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The evolution of a Lamb-Oseen vortex is studied in a stratified rotating fluid under the6
complete Coriolis force. In a companion paper, it was shown that the non-traditional Coriolis7
force generates a vertical velocity field and a vertical vorticity anomaly at a critical radius8
when the Froude number is larger than unity. Below a critical non-traditional Rossby number9
'̃> (based on the horizontal component of background rotation), a two-dimensional shear10
instability was next triggered by the vorticity anomaly. Here, we test the robustness of this11
two-dimensional evolution against small three-dimensional perturbations. Direct numerical12
simulations (DNS) show that the two-dimensional shear instability then develops only in an13
intermediate range of non-traditional Rossby numbers for a fixed Reynolds number '4. For14
lower '̃>, the instability is three-dimensional. Stability analyses of the flows in the DNS15
prior to the instability onset fully confirm the existence of these two competing instabilities.16
In addition, stability analyses of the local theoretical flows at leading order in the critical17
layer demonstrate that the three-dimensional instability is due to the shear of the vertical18
velocity. For a given Froude number, its growth rate scales as '42/3/'̃>, whereas the growth19

rate of the two-dimensional instability depends on '4/'̃>2, provided that the critical layer20
is smoothed by viscous effects. However, the growth rate of the three-dimensional instability21
obtained from such local stability analyses agrees quantitatively with those of the DNS flows22
only if second order effects due to the traditional Coriolis force and the buoyancy force are23
taken into account. These effects tend to damp the three-dimensional instability.24

Key words:25
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1. Introduction27

A common approximation in geophysical fluid dynamics is the traditional approximation28
that ignores the horizontal component of the planetary rotation when considering a local29
Cartesian frame at a given latitude. The Coriolis force then takes into account only the vertical30
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component of the planetary rotation. However, as reviewed by Gerkema et al. (2008), several31
recent studies examining geophysical flows beyond the traditional approximation suggest32
that the complete Coriolis force, i.e. with a background rotation along both vertical and33
horizontal axes, plays a non-negligible role for flows where significant vertical motions or34
a weak stratification are present. These studies show that the non-traditional Coriolis force35
generates horizontal asymmetry for horizontally symmetrical flows (Semenova & Slezkin36
2003; Sheremet 2004), modifies and enhances instabilities (Tort et al. 2016; Zeitlin 2018;37
Park et al. 2021; Chew et al. 2022), and changes wave dynamics (Gerkema et al. 2008; Zhang38
& Yang 2021). In addition, various models taking into account the complete Coriolis force39
have been derived (Tort & Dubos 2014; Tort et al. 2014; Lucas et al. 2017).40
Toghraei & Billant (2022) have recently studied the evolution of an initially two-41

dimensional vortex in a stratified fluid under the complete Coriolis force by means of direct42
numerical simulations (DNS). Due to the horizontal background rotation, a critical layer43
appears at the radius where the angular velocity of the vortex is equal to the Brunt–Väisälä44
frequency (i.e. the inverse of the Froude number in non-dimensional form). Such radius45
exists only if the Froude number is larger than unity. The critical layer induces a vertical46
velocity field that first grows linearly with time while being more and more concentrated47
around the critical radius until it finally saturates. Simultaneously, a vertical vorticity anomaly48
is generated at the critical radius. In parallel to the DNS, Toghraei & Billant (2022) have49
performed a linear asymptotic analysis for large non-traditional Rossby numbers (based on50
the horizontal component of the background rotation). It shows that the singularity of the51
critical layer is smoothed by both viscosity and unsteadiness, like for the baroclinic critical52
layer in a horizontal shear flow studied by Wang & Balmforth (2020, 2021). A non-linear53
asymptotic analysis has also been conducted following Wang & Balmforth (2020, 2021) to54
obtain the velocity and vorticity fields in the critical layer when their amplitude is large. The55
linear and non-linear asymptotic solutions for the vertical velocity and the vertical vorticity56
anomaly have been found to be in excellent agreement with the DNS. Finally, it has been57
shown that the critical layer generates an inflection point in the vertical vorticity profile58
which triggers a two-dimensional shear instability for sufficiently high Reynolds numbers59
and low non-traditional Rossby numbers. A theoretical criterion predicting the occurrence60
of the two-dimensional instability has been derived from the inflection point condition.61
The vortex dynamics described by Toghraei & Billant (2022) is purely two-dimensional62

but with three velocity components. It can be indeed shown from the governing equations that63
if the initial conditions are two-dimensional, all the velocity fields remain two-dimensional64
throughout their evolutions. In the present paper, we will test the robustness of such evolution65
with respect to infinitesimal three-dimensional perturbations added at the beginning of the66
DNS.Wewill see that the dynamics remains two-dimensional as in Toghraei &Billant (2022)67
for some parameters, while for other parameters, a three-dimensional instability develops.68
This newly observed instability resembles the three-dimensional instability reported by69
Boulanger et al. (2007, 2008) in their experimental study of an inclined vortex in a stratified70
fluid. To some extent, such configuration is similar to the present one, since in both cases,71
there is a tilt with respect to the gravity force. A critical layer develops in the tilted vortex at72
the radius where the angular velocity of the vortex is equal to the Brunt–Väisälä frequency73
and induces an intense vertical velocity field. For sufficiently large tilt angle and Reynolds74
number, a three-dimensional instability leads to the formation of rows of vortices with a75
zig-zag structure. In order to determine the origin of the instability, Boulanger et al. (2008)76
have performed a local stability analysis of the critical layer using the vertical velocity field77
derived theoretically by means of a linear viscous analysis of the critical layer. Considering78
only the leading-order terms when the vertical velocity is large, they have shown that the79
local stability problem reduces to the two-dimensional stability of the vertical velocity field80
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as for the stability of inviscid parallel shear flows. The growth rate predictions obtained by81
neglecting the azimuthal dependence of the vertical velocity field, are in good agreement with82
the experimentally measured growth rates. Hence, Boulanger et al. (2008) have concluded83
that the three-dimensional instability comes from a shear instability of the vertical velocity84
field generated in the critical layer. Recently,Wang&Balmforth (2021) have taken a different85
point of view in their analysis of the two-dimensional shear instability developing within a86
baroclinic critical layer. They have considered that the instability should be triggered during87
the initial unsteady regime of the critical layer instead of during the viscous regime as in88
Boulanger et al. (2008). By assuming that the instability arises when the gradient of the89
vorticity anomaly is of order unity, they have derived an asymptotic model describing the90
simultaneous development of the base flow in the critical layer and the shear instability.91
Here, we will follow also local approaches in order to determine if the characteristics of the92
three-dimensional and two-dimensional instabilities can be predicted.93
The paper is organized as follows. The initial conditions, governing equations and94

numerical methods are first presented in §2. §3.1 describes qualitatively the two distinct95
instabilities observed in DNS when the non-traditional Rossby number is varied while the96
other parameters are kept constant. Viscous effects are investigated in §3.2. Linear stability97
analyses of the flows in the DNS prior to the onset of the instabilities are carried out in §4.98
This is completed in §5 by linear stability analyses of the local theoretical flows in the critical99
layer. The results of both types of stability analysis are then compared in §6. Finally, §7100
provides a map of the three-dimensional and two-dimensional instabilities in the parameter101
space (non-traditional Rossby number, Reynolds number) while §8 studies the effect of the102
traditional Rossby number. Conclusions are drawn in §9.103

2. Formulation of the problem104

2.1. Initial conditions105

A single vertical Lamb-Oseen vortex with vorticity106

8(x, C = 0) = Z0ez =
Γ

c02
0
4−A

2/02
0 ez , (2.1)107

where Γ is the circulation and 00 the radius, is considered as initial conditions accompanied108
by small random three-dimensional perturbations. In the following, we will use either109
Cartesian (G, H, I) or cylindrical (A, \, I) coordinates. The associated unit vectors are denoted110
(ex , ey , ez) and (er , e) , ez), respectively. The geometry of the flow is sketched in figure 1.111
The vortex is located at the center of a box with dimensions of ;G × ;H × ;I . The background112
rotation vector
b is decomposed into vertical and horizontal components: 2
b = 5̃ ey + 5 ez113
where 5 = 2Ω1 sin (i) and 5̃ = 2Ω1 cos (i), where i is the angle between the background114
rotation vector and the unit vector in the H direction, eH . The fluid is stably stratified with a115

constant Brunt–Väisälä frequency # =
√
−(6/d0)md̄/mI, where 6 is the gravity, d0 a constant116

reference density and d̄(I) the mean density profile. The velocity field of the small random117
perturbations consists of a divergence-free white noise with amplitude 0.001Γ/2c00).118

2.2. Governing equations119

The initial conditions and governing equations are non-dimensionalized by using 2c02
0/Γ120

and 00 as time and length units:121

∇.u = 0, (2.2)122
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Figure 1: Sketch of the initial vortex in a stratified rotating fluid with a background
rotation Ω1 inclined with an angle i.

