ−Ĵ+ρ̂(t )

− Ĵ−ρ̂(t )Ĵ+] + H.c.
}
, (B9)

where SV̂i,V̂j
(ω) is the voltage dynamical structure factor of the

RLC circuits,

SV̂i,V̂j
(ω) ≡

∫ ∞

0
dτe−iωτ

〈
V̂ I

i (τ )V̂j
〉
r. (B10)

The voltage dynamical structure factor can be calculated
by employing the fluctuation-dissipation theorem [69],

SV̂i,V̂j
(ω) = 2h̄ωRe[Ztot,i(ω)]Ni(ω)δi, j, (B11)

where Ztot,i(ω) is the total impedance of the RLC circuit and
Ni(ω) = [ni(ω) + 1]
(ω) − ni(−ω)
(−ω) is a thermal oc-
cupation factor. The total impedance of the RLC circuits in
Fig. 2 can be obtained by considering that the LC branch is in
parallel with the resistor branch, hence,

Ztot,i(ω)(ω) =
(

1

ZLC (ω)
+ 1

ZRi

)−1

, (B12)
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where ZRi = Ri is the impedance of the ith resistor and ZLC (ω)
is the impedance of the LC circuit,

ZLC (ω) = i

C

ω

ω2 − ω2
LC

. (B13)

By placing the explicit form of ZLC (ω) and ZRi in Eq. (B12),
we obtain

Re[Ztot,i(ω)] = ω2Ri

ω2 + R2
i C2

(
ω2 − ω2

LC

)2 . (B14)

This expression can be further simplified by introducing
the quality factor Qi as the ratio of the frequency of the
RLC circuit divided by its line width, κi, Qi = ωLC/κi. The
linewidth of the RLC circuit resonance is given by κi = Ri.
Hence, we have

Re[Ztot,i(ω)] = Ri

1 + Q2
i

(
ω

ωLC
− ωLC

ω

)2 . (B15)

By plugging this equation into Eq. (B11), we obtain an ex-
plicit expression for the dynamical structure factor,

SV̂i,V̂j
(ω) =

⎡
⎣ 2h̄ωRiNi(ω)

1 + Q2
i

(
ω

ωLC
− ωLC

ω

)2

⎤
⎦δi j . (B16)

By plugging the explicit form of the dynamical structure
factor in Eq. (B9), we can finally arrive at a master equa-
tion that can be written in the form of Eq. (9),

∂t ρ̂(t ) = − i

h̄
[Ĥ0, ρ̂(t )] + D[ρ̂(t )]. (B17)

Here, the dissipator D[ρ(t )] is given by

D[ρ(t )] =
∑
i=h,c

γi

{
(1 + ni )

[
Ĵ−ρ̂Ĵ+ − 1

2
(Ĵ+Ĵ−, ρ̂ )

]

+ ni

[
Ĵ+ρ̂Ĵ− − 1

2
(Ĵ−Ĵ+, ρ̂ )

]}
, (B18)

where the rates read

γi = 4h̄ω0RiG2
i

1 + Q2
i

(
ω0
ωLC

− ωLC
ω0

)2 . (B19)

APPENDIX C: DETAILS OF THE HEAT CURRENT

In this Appendix, we provide detailed mathematical calcu-
lations related to the heat current. Appendix C 1 is dedicated
to deriving an explicit expression for the heat current, specif-
ically, Eq. (22). Following this, in Appendix C 2, we discuss
various limits within which a simpler analytical expression for
the heat current can be obtained.

1. Derivation of Eq. (22)

Starting from Eq. (21), we can express the heat current
contribution from a specific bath. We will focus on deriving
the heat current from the cold bath, Q̇h.

The heat current from the cold bath is given by

Q̇i = h̄ω0Tr[ĴzDi(ρ̂)].

