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We present in this paper a three dimensional extension of the work done by
AMARA. We firstly recall the physical model. The iterative numerical algorithm of
resolution introduces an elliptic problem which a variatiomal formulation invol-
ving a vector potential is given in section 2. Furthermore we describe its appro-
ximation using the NEDELEC's element conforming in H (curl). Finally preliminary

numerical experiment is presented in a subsonic case.

1. Potential transonic flow.

We study an inviscid fluid in stationary irrotational and isentropic evolu-
tion. With those assumptions it is known [1] that only the two physical fields
I3 =+ - * - .
density p and velocity u are necessary to its description. The corresponding par-

tial differential equations are

mass conservation (1.1 div (p 3)

1}

no vorticity (1.2) curl a

furthermore the Bermoulli theorem can be written :

(1.3) o = {1+ x,%_l A

>
M2 (1 - 1ul?)
where M is the upstream Mach number and y the specific heat ratio. This problem
is non-linear, and the type of the equations is mixed : elliptic in the subsonic
zone and hyperbolic in the supersonic one. Moreover an entropy condition has to

be added to select the physical shock waves [2,3] .

The domain { is discretized with a triangulation Th of finite elements (we
used tetrahedrons ans prisms) and the density p is taken to be constant in each
element. The set of equations (1.1), (1.2), (1.3) is solved numerically with a

fixed point technique and an artificial density [4,5] .

2. Formulation of the linear problem.

In all this section we investigate the linear problem for the volocity ; so

the density p is a fixed positive function in L7(Q).

(2.1) div (p ) = 0
(P) (2.2) curl u = 0 Q
(2.3 pu.n= g

+ . L] 13 ]
where n is the exterior normal of the boundary I'. Since we restrict our study to
the case where both @ and T are connected domains, the equation (2.1) gives the

existence of a vector potential ¢ [6] such that
(2.4) o U - curl § =0 Q

The condition (2.3) is then equivalent to

(2.5) div, (4 x 1) = g

where divr is the Laplace-Beltrami divergence operator [7]. Note that the condi-



tions (2.4), (2.5) do not insure the uniqueness of a potential ¢ ; it is therefore

necessary to add gauge conditions [8,9] like

(2.6) div ¥ =0 0

)

(2.7 curl, (y x n) =0 T

® Tet us introduce now some functional spaces

H (curl) = { y € L2(Q), curl y € 1L2(qQ) }

H9%(curl) = { x € H (curl), y x a=0o0nrT}

\/ = { x € Hl(curl), div y = 0 }

u = {u€H (div), divu =0, u . Z=0onT 1

we know that there is some vector field g € 2 Q) satisfying (2.8) divr(a xg)==g
and the problem (P) is equivalent to the variatiomal problem

find ¢ € V

(Q
(2.10) vy e V, I % curl ¢ . curl y dx = = J i curl a . curl y dx .
£

Q

which admits a unique solution since Poincaré inequality holds in V [6]

3. Conformial element in H (curl).

As the continuous problem (Q) is well posed in a subspace of H (curl), a na-
tural idea is to discretize this vector space. NEDELEC [ 10] proposed the following

finite element (K, PK’ ZK) [fig.1] : K is a tetrahedron,

P,={®9, 3a, BER? ,VxEK, p(x) =a+8xx}

ZK

Let us introduce also the finite dimensional spaces

{@.t, 7 is an edge of K }

H

=

© - c =
{ mh B {curl), ¥ K Th ’ whiK PK }

{ @ € X , @ * 2=0onr }

Ll

= e x)
R T T
1 1 . .
Ho,h= { vy € Hgp, vy polynomial of degree 1 in each K € Th }

4N
H

This was extended to prisms.

® Ye now focus on the boundary condition (2.8). In the continuous case the
existence of a satisfying (2.8) is given by a Laplace-Beltrami problem on the
manifold T'. We discretize the boundary condition (2.8) in Xh by the relations
(3.1) T«
Tt &€ T

where gh(T) is constant. We just need a procedure to compute explicitly such an

ho T =g (T) VT triangle of T

a, the edges of the triangulation lying on I' allow to define a graph g {1!] in



the set of all the vertices of I'. Let A be a tree in this graph g [ fig.2] . We

choose the space wh(r) containing @, as follow :

(3.2) Wh(r)={w€Xh,lp.r=0 ifTETNA orT€T }

o | - . : i i € .
and if Jp - dy = 0 then (3.1) admits a unique solutiomn ay wh(r)

® Assume now that a_ is computed, we solve numerically the problem

h

find ¢ € V
@) Boon

Vxh € Vh R J % curl@h . curlxh dx = - J % curlah . curlxh dx
Q Q

we have to choose the space V_, Vh C Xﬁ , in order to adapt the gauge condition

(2.6) in a finite dimensional space. The constraint on Vh is to have :

(3.3) the application curl : Vh - Uh is one to one

(like in the continuous case for curl : V » U). Since the kernel of curl : Xﬁ‘*Uh
is not null, Vh must be a strict subspace of Xﬁ. Then if Vh is any subspace
of Xﬁ satisfying (3.3), the solution ¢ (resp ¢h) of (Q) (resp (Qh)) are such that

the error || curl ¢ - curl ¢hll L? vanishes like h. Note that the fields ¢ and ¢y,

have no physical interpretation, furthermore it does not exist a priori any simple

mathematical relation between them., NEDELEC in [ 12] propesed to use

Y]
= & 0 (‘ . - 1
Vh { ® Xh s Jg @, Veh dx = 0 Veh € Ho,h }
. '.\J - - . - -
A basis of Vh is non local in space, and difficult to compute. For this reason
we choose Vh in a purely algebrical way, following [ 13] and including references

in an other context.

The space Xﬁ is generated by the edges of Th which are not lying in T'. Consi-
der the graph g' of the edges coupling two vertices of Th which are not on I (g'
is a strict subset of all the edges of Xﬁ), and A' a tree in this graph. Further-
more let t' be an edge joining up one vertex of I' and one in the interior of .

Then V., defined by

t

Vh = { ¢h € Xg s wh .1=0 ifrt€Atort=1"1}

satisfies the condition (3.3) [ fig.3} .

4., Implementation.

The method described in paragraph 3 is beeing developped on the CRAY 1-§
of CCVR. First results have been obtained in a subsonic case and compared with a

2D computation to validate the code [14] : from the channel of GAMM 79 workshop



{15] a 3D mesh using prisms has been generated [ fig.4] (71 x 20 x4 elements,

6879 unknowns). The linear problem is solved by a preconditioning conjugate gra-

dient algorithm. Several preconditioning matrices have been tested. A good and

cheap choise seems to be the SSOR method. The figure { fig.5] shows isomach

curves on the top and the bottom of the channel for both 2D and 3D computations.
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Figure 1 Figure 2 Example of a boucisry tree
if the domain is a cube div-ia2 ip
five tetrahedrons

Figure 3
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