123
mu

mC
+ (u.∇) u = −∇? + 1ez − 2

(
1
'>

ez +
1
'̃>

ey

)
× u + 1

'4
∇

2u, (2.3)124

m1

mC
+ u.∇1 + 1

�2
ℎ

DI =
1

'4(2
∇21, (2.4)125

where u, 1 and ? are the non-dimensional velocity, buoyancy and pressure, respectively. The126
problem is controlled by five non-dimensional numbers: the Reynolds, Froude, Rossby and127
Schmidt numbers defined as follows128

'4 =
Γ

2ca
, �ℎ =

Γ

2c02
0#
, '> =

Γ

c02
0 5
, '̃> =

Γ

c02
0 5̃
, (2 =

a

^
, (2.5)129

where a is the viscosity and ^ the diffusivity of the stratifying agent. The two Rossby130
numbers– traditional Rossby number '> and non-traditional Rossby number '̃>–measure131
the two components of the rotation vector. The Schmidt number will always be set to unity.132
In the following, all the results will be presented in a non-dimensional form.133

2.3. Numerical methods134

A pseudo-spectral method with periodic boundary conditions and fourth-order Runge–Kutta135
time integration is used as in Toghraei & Billant (2022). The non-dimensional horizontal136
sizes of the computational domain have been set to ;G = ;H = 18, to minimize the effect of the137
periodic boundary conditions (see Toghraei & Billant (2022) for details). The vertical size138
has been set to ;I = 8 in order to accommodate several vertical wavelengths of the dominant139
three-dimensional instability. The Reynolds number will be varied between '4 = 2000 and140
'4 = 10000. As shown by Toghraei & Billant (2022), the horizontal resolution required for141
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'4 = 2000 is =G = =H = 512. Accordingly, the vertical resolution has been set to =I = 256.142
The corresponding time step is XC = 0.01. A number of DNS have been conducted to test the143
accuracy of the computations. In particular, these tests have shown that the velocity differs144
by less than 0.2% when the vertical resolution is increased from =I = 256 to =I = 512. The145
three-dimensional DNS for higher Reynolds numbers have been performed with a resolution146
up to =G = =H = 1536, =I = 256. Such resolution is sufficient to detect the onset of the three-147
dimensional instability. However, a study of the non-linear evolution of the three-dimensional148
instability could require higher resolution. Two-dimensional DNS have been performed in the149
range 2000 6 '4 6 50000with a resolution ranging from =G = =H = 512 to =G = =H = 2048.150

151

3. Direct Numerical Simulations152

3.1. Typical examples of the vortex dynamic depending on the non-traditional Rossby153
number154

The objective of this section is to present qualitatively the different vortex evolutions155
observed in the DNS when the non-traditional Rossby number is varied for a fixed Reynolds156
number. Figure 2 shows the evolution of the vertical velocity at three different times for the157
set of parameters '4 = 2000, �ℎ = 4, '> = 23.1, '̃> = 40. In this figure, three planes158
are displayed: a horizontal cross-section at the middle plane I = ;I/2 (first row) and two159
vertical cross-sections at the planes H = ;H/2 (second row) and G = ;G/2 (third row) going160
through the initial vortex center. Figure 3 shows the corresponding evolution of the vertical161
vorticity. Since the vertical vorticity remains predominantly quasi-asymmetric, only two162
planes are displayed: a horizontal cross-section in the plane I = ;I/2 (first row) and a vertical163
cross-section at the plane H = ;H/2 (second row).164
As previously reported by Toghraei & Billant (2022), the presence of the non-traditional165

Coriolis force generates a vertical velocity field with azimuthal wavenumber < = 1 (figures166
2(0, 3, 6)). This vertical velocity field concentrates at the critical radius A2 where the non-167
dimensional angular velocity of the vortex Ω equals the inverse of the Froude number168
Ω(A2) = 1/�ℎ. A ring of vertical vorticity anomaly also develops at A2 (figures 3(0, 3)).169
The early evolution of these quantities can be seen in Toghraei & Billant (2022). The170
vortex appears still two-dimensional at C = 40 (figures 2(3, 6) and 3(3)). However, later171
on (figures 2(1, 4, ℎ) and 3(1, 4)), three-dimensional variations become visible in both the172
vertical velocity and vertical vorticity fields. At C = 56 (figures 2(2, 5 , 8) and 3(2, 5 )), the173
amplitude of the deformations along the vertical has grown and the vertical cross-section of174
the vertical vorticity (figure 3( 5 )) exhibits a structure similar to the one observed byBoulanger175
et al. (2007, 2008) on a stratified tilted vortex. Although there are some irregularities due176
to the randomness of the initial three-dimensional perturbations, we can distinguish five177
wavelengths along the vertical, i.e. a dominant wavenumber : ≈ 4. We can also see that178
the deformations are in opposite phases on the two sides of the vortex (figure 3 ( 5 )). In the179
horizontal cross-sections (figures 2(2) and 3(2)), non-axisymmetric deformations can also180
be seen, but they are irregular and weak compared to those of the two-dimensional instability181
reported by Toghraei & Billant (2022).182
In order to prove that the emergence of these three-dimensional disturbances are due to an183

instability, the vertical vorticity lI has been decomposed as follows184

lI (G, H, I, C) = 〈lI〉I (G, H, C) + l′I (G, H, I, C), (3.1)185

where 〈lI〉I = (1/;I)
∫ ;I

0 lI3I is the vertically averaged vertical vorticity and l′I three-186
dimensional fluctuations. Figure 6(0) shows the evolution of the mean-square of these two187
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quantities: /3 = 1/+
∫
+
〈lI〉2I3+ (grey dashed line) and / ′3 = 1/+

∫
+
l′2I 3+ (grey solid188

line), where + is the volume of the computational domain. We can see that, after an initial189
transient decay, / ′3 increases exponentially, indicating the presence of a three-dimensional190
instability. It then saturates when it reaches the same magnitude as /3.191
A similar three-dimensional instability has been observed when the non-traditional Rossby192

number is increased to '̃> = 60 (green lines in figure 6(0)) or '̃> = 80 (red lines) while193
keeping the other parameters fixed (see the velocity and vorticity fields in Toghraei (2023)).194
Note that the corresponding traditional Rossby number '> also varies slightly from '> =195
23.1 to '> = 20.7 when '̃> is increased since it is i that is varied whereas Ω1 = 0.1196
is kept constant. As seen in figure 6(0), three-dimensional fluctuations., i.e. / ′3, start to197

grow exponentially later and with a lower growth rate as '̃> increases. Thereby, when the198
non-traditional Rossby number is further increased to '̃> = 115 (figures 4 and 5), three-199
dimensional deformations are no longer visible while two-dimensional non-axisymmetric200
disturbances with an azimuthal mode < = 2 can be seen in the horizontal cross-sections201
of the vertical vorticity at late times C = 167 and C = 175 (figures 5(1, 2)) as observed by202
Toghraei & Billant (2022). Nevertheless, figure 6(0) shows that / ′3 still grows exponentially203
but it remains several orders of magnitude lower than /3.204
Two-dimensional DNS have also been carried out for the same four set of parameters. In205

this case, the vertical vorticity has been decomposed as206

lI (A, \, C) = 〈lI〉\ (A, C) + l′I (A, \, C), (3.2)207

where 〈lI〉\ = 1/(2c)
∫ 2c

0 lI3\ is the azimuthally averaged vertical vorticity and l′I non-208

axisymmetric fluctuations. Figure 6(1) displays the evolution of /2 = 1/(
∫
(
〈lI〉2\3( (grey209

dashed line) and / ′2 = 1/(
∫
(
l′2I 3( (grey solid line), where ( is the surface of the domain.210