By inserting the expression for Di(ρ̂), using the cyclic prop-
erty of the trace, and introducing the notation 〈x̂〉 ≡ Tr[ρ̂x̂],
we can rewrite this expression as

Q̇i = h̄ω0γi
[
(1 + ni )

(〈Ĵ+ĴzĴ−〉 − 1
2 〈{Ĵ+Ĵ−, Ĵz}〉

)
+ ni

(〈Ĵ−ĴzĴ+〉 − 1
2 〈{Ĵ−Ĵ+, Ĵz}〉

)]
.

Using the fact that Ĵz commutes with Ĵ−Ĵ+, we arrive at

Q̇i = h̄ω0γi[(1 + ni )〈Ĵ+[Ĵz, Ĵ−]〉 + ni〈Ĵ−[Ĵz, Ĵ+]〉].
Using the commutation relation [Ĵz, Ĵ±] = ±Ĵ±, we arrive

at a desired final expression for the heat current Q̇i,

Q̇i = h̄ω0γi[−(1 + ni )〈Ĵ+Ĵ−〉 + ni〈Ĵ−Ĵ+〉],
which corresponds to Eq. (22).

2. Analytical calculation of the heat current

In this Appendix, we detail calculations of the heat current
in Eq. (24). Essentially, one needs to calculate the average
value of the collective spin inversion, 〈−Ĵz〉. Given a generic
operator x̂, its average can be computed on the steady-state
density matrix ρ̂ (s) in Eq. (17) as

〈x̂〉 = Tr[ρ̂ (s)x̂] (C1)

=
∑

J

PJ〈x̂〉J,T , (C2)

where 〈x̂〉J,T denote averages within a subspace with a given
J , over the thermal occupations P(mJ |J ) = e−mh̄ω0/kBT /ZJ,T

depending on J and on the temperature T ,

〈x̂〉J,T =
J∑

m=−J

exp
(−mh̄ω0

kBT

)
ZJ,T

〈J, m|x̂|J, m〉, (C3)

and ZJ,T is the partition function,

ZJ,T =
J∑

m=−J

exp

(
−mh̄ω0

kBT

)
. (C4)

Then our goal reduces to calculating the average value 〈Ĵz〉 in
a subspace with a fixed J ,

〈Ĵz〉J,T =
∑J

m=−J m exp
(−mh̄ω0

kBT

)
ZJ,T

. (C5)

This sum can be performed by noticing that ZJ,T is a geomet-
ric series. The sum of this geometric series is given by

ZJ,T = exp
( Jh̄ω0

kBT

) − exp
(− (J+1)h̄ω0

kBT

)
1 − exp

(− h̄ω0
kBT

) . (C6)

Given the relation

∂

∂
(

1
kBT

) exp

(
−mh̄ω0

kBT

)
= −h̄ω0m exp

(
−mh̄ω0

kBT

)
, (C7)

we can rewrite 〈Ĵz〉J,T as

〈Ĵz〉J,T = − 1

h̄ω0

∂ ln(ZJ,T )

∂
(

1
kBT

) . (C8)

This expression provides a direct way to calculate the ex-
pectation value 〈Ĵz〉J,T by differentiating the logarithm of the
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FIG. 6. This figure shows the average 〈Ĵz〉J̄,T in a given subspace
with J = J̄ fixed as a function of the temperature T .

partition function with respect to 1/(kBT ). By doing this
derivative in Eq. (C8), we obtain an explicit expression for
〈Ĵz〉J,T ,

〈Ĵz〉J,T = −J + 2J + 1

1 − exp
( (2J+1)h̄ω0

kBT

) + 1

exp
( h̄ω0

kBT

) − 1
. (C9)

Figure 6 depicts the variation of the average 〈Ĵz〉J,T as a
function of temperature T . The graph illustrates a linear be-
havior for small effective temperatures, where Jh̄ω0 
 kBT ,
and transitions to a superlinear scaling in the opposite regime,
Jh̄ω0 � kBT . This behavior is indicative of the different ther-
mal regimes influencing the collective angular momentum’s z
component.