Again, we can see that non-axisymmetric fluctuations, i.e. / ′2, grow exponentially for the211

four values of '̃> owing to the two-dimensional instability studied previously in Toghraei &212
Billant (2022). Yet, in the full three-dimensional configuration, it is only for '̃> = 115 that213
the two-dimensional instability is observed. There is therefore a competition between two214
different instabilities and the nature of the dominant instability depends on the parameters.215
We can notice that the maximum vertical velocity is larger by 50% for '̃> = 40 (figures216
2(0, 3, 6)) than for '̃> = 115 (figures 4(0, 3, 6)). However, the vertical vorticity anomaly is217
much stronger for '̃> = 40 (figures 3(0, 3)) than for '̃> = 115 (figures 5(0, 3)) so that the218
type of the dominant instability cannot be guessed by simply looking at the vertical velocity219
and vorticity profiles.220

221
3.2. Viscous and diffusion effects222

In order to study viscous and diffusion effects, we have conducted two series of three-223
dimensional DNS for different Reynolds numbers between '4 = 2000 and '4 = 10000.224
The first series has been conducted for a constant non-traditional Rossby number '̃> = 80225
whereas the second series has been performed for constant value of Y'42/3 where Y = 2/'̃>.226
This combination of '̃> and '4 corresponds to the typical amplitude of the gradient of the227
vertical velocity in the critical layer when viscous effects operate (see section 5.1 below and228
Toghraei & Billant (2022)). These two series allow us to explore different regions of the229
parameter space ('4, '̃>). The DNS for '̃> = 80 and '4 = 2000 belongs to the two series230
and is therefore the reference.231
Figure 7(0) shows that for constant '̃> = 80, three-dimensional vertical vorticity232

fluctuations, / ′3, grow exponentially earlier and with a larger growth rate when the Reynolds233
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Figure 2: Vertical velocity field in a horizontal cross-section at I = ;I/2 (first row) and two
vertical cross sections at H = ;H/2 (second row) and G = ;G/2 (third row) at three different
times: (0, 3, 6) C = 40, (1, 4, ℎ) C = 53, (2, 5 , 8) C = 56 for '4 = 2000, �ℎ = 4, '> = 23.1

and '̃> = 40.

number is increased from '4 = 2000 to '4 = 4000. However, for higher values of '4, the234
growth rate remains almost constant (the growth rate as a function of '4 is also shown in235
figure 8(2) by blue open circles). As seen in figure 8(0), the observed dominant vertical236
wavenumber (blue open circles) first increases with '4 and then remains constant. For237
constant value of Y'42/3 (figure 7(1)), the instability arises later and later as '4 increases238
but the exponential growth rate of / ′3 is approximately independent of the Reynolds number239
(see also the green open circles in figure 8(2)). In contrast, the dominant vertical wavenumber240
(green open circles in figure 8(0)) continuously increases with '4. This is also directly visible241
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Figure 3: Vertical vorticity field in a horizontal cross-section at I = ;I/2 (first row) and a
vertical cross section at H = ;H/2 (second row) at three different times: (0, 3) C = 40, (1, 4)

C = 53, (2, 5 ) C = 56 for '4 = 2000, �ℎ = 4, '> = 23.1 and '̃> = 40.

in the vertical cross-sections of the vertical vorticity displayed in figure 9 for Y'42/3 = 3.97.242
Figure 8(1) is the same as figure 8(0) except that the G-axis is now '41/3. Even if the243
range of variation is not large, the dominant vertical wavenumber seems to increase linearly244
with '41/3 for constant Y'42/3 (green dashed line), as observed by Boulanger et al. (2008).245
This observation will be at the basis of one of the assumption of the local asymptotic246
three-dimensional stability analysis performed in §5.247

Similarly, the effect of the Reynolds number on the two-dimensional instability has been248
studied by performing two-dimensional DNS for different Reynolds numbers between '4 =249
2000 and '4 = 50000 for '̃> = 80 and for a constant value of Y2'4 = 1.25. This combination250
of '̃> and '4 corresponds to the magnitude of the vorticity anomaly in the critical layer,251
when it is smoothed by viscous effects (see section 5.1 below and Toghraei & Billant (2022)).252
When '̃> = 80, figure 10(0) shows that non-axisymmetric vertical vorticity fluctuations / ′2253
start to grow exponentially earlier when '4 is increased from '4 = 2000 to '4 = 6000.254
However, for 6000 6 '4 6 50000, the two-dimensional instability always starts to be255
amplified around C = 75 and its growth rate becomes approximately independent of '4. In256
contrast, when Y2'4 is kept constant (figure 10(1)), / ′2 starts to grow exponentially later257
and later as '4 is increased from '4 = 2000 to '4 = 50000. The growth rate remains258
approximately the same and the instability exhibits always an azimuthal wavenumber < = 2259
for all these two-dimensional DNS.260



9

Figure 4: Same as figure 2 but for '̃> = 115 and '> = 20.3: (0, 3, 6) C = 100, (1, 4, ℎ)
C = 152, (2, 5 , 8) C = 167.

4. Linear stability analysis of the flows in the DNS261

In order to further describe the competition between the two-dimensional and three-262
dimensional instabilities, we have carried out linear stability analyses of the flows in the263
DNS at different times before the onset of the instability.264

4.1. Methods265

To do so, the velocity and buoyancy fields[ = (*G ,*H ,*I) and � have been frozen at a given266
time C = C1. These base flows have been extracted from the two-dimensional simulations. This267
ensures they are not disturbed by any instability since the simulations are two-dimensional268
and the two-dimensional instability develops later than the time C1 under consideration. They269
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Figure 5: Same as figure 3 but for '̃> = 115 and '> = 20.3: (0, 3) C = 100, (1, 4) C = 152,
(2, 5 ) C = 167.

are next perturbed by infinitesimal perturbations270

[u, 1] (x, C) = [[, �] (G, H, C1) + [u
′
, 1
′] (x, C), (4.1)271

denoted with a prime. The perturbations are governed by the equations (2.2-2.4) linearized272
around ([, �):273

∇.u
′

= 0, (4.2)274
275

mu
′

mC
+ ([.∇) u′ +

(
u

′

.∇
)
[ = −∇?′ + 1′ez − 2

(
1
'>

ez +
1
'̃>

ey

)
× u′ + 1

'4
∇

2u
′

, (4.3)276

m1
′

mC
+[.∇1

′ + u′

.∇� + 1
�2
ℎ

D
′
I =

1
'4(2

∇21
′
, (4.4)277

Such "freezing" method is expected to give reliable results if the time evolution of the flow278
([, �) is slow compared to the growth rate of the perturbations.279
The equations (4.2-4.4) are integrated with [u′

, 1
′] initialized by white noise using the280

same numerical code and the same resolution and domain size in the horizontal directions281
as for the DNS. Since the base flow ([, �) is uniform along the vertical and the equations282

Rapids articles must not exceed this page length
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Figure 6: (0) Evolution of the mean square of the vertically averaged vertical vorticity, /3
(dashed lines) and of the three-dimensional vertical vorticity fluctuations, / ′3 (solid lines)
in three-dimensional DNS. (1) Evolution of the mean square of the azimuthally averaged

vertical vorticity, /2 (dashed lines) and of the non-axisymmetric vertical vorticity
fluctuations, / ′2 (solid lines) in two-dimensional DNS. The parameters are '̃> = 40 (grey
lines), '̃> = 60 (green lines), '̃> = 80 (red lines), '̃> = 115 (blue lines) for '4 = 2000,
�ℎ = 4 and Ω1 = 0.1 ('> ≈ 20). The straight solid lines indicate the slopes for each '̃>

corresponding to the dominant three-dimensional growth rate in (0) and to the growth rate
at : = 0 in (1) for the last time C1 investigated in the linear stability analyses of the DNS
flows (figure 11). In (0), the blue straight dashed line represents the slope corresponding

to the growth rate at : = 0 for '̃> = 115.

Figure 7: Evolution of the mean square of the vertically averaged vertical vorticity, /3
(dashed lines) and of the three-dimensional vertical vorticity fluctuations, / ′3 (solid lines)

in three-dimensional DNS for different Reynolds numbers for (0), '̃> = 80, (1)
Y'42/3 = 3.97 for �ℎ = 4 and Ω1 = 0.1 ('> ≈ 20). The Reynolds numbers are '4 = 2000

(green line), '4 = 4000 (red line), '4 = 6000 (blue line) , '4 = 8000 (grey line),
'4 = 10000 (black line).The square symbols indicate the time C1 considered in the

stability analyses.
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Figure 8: Most amplified vertical wavenumber : as a function of (0), '4 and, (1), '41/3.
(2) Associated maximum growth rate as a function of '4. The blue and green symbols

correspond to '̃> = 80 and Y'42/3 = 3.97, respectively, for �ℎ = 4 and Ω1 = 0.1
('> ≈ 20). The symbols ◦, × and + represent the results obtained from the DNS and from

the local three-dimensional stability analyses of the linear solution (5.1,5.4,5.6) and
nonlinear solution (5.1, 5.3), respectively. In (1), the green dashed line shows a linear fit
of the green circle symbols. The time C1 taken for each local stability analysis of the DNS
flow is: C1 = 75 for ('̃> = 80, '4 = 2000), C1 = 65 for ('̃> = 80, '4 = 4000), C1 = 60 for

('̃> = 80, '4 = 6000), C1 = 55 for ('̃> = 80, '4 = 8000) , C1 = 55 for
('̃> = 80, '4 = 10000, C1 = 85 for ('̃> = 127, '4 = 4000), C1 = 90 for
('̃> = 167, '4 = 6000), C1 = 90 for ('̃> = 201, '4 = 8000), C1 = 95 for

('̃> = 233.8, '4 = 10000).

Figure 9: Vertical vorticity field in a vertical cross section at H = ;H/2 for Y'42/3 = 3.97
for (0) ('4 = 2000, '̃> = 80, C = 102), (1) ('4 = 4000, '̃> = 127, C = 100), (2)

('4 = 6000, '̃> = 167, C = 167) and (3) ('4 = 10000, '̃> = 223.8, C = 104) for �ℎ = 4
and Ω1 = 0.1 ('> ≈ 20).

(4.2-4.4) are linear, the amplitude [ûk , 1̂: ] of each vertical wavenumber of the perturbation:283

[u′

, 1
′] =

:<0G∑
:=−:<0G

[ûk , 1̂: ] (G, H, C)ei:I (4.5)284

evolve independently of the others. Hence, by integrating (4.2-4.4) for a sufficiently long285
time, the perturbations [ûk , 1̂: ] will be dominated by the most unstable mode for the vertical286
wavenumber : . The vertical size and resolution have been set to ;I = 32 and =I = 64 in order287
to cover the wavenumber band −2c 6 : 6 2c with the resolution Δ: = c/16.288
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Figure 10: Evolution of the mean square of the azimuthally averaged vertical vorticity, /2
(dashed lines) and of the non-axisymmetric vertical vorticity fluctuations, / ′2 (solid lines)

in two-dimensional DNS for different Reynolds numbers for (0), '̃> = 80 and (1)
Y2'4 = 1.25 for �ℎ = 4 and Ω1 = 0.1 ('> ≈ 20). The Reynolds numbers are '4 = 2000
(green line), '4 = 4000 (red line), '4 = 6000 (dark blue line), '4 = 8000 (grey line),
'4 = 10000 (black line), '4 = 20000 (orange line), '4 = 30000 (light blue line),

'4 = 50000 (dark yellow line). The square symbols indicate the time C1 considered in the
stability analyses.

In practice, the growth rate for each vertical wavenumber fA (:) is retrieved from the total289

kinetic energy �: (C) =
∫ ∫

1/2
(
D̂2
G + D̂2

H + D̂2
I

)
dGdH by means of the formula290

fA (:) =
1

2(C 5 − C8)
log

(
�: (C 5 )
�: (C8)

)
, (4.6)291

where the two times C8 and C 5 are chosen to be large and sufficiently separated in order292
to eliminate the oscillations of �: when the instability is oscillating (Typically, C8 = 140293
and C 5 = 190). The frequency f8 (:) of the instability can be also retrieved by searching294

the successive times C= for which the relative kinetic energy �: (C)/(�: (C8)e2fA (C=C8) ) is295
maximum. An estimation of the frequency is then given by296

f8 (:) =
1

(=<0G − 1)

=<0G−1∑
==1

2c
2(C=+1 − C=)

, (4.7)297

where =<0G is the number of maxima detected. In the following, only positive wavenumber298
: will be presented since negative ones are identical owing to the symmetry I → −I.299

300

4.2. Results for variable non-traditional Rossby number301

Figure 11 shows the growth rate as a function of the vertical wavenumber : for the four302
different values of '̃> investigated in §3.1 for '4 = 2000 and �ℎ = 4. For each case,303
we have computed the stability of the flows at four different times C1 prior to the time at304
which the instabilities become visible in the DNS. We remind that the base flows have305
been extracted from two-dimensional simulations in which no three-dimensional instability306
occurs. The curves are not smooth and exhibit some small irregularities because there are307
several sub-dominant modes with a growth rate close to the one of the dominant modes.308
The convergence towards the dominant mode with the present method is therefore slow and309
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still not perfect between the integration time C8 and C 5 . It is however sufficiently converged310
for the present purpose. Globally, the growth rate levels increase with C1 and decrease with311
'̃>. For '̃> = 40 (figure 11(0)), all the wavenumbers are strongly unstable but there is a312
growth rate peak at : ≈ 4 − 5 in agreement with the dominant wavenumber : ≈ 4 observed313
in the DNS (figures 2 and 3). Figure 12(0) shows the frequency f8 corresponding to this314
peak (circle symbols) as a function of C1. It is nearly constant f8 ≈ 0.2 when C1 > 40 and315
clearly differs from the frequency of the two-dimensional instability (i.e. for : = 0) which is316
also plotted by square symbols. The vertical velocity and vertical vorticity of the eigenmodes317
corresponding to the dominant three-dimensional instability and to the two-dimensional318
instability also have a different structure (figure 13) even if they are both concentrated around319
the critical radius. The vertical vorticity of the two-dimensional eigenmode (figure 13(2))320
exhibits a well-defined azimuthal wavenumber < = 3 which rotates with little shape change.321
This wavenumber is less clear in the vertical velocity (figure 13(0)) since the base vertical322
velocity is non-axisymmetric. Nevertheless, there are also six extrema along a circular path323
even if their amplitude is irregular.324
In contrast, the three-dimensional eigenmode (figure 13(1, 3)) presents an irregular325

azimuthal dependence which is modulated over the oscillation period of the instability.326
As the non-traditional Rossby number is increased to '̃> = 60 (figure 11(1)) and '̃> = 80327