It is insightful to consider the specific limits of Eq. (C9).
In the regime of low temperatures, characterized by h̄ω0J 

kBT , the average 〈Ĵz〉J,T simplifies to

〈Ĵz〉J,T ≈ −J. (C10)

This expression proves that the bound in Eq. (28) is tight in
the low-temperature regime.

On the other hand, in the high-temperature regime, where
h̄ω0J � kBT , we obtain

〈Ĵz〉J,T ≈ −
(

h̄ω0

3kBT

)
J (1 + J ). (C11)

This equation is utilized in the main text to derive Eq. (30).
Additionally, evaluating the ratio 〈Ĵz〉J,T /(J〈Ĵz〉1/2,T ) in the
limit J → ∞ yields

〈Ĵz〉J,T

J〈Ĵz〉1/2,T
≈ 2 coth

[
h̄ω0

2kBT

]
. (C12)

This expression is applied in the main text to derive Eq. (28).

APPENDIX D: CALCULATION OF Q̇det
h

In this Appendix, we detail the calculation of the heat
current Q̇det

h in the detuned scenario. In this case, each qubit
interacts independently with distinct modes of the bath. The
total heat current is thus given by the sum of the independent
contributions of each qubit, each one determined by Eq. (22)
setting N = 1, with the qubit’s state determined by the master
equation in Eq. (33). We assume equal strength in the cou-
plings with both the hot and cold baths. Therefore, in the
detuned scenario, the total heat current in Eq. (22) can be
expressed as

Q̇det
h =

∑
k=1,2

h̄ω
(k)
0 γk

[−(
1 + n(k)

h

)〈σ̂ (k)
+ σ̂

(k)
− 〉 + n(k)

h 〈σ̂ (k)
− σ̂

(k)
+ 〉],

where γk represents the decay rate of the kth qubit, σ̂
(k)
− (σ̂ (k)

+ )
are the creation (destruction) Pauli operators acting on the kth
qubit, and the thermal occupations n(k)

i of the ith bath depend
on the bath temperature Ti and the frequency of the kth qubit,

n(k)
i = 1

exp
( h̄ω

(k)
0

kBTi

) − 1
. (D1)

At the steady state, the average values 〈σ̂ (k)
+ σ̂

(k)
− 〉, 〈σ̂ (k)

− σ̂
(k)
+ 〉

reduce to the thermal populations p(k)
0 , p(k)

1 , as

〈σ̂ (k)
+ σ̂

(k)
− 〉 = p(k)

1 ,

〈σ̂ (k)
− σ̂

(k)
+ 〉 = p(k)

0 , (D2)

where the qubit’s populations p(k)
0 , p(k)

1 are thermally occupied

as dictated by Eq. (33): p(k)
0 = 1/[1 + exp(− h̄ω

(k)
0

kBT ∗
k

)] and p(k)
1 =

1 − p(k)
0 .

The effective temperature T ∗
k is calculated using Eq. (33),

analogously to the effective temperature in the absence of the
parasitic bath as given in Eq. (15),

γk
(
n(k)

h + n(k)
c

) + γpn(k)
p

γk
(
n(k)

h + n(k)
c + 2

) + γp
(
n(k)

p + 1
) = exp

(
− h̄ω

(k)
0

kBT ∗
k

)
. (D3)

Hence, Eq. (D1) can be recast as

Q̇det
h =

∑
k=1,2

h̄ω
(k)
0 γk

[−(
1 + n(k)

h

)
p(k)

1 + n(k)
h p(k)

0

]
. (D4)

The rate for the first qubit is set at γ1 = 1 GHz, as per
Table I. Detuning the second qubit from the LC resonance
significantly reduces its rate, based on the microscopic expres-
sion in Eq. (B19). Hence, for the second qubit’s rate γ2, we
use

γ2 = γ1

1 + Q2
i (ω0/ωLC − ωLC/ω0)2

, (D5)

with Qi being the quality factors of the resonators.
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