(figure 11(2)), a peak continues to be observed around : ≈ 4 − 5 but it is less pronounced328
relative to the growth rate at : = 0. In other words, the three-dimensional instability is329
still dominant for these values of '̃> as observed in the DNS but its strength weakens330
comparatively to the two-dimensional instability. The frequency corresponding to the growth331
rate peak is still around f8 ≈ 0.2 (figure 12(1, 2)). However, the frequency of the two-332
dimensional instability switches from f8 ≈ 0.5 at early times to f8 ≈ 0.8 at late times.333
For '̃> = 115 (figure 11(3)), the growth rate is maximum at : = 0 in agreement with334

the observation of a two-dimensional instability in the DNS (figures 4 and 5). A local peak335
around : ≈ 4 − 5 is however still observed when C1 6 80 whereas it is less apparent for336
C1 > 100. The present linear stability analysis, therefore, confirms that there is a cross-over of337
the dominant instability from three-dimensional to two-dimensional as '̃> increases. As seen338
in figure 12(3), the frequencies of the three-dimensional and two-dimensional instabilities339
are now f8 ≈ 0.2 and f8 ≈ 0.5, respectively, independently of C1. Interestingly, figure 14(2)340
shows that the vertical vorticity of the eigenmode of the two-dimensional instability exhibits341
now a < = 2 azimuthal structure, as observed in the DNS (figures 4 and 5), instead of < = 3342
for '̃> = 40 (figure 13(2)). This change of the dominant azimuthal wavenumber of the343
two-dimensional instability explains why the frequency switches from f8 ≈ 0.8 for '̃> = 40344
to f8 ≈ 2/3 × 0.8 ≈ 0.5 for '̃> = 115. The three-dimensional eigenmode for '̃> = 115345
(figure 14(1)) looks somewhat different from the one for '̃> = 40 (figure 13(1)) because346
they do not correspond to the same phase of the oscillation cycle.347
Although the stability analysis has been performed by freezing a time-evolving flow [[, �],348

we can notice in figure 11 that the growth rate curves for the two last times C1 (red and blue349
lines) are very close for each plot. This indirectly suggests that the flow [[, �] has little350
evolved between these two times. The slow evolution of the base flow [[, �] when the351
instability develops will be confirmed in the next section.352
Finally, the exponential growth corresponding to the dominant three-dimensional growth353

rate obtained in the linear stability analyses at the last time C1 (figure 11) are indicated by354
straight solid lines for each '̃> in figure 6(0). We see that the slopes compare very well with355
those observed in the DNS, except for '̃> = 115. In this case, the slope corresponds more356
to the growth rate for : = 0 indicated by a blue straight dashed line, consistently with the357
observation of a two-dimensional instability. Similarly, figure 6(1) shows that the slopes of358
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Figure 11: Growth rate fA obtained from the stability analysis of the DNS flow as a
function of the vertical wavenumber : for Re = 2000, �ℎ = 4, Ω1 = 0.1 ('> ≈ 20) and
(0) '̃> = 40, (1) '̃> = 60, (2) '̃> = 80 and (3) '̃> = 115. The colored lines corresponds

to different times C1 :
(0) C1 = 35 (black line), C1 = 40 (green line), C1 = 45 (red line), C1 = 50 (blue line),
(1) C1 = 40 (black line), C1 = 50 (green line), C1 = 55 (red line), C1 = 60 (blue line),
(2) C1 = 45 (black line), C1 = 55 (green line), C1 = 65 (red line), C1 = 75 (blue line),
(3) C1 = 50 (black line), C1 = 70 (green line), C1 = 90 (red line), C1 = 100 (blue line).

the exponential growth in the two-dimensional DNS for each '̃> are in very good agreement359
with the growth rate for : = 0 obtained from the linear stability analyses at the last time C1360
(figure 11).361

362
4.3. Results for variable Reynolds number in the two-dimensional case363

The two-dimensional linear stability of the two-dimensionalDNSflows for different '4 (§3.2)364
have been also investigated. Several Reynolds numbers in the range 2000 6 '4 6 50000365
have been studied both for '̃> = 80 and for a constant value of Y2'4 = 1.25. The time C1366
considered for each case is indicated by a symbol in figure 10 and given in the caption of figure367
15. These analyses reveal that the azimuthal wavenumber < = 2 is not the most unstable one368
for large Reynolds numbers even if the corresponding two-dimensional DNS exhibit always369
an azimuthal wavenumber < = 2 whatever '̃4 and '̃> in the ranges investigated. Indeed,370
figure 15(0) shows that the most unstable azimuthal wavenumber for '̃> = 80 (blue open371
circles) first increases from < = 3 for '4 = 2000 to < = 8 for '4 = 20000 but tends to372
remain constant for higher values of '4. For fixed Y2'4, < increases continuously with '4373
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Figure 12: Frequency f8 obtained from the stability analysis of the DNS flow for : = 0
(squares) and at the most amplified wavenumber in the range : > 4 (circles) as a function
of the time C1 for Re = 2000, �ℎ = 4, Ω1 = 0.1 ('> ≈ 20) and (0) '̃> = 40, (1) '̃> = 60,

(2) '̃> = 80 and (3) '̃> = 115.

Figure 13: Vertical velocity (0, 1) and vertical vorticity (2, 3) of the eigenmode for (0, 2)
: = 0 and (1, 3): = 4.5 for '̃> = 40 and '4 = 2000, �ℎ = 4, '> = 23.1 at C1 = 50.

up to < = 6 for '4 = 50000 (red open circles in figure 15(0)). The red dashed line in figure374
15(2) shows that the azimuthal wavenumber< in the latter case varies approximately linearly375
when plotted as a function of '41/3. The corresponding maximum growth rate first increases376
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Figure 14: Same as figure 13 but for (0, 2) : = 0 and (1, 3) : = 5.3 for '̃> = 115 and
'> = 20.3 at C1 = 100.

Figure 15: Most amplified azimuthal wavenumber < as a function of (0), '4 and, (1),
'41/3. (2) Associated maximum growth rate as a function of '4. The blue and red

symbols correspond to '̃> = 80 and Y2'4 = 1.25, respectively, for �ℎ = 4 and Ω1 = 0.1
('> ≈ 20). The symbols ◦, × and + represent the results obtained from linear stability
analyses of the DNS flows and from the local two-dimensional stability analyses of the
linear solution (5.1,5.4,5.6) and nonlinear solution (5.1, 5.3), respectively. In (1), the red
dashed line shows a linear fit of the red open circle symbols (◦). The time C1 taken for each

stability analysis of the DNS flow and local stability analyses is: C1 = 75 for '̃> = 80
when '4 6 10000, C1 = 73 for ('̃> = 80, '4 = 20000), C1 = 70 for ('̃> = 80,

'4 = 30000 and '4 = 50000), C1 = 110 for ('̃> = 138.6, '4 = 6000), C1 = 120 for
('̃> = 179, '4 = 10000), C1 = 145 for ('̃> = 253, '4 = 20000), C1 = 145 for

('̃> = 310, '4 = 30000), C1 = 170 for ('̃> = 400, '4 = 50000).

with '4 for '̃> = 80 and then tends to saturate (blue open circles in figure 15(2)) whereas it377
remains approximately constant when Y2'4 = 1.25 is kept fixed (red open circles).378
The three-dimensional stability of flows in the DNS for variable Reynolds number has not379

been investigated, as knowledge of the maximum growth rate and dominant wavenumber380
extracted from the DNS will be sufficient in the remainder of the study.381

5. Local stability analysis of the theoretical solutions in the critical layer382

In order to shed light on the mechanism and competition between the three-dimensional and383
two-dimensional instabilities, we will now turn to a stability analysis of the local solutions384
in the critical layer that have been derived analytically for large Reynolds numbers and small385
non-traditional Rossby numbers in Toghraei & Billant (2022).386
Wefirst briefly recall the asymptotic analyses and the resulting solutions. Then, the stability387

of these solutions will be investigated.388
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5.1. Local base flow in the critical layer389

This section is only a brief summary of the main asymptotic results derived in Toghraei &390
Billant (2022) that will be useful in the next sections. Readers interested in the details of391
the asymptotic analyses are referred to this previous article. Toghraei & Billant (2022) have392
solved (2.2-2.4) by assuming Y = 2/'̃> � 1 and '4 � 1 and by considering the vicinity393
of the critical radius A2 where Ω(A2) = 1/�ℎ by means of the variable Ã = '41/3(A − A2). A394
slow time ) = '4−1/3C has been also introduced. Both linear and non-linear analyses have395
been carried out following Boulanger et al. (2007) andWang & Balmforth (2020, 2021). The396
latter assumes the distinguished scaling '4 = '̃4/Y2 where '̃4 is of order unity. However,397
the non-linear analysis remains valid for any value in the range 0 < '̃4 < 1 and recovers the398
linear analysis in the limit '̃4 → 0. The solutions for the vertical velocity, buoyancy, angular399
velocity and vertical vorticity then read at leading order in Y:400

*I = Y
1/3'̃4

1/3
*̃I + ..., (5.1a)401

402

� = Y1/3'̃4
1/3
�̃ + ..., (5.1b)403

404

Ω = Ω0 + Y2/3'̃4
2/3
Ω1 + ..., (5.1c)405

406

Z = Z0 + '̃4Z1 + ..., (5.1d)407

where *̃I = *̃I1ei\ + 2.2. and �̃ = �̃1ei\ + 2.2.. At the leading order, Ω0 and Z0, are the408
non-dimensional angular velocity and vertical vorticity corresponding to (2.1). In the vicinity409
of A2 , they can be expanded as410

Ω0 = Ω2 + ÃΩ
′
2Y

2/3'̃4
−1/3 + ..., (5.2a)411

412

Z0 = Z2 + Ã Z
′
2Y

2/3'̃4
−1/3 + ..., (5.2b)413

where the subscript 2 denotes the value at A = A2 . The vertical velocity *̃I1 and angular414
velocity correction Ω1 have been found to be governed by the following coupled equations:415

m*̃I1
m)
+ iΩ

′
2 Ã*̃I1 + i'̃4Ω1*̃I1 =

i
4
A2Ω2 +

1
2

(
1 + 1

(2

)
m2*̃I1

mÃ2 , (5.3a)416

417

mΩ1
m)

= − i
2A2

(
*̃∗I1 − *̃I1

)
+ m

2Ω1

mÃ2 . (5.3b)418

These equations are also rewritten in terms of unscaled variables in appendix A. The equation419
(5.3a) describes the evolution of the vertical velocity *̃I1 near A2 due to the non-traditional420
Coriolis force (first term in the right-hand side) and under the viscous and diffusive effects421
(last term in the right-hand side) and the effect of the angular velocity correction Ω1 (last422
term of the left-hand side). The viscous effects and the time derivative smooth the solution423
*̃I1, which without these terms would be *̃I1 = A2Ω2/(4Ω

′
2 Ã) and would be therefore424

singular at A2 . The equation (5.3b) shows that the vertical velocity *̃I1 forces the angular425
velocity correction Ω1. This comes from the non-traditional Coriolis force in the horizontal426
momentum equation. The corresponding buoyancy and vertical vorticity corrections are427
given by �̃1 = 8Ω2*̃I1 and Z1 = A2mΩ1/mÃ.428
The linear solutions derived by Toghraei & Billant (2022) correspond to the case when429

the angular velocity correction is small so that its retroaction on the vertical velocity is430
negligible. This linear limit can be most simply obtained from (5.3) by neglecting the third431
term in the left-hand side of (5.3a). Indeed, the linear solutions are expected to be valid when432
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the vertical vorticity correction '̃4Z1 in (5.1d) is weak, i.e. when '̃4 � 1, or equivalently433

'4/'̃>2 � 1. In this case, (5.3a) can be integrated to give434

*̃I1 = i
A
c

∫ ���Ω′2 ���) /W
0

exp
(
− I

3

3
+ iWÃI

)
dI, (5.4)435

where436

A =
cA2Ω2

2
���2Ω′2 ���2/3 (

1 + 1
(2

)1/3 , W =

���2Ω′2 ���1/3(
1 + 1

(2

)1/3 . (5.5)437

Then, the solution of (5.3b) can be found in the form438

Ω1 = −
A

2W2cA2

∫ ���Ω′2 ���) /W
0

exp
(
−I3

3
+ iWÃI

) (
1 − exp

(
W3I3/

��Ω′2 �� − W2I2)
)

I2

)
dI+2.2.. (5.6)439

The theoretical solutions (5.3), (5.4) and (5.6) have been computed numerically and are440
compared in figure 16 to the flows observed in the three-dimensional DNS prior to the onset441
of the instability for the four values of '̃> investigated previously for '4 = 2000 and �ℎ = 4.442
This figure displays the maximum vertical velocity *I<(\, C) for \ = 0 (figure 16(0)) and443
\ = c/2 (figure 16(1)). The solid lines correspond to the DNS for '̃> = 40 (grey), '̃> = 60444
(green), '̃> = 80 (red) and '̃> = 115 (blue) whereas the corresponding linear and non-445
linear solutions (5.1,5.4) and (5.1,5.3) are plotted with dashed lines and dotted-dashed lines,446
respectively, with the same color.447
Both the linear (5.1,5.4) and the non-linear (5.1,5.3) solutions predict well the initial448

increase of *I<(\, C) in the DNS for all values of '̃> despite missing the initial oscillations449
observed in the DNS. These oscillations are due to inertia-gravity waves excited at C = 0.450
However, since their amplitude remains constant whereas the rest of the solution grows451
linearly with time, their relative importance becomes negligible for large times. They are452
absent in (5.4) and (5.3) because these solutions are valid only for ) & O(1), i.e. large time:453

C � Y−2/3'̃4
1/3.454

After the linear increase, there is a saturation of*I<(\, C) towards a level which is inversely455

proportional to '̃> since the vertical velocity scales as Y1/3'̃4
1/3

= Y Re1/3 (see (5.1a)).While456
the linear solution (5.1,5.4) saturates to constant values, the non-linear solution (5.1,5.3)457
exhibits transient oscillations towards a mean value. The amplitude of these oscillations458
increases as '̃> decreases. The difference between the linear and non-linear solutions also459
increases as '̃> decreases for a constant '4 since non-linear effects scale like '̃4 = '4/'̃>2.460
Figures 17 and 18 display a detailed comparison between the radial profiles of the vertical461

velocity in the DNS and from the asymptotic solutions for '̃> = 40 and '̃> = 115,462
respectively. The comparison has been conducted at \ = 0 (left column) and \ = c/2 (middle463
column) and at two different times denoted C11 and C12. The first time C11 is approximately464
when *I<(\ = 0, C) given by the non-linear equations (5.1,5.3) reaches the saturation level465
of *I<(\ = 0, C) given by the linear solution (5.4) (circles in figure 16(0)). The time C12 is466
when *I<(\ = 0, C) given by the non-linear solution (5.1,5.3) reaches its first peak (squares467
in figure 16(0)). These two times are sufficiently large for the theoretical solutions to be468
valid. For both values of '̃>, there is a good agreement between*I (A, \, C) in the DNS (black469
solid lines) and predicted by the linear solutions (green dashed lines) and non-linear solutions470
(red dotted-dashed lines). However, the linear solution for '̃> = 40 (figure 17(0, 1, 3, 4)) is471
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Figure 16: Comparison between the maximum vertical velocity in the DNS (solid line),
predicted by the linear solution (5.1,5.4) (dashed line) and by the non-linear equations
(5.1,5.3) (dotted-dashed line) for (0) \ = 0 and (1) \ = c/2 for '4 = 2000, �ℎ = 4,

Ω1 = 0.1 ('> ≈ 20) and '̃> = 40 (grey lines), '̃> = 60 (green lines), '̃> = 80 (red lines)
and '̃> = 115 (blue lines). The circle and square symbols in (0) indicate the times C11 and

C12, respectively.

shifted along the radius compared to the DNS whereas the non-linear solution is in better472
agreement. This is due to the non-linear effect involving the angular velocity correction Ω1473
in (5.3a) that effectively moves the location of the critical radius. For '̃> = 115 (figure474
18), there is also a slight shift between the linear and non-linear vertical velocity profiles475
at C12 = 100 (figure 18(3, 4)). It is however smaller since non-linear effects are weaker for476
'̃> = 115.477
The corresponding profiles of vertical vorticity at the same times are compared in figure478

17(2, 5 ) ('̃> = 40) and figure 18(2, 5 ) ('̃> = 115). We see that there is also a good479
agreement between the asymptotic solutions and the DNS. The non-linear solution is, again,480
more accurate than the linear one for '̃> = 40 (figure 17(2, 5 )).481
Similar comparisons are displayed in Toghraei (2023) for '̃> = 60 and '̃> = 80.482

483

5.2. Critical layer regime when the instabilities develop484

Having shown that the asymptotic solutions (5.1) are in good agreement with the flows485
observed in the DNS before the onset of the instabilities, we will now study the stability486
of these theoretical solutions in order to further understand the competition between the487
two-dimensional and three-dimensional instabilities.488
As mentioned in the introduction, Boulanger et al. (2008) have performed a local three-489

dimensional stability analysis of the flow in the critical layer by assuming that it is smoothed490
by viscous effects. In contrast, Wang & Balmforth (2021) have considered in their two-491
dimensional stability analyses that the instability arises as soon as the initial inviscid regime492
of the critical layer. As shown in the previous section, the various variables (5.1) of the493
base flow scale differently during these two regimes. Indeed, the vertical velocity (5.1a)494

first grows like YC and then saturates at an amplitude scaling like Y1/3'̃4
1/3

= Y'41/3 when495
C > '41/3 (when '̃4 < $ (1)) (figure 16). Similarly, the vorticity correction '̃4Z1, defined in496
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Figure 17: Comparison between the vertical velocity at \ = 0 (0, 3) and \ = c/2 (1, 4) the
vertical velocity (2, 5 ) in the DNS (black solid line), predicted by the linear solution

(5.1,5.4,5.6) (green dashed line) and by the non-linear equations (5.1,5.3) (red
dotted-dashed line) at C11 = 40 (0, 1, 2) and C12 = 50 (3, 4, 5 ) for '̃> = 40 and '4 = 2000,

�ℎ = 4, '> = 23.1.

(5.1d), first grows like Y2C3 and then saturates towards an amplitude scaling like '̃4 = Y2'4497
for C > '41/3. The scalings for radial derivatives m=/mA= of any of these quantities can be498
obtained by considering that m/mA ∼ C and m/mA ∼ '41/3 in the two regimes, respectively.499
It is therefore important to first determine in which regime the instabilities develop before500

performing the local asymptotic stability analyses. To this end, figure 19(0) shows the501
evolution of the maximum vertical velocity max(*I) predicted by (5.1-5.3) for different502
Reynolds numbers for '̃> = 80 (solid lines) and for Y'42/3 = 3.97 (dashed lines) as in figure503
7. For each case, the time interval of linear development of the three-dimensional instability,504
as observed in the DNS (figure 7), is highlighted by thick lines. For constant '̃>, we can see505
that the instability occurs in the saturated regime for '4 6 4000 but this is no longer the case506
for '4 > 6000. In contrast, for fixed Y'42/3, the three-dimensional instability continues to507
develop always in the second regime as '4 is increased.508
Similarly, figure 19(1) shows the evolution of the maximum of the vorticity anomaly509

max('̃4Z1) predicted by (5.1-5.3) for various Reynolds numbers for '̃> = 80 (solid lines)510
and Y2'4 = 1.25 (dashed lines) as in figure 10. For '̃> = 80, the linear development of the511
two-dimensional instability, indicated by thick lines, occurs during the saturated regime for512
'4 6 4000 and during the unsteady regime for '4 > 6000. In contrast, for constant Y2'4,513
the two-dimensional instability develops always during the saturated regime.514
Similar plots (not shown) for the simulations for the constant Reynolds number '4 = 2000515

and non-traditional Rossby numbers in the range 40 6 '̃> 6 115 show that the two-516
dimensional and three-dimensional instabilities develop during the saturated regime or during517
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Figure 18: Same as figure 17 but for '̃> = 115 and '> = 20.3 at (0, 1, 2) C11 = 50 and
(3, 4, 5 ) C12 = 100.

the transition between the linear and saturated regimes, indicating that viscous effects are at518
play.519
In summary, two scenarios are observed in the DNS: the instabilities tend to arise during520

the initial inviscid regime for large '4 when '̃> is kept fixed whereas, they occur during521
the saturated regime otherwise, i.e. when Y'42/3 or Y2'4 = 1.25 are kept constant, or for522
constant '̃> below a critical Reynolds number. It would be therefore necessary to perform two523
types of asymptotic stability analyses in order to cover these two cases. Nevertheless, since524
our main goal is to describe the region of the parameter space ('̃>, '4) where occurs the525
transition between the two-dimensional and three-dimensional instabilities, we will perform526
only asymptotic stability analyses for the scenario in which the instabilities occur in the527
saturated regime. Indeed, as we will see in §7, the critical non-traditional Rossby number528
between the two-dimensional and three-dimensional instabilities increases with '4 so that529
the instabilities in DNS for parameters in the vicinity of this threshold are expected to always530
develop during the second regime.531

532
5.3. Local three-dimensional stability analysis of the base flow in the critical layer533

As discussed before, Wang & Balmforth (2021) have performed a two-dimensional534
asymptotic stability analysis of the flow in the critical layer by using inviscid scalings535
for the base flow and local radius since they assume that the instability develops during the536
first regime when the gradient of the vorticity anomaly becomes of order unity. In contrast,537
here, we will not use any a priori stability criterion but we will simply study the stability538
of the theoretical flow (5.1) frozen at the same times as in the stability analyses of the DNS539
flows. Such hybrid asymptotic approach, partially based on DNS observations, differs from540



23

0 40 80 120
0

0.1

0.2

0.3

0.4

0.5

0 40 80 120 160
0

0.2

0.4

0.6

0.8

1

1.2

Figure 19: Evolution of, (0), the maximum vertical velocity max(*I) and, (1), the
maximum vorticity anomaly max('̃4Z1) predicted by (5.1,5.3) for different Reynolds
numbers for '̃> = 80 (solid lines), Y'42/3 = 3.97 (dashed lines in (0)) or Y2'4 = 1.25

(dashed lines in (1)) , for �ℎ = 4 and Ω1 = 0.1 ('> ≈ 20). For each line, the thick portion
indicates the time interval during which the linear development of instabilities occurs, as
observed in DNS (figures 7 and 10). The Reynolds numbers are '4 = 2000 (green lines),
'4 = 4000 (red line), '4 = 6000 (blue line), '4 = 8000 (grey line), '4 = 10000 (black

line).

the full asymptotic analysis of Wang & Balmforth (2021) that describes the simultaneous541
development of the base flow and the unstable disturbances.542

A second difference with Wang & Balmforth (2021) is that we will use the viscous scaling543
for the local radius m/mA ∼ '41/3 in the local linear stability analyses. Such assumption is544
a priori only valid for the DNS presented in §3 for which the instabilities grow during the545
second regime or during the transition between the first and second regimes. As mentioned546
earlier, this is the case of most of the DNS except those for '̃> = 80 with a large Reynolds547
number '4 > 6000. For the latter DNS, it would be necessary to follow the approach of548
Wang & Balmforth (2021) and adopt inviscid scalings for the local radius and base flow549
quantities.550

Hence, the equations (2.2-2.4), written in cylindrical coordinates, are linearized around551
the flow (5.1) and are expressed in terms of the local coordinate Ã = '41/3(A − A2) and with552

the vertical coordinate rescaled similarly: Ĩ = Y−2/3'̃4
1/3
I following Boulanger et al. (2008).553

This amounts to consider that the disturbances vary in the vertical direction as rapidly as554
in the radial direction. This assumption is consistent with the scaling of the most amplified555
vertical wavenumber : ∝ '41/3 observed in figure 8(1) for the DNS with constant Y'42/3,556
i.e. when the instability always arises during the saturated regime of the critical layer. The557
equations read at leading orders in Y:559

mDA

mC
+ΩmDA

m\
+ Y−1/3'̃4

2/3
*̃I
mDA

mĨ
−

(
2Ω + 2

'>

)
D\ = −Y−2/3'̃4

1/3 m?

mÃ

− YDI cos (\) + Y2/3'̃4
−1/3

(
m2DA

mÃ2 +
m2DA

mĨ2

)
,

(5.7a)560
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mD\

mC
+ΩmD\

m\
+ Y−1/3'̃4

2/3
*̃I
mD\

mĨ
+

(
Z + 2

'>

)
DA = −

1
A2

m?

m\
+ YDI sin (\)

+ Y2/3'̃4
−1/3

(
m2D\

mÃ2 +
m2D\

mĨ2

)
,

(5.7b)562

mDI

mC
+ΩmDI

m\
+ Y1/3'̃4

1/3 D\
A2

m*̃I

m\
+ Y−1/3'̃4

2/3
*̃I
mDI

mĨ
+ Y−1/3'̃4

2/3
DA
m*̃I

mÃ
=

− Y−2/3'̃4
1/3 m?

mĨ
+ 1 + YDA cos (\) − YD\ sin (\) + Y2/3'̃4

−1/3
(
m2DI

mÃ2 +
m2DI

mĨ2

)
,

(5.7c)564

m1

mC
+Ωm1

m\
+ Y1/3'̃4

1/3 D\
A2

m�̃

m\
+ Y−1/3'̃4

2/3
*̃I
m1

mĨ
+ Y−1/3'̃4

2/3
DA
m�̃

mÃ
=

− DI
�2
ℎ

+ Y2/3

'̃4
1/3
(2

(
m21

mÃ2 +
m21

mĨ2

)
,

(5.7d)566

567

Y−2/3'̃4
1/3 mDA

mÃ
+ 1
A2

mD\

m\
+ Y−2/3'̃4

1/3 mDI
mĨ

= 0, (5.7e)568

where569

Ω = Ω2 + Y2/3'̃4
−1/3 [ÃΩ′2 + '̃4Ω1] + ..., (5.8a)570

571

Z = Z2 + '̃4Z1 + Y2/3'̃4
−1/3

Ã Z
′
2 + .... (5.8b)572

We see that the leading terms in (5.7) involving the base flow (Ω, Z , *̃I , �̃) scale as573

Y−1/3'̃4
2/3 provided that m/mĨ is of order unity.Hence, in order to study the three-dimensional574

instability, we rescale the time as follows C = gC̃ where g = Y1/3'̃4
−2/3 and the pressure as575

? = g'̃4 ?̃ such that the time derivatives and the pressure gradient are of the same order as576
the dominant terms. Then, (5.7) reduces at leading orders to:577

mDA

mC̃
+ *̃I

mDA

mĨ
+ gΩ2

mDA

m\
− g

(
2Ω2 +

2
'>

)
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m ?̃

mÃ
+ g3'̃4

(
m2DA
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m2DA

mĨ2

)
, (5.9a)578

580
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mĨ
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(5.9b)

581

582

mDI
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+ *̃I

mDI

mĨ
+ DA
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mÃ
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mDI
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,

(5.9c)583584

m1

mC̃
+ *̃I

m1

mĨ
+ DA

m�̃

mÃ
+ gΩ2

m1
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D\
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+ g3 '̃4
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, (5.9d)585
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mD\

m\
+ mDI
mĨ

= 0, (5.9e)587
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whereas the terms of order Y4/3 = O(g4) and higher are neglected. If only the leading order588
terms are retained, then all the terms proportional to g, g2 and g3 can be neglected and (5.9)589
reduces simply to590

mDA

mC̃
+ *̃I

mDA

mĨ
= −m ?̃

mÃ
, (5.10a)591

592
mDI

mC̃
+ *̃I

mDI

mĨ
+ DA

m*̃I

mÃ
= −m ?̃

mĨ
, (5.10b)593

594
mDA

mÃ
+ mDI
mĨ

= 0, (5.10c)595

whereas the equations (5.9b) and (5.9d) for D\ and 1 do not need to be considered since596
these two quantities do not appear in (5.10).597
Hence, as shown previously by Boulanger et al. (2008), the local stability problem (5.10)598

corresponds at leading order to the two-dimensional stability of a parallel non-stratified shear599
flow *̃I . However, a difference with the classical configuration is that the base flow *̃I does600
not depend only on Ã but also on \. Boulanger et al. (2008) have solved (5.10) by writing the601

perturbations in the form (DA , DI , ?̃) = [D̂A , D̂I , ?̂] (Ã , \)ef̃C̃+i:̃ Ĩ + 2.2.. Then, (5.10) recovers602
the classical Rayleigh equation603 [

f̃ + i:̃*̃I
] [

d2

dÃ2 − :̃
2
]
D̂A = i:̃

d2*̃I

dÃ2 D̂A , (5.11)604

where \ can be considered as an external parameter. The solution can be seen as a local605
eigenmode around the particular value of \ investigated. The boundary conditions used to606
solve (5.11) are that the perturbations vanish as |Ã | → ∞. The eigenmodes obtained from the607
stability analyses of the DNS flows are indeed localized around the critical radius and vanish608
in the outer regions (see figures 13 and 14).609
Such approach considering \ as an external parameter can be continued to be used for the610

next order terms in g of (5.9), only if we neglect the derivatives in the azimuthal direction,611
i.e. m/m\ = 0. Without this assumption, (5.9) would correspond to a full three-dimensional612
stability problem of a base flow varying in both Ã and \ directions. Hence, it would be as613
complicated to solve as the stability analysis of the DNS flow performed in section §4.614
Hence, we will use the simplifying assumption m/m\ = 0 in the following analysis that615

consider higher order terms in g. By writing perturbations in the form (DA , D\ , DI , ?̃, 1) =616 [
D̂A , D̂\ , D̂I , ?̂, 1̂

]
(Ã , \)ef̃C̃+i:̃ Ĩ + 2.2., (5.9) can be rewritten up to order g2617 [

B̃ + g2
(
q

B̃
+ '̃4

(
2Ω2 +

1
'>

)
Z1
B̃

)]
D̂A = −

m ?̂

mÃ
, (5.12a)618

619

B̃D̂I + D̂A
m*̃I

mÃ
= −i:̃ ?̂ + g

B̃�ℎ

(
−D̂A

m�̃
′

mÃ
− g

�ℎ
D̂I

)
, (5.12b)620

621
mD̂A

mÃ
+ i:̃ D̂I = 0, (5.12c)622

where B̃ = f̃ + i:̃*̃I , �̃
′
= �̃/Ω2 and623

q =

(
2Ω2 +

2
'>

) (
Z2 +

2
'>

)
, (5.13)624

is the Rayleigh discriminant.625
The dependence of *̃I and �̃

′ on the parameters A2 and (2 can be further eliminated for a626
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large time by the additional rescaling627

*̃I = *̂IA, �̃
′
= �̂A, Ã = Â

W
, :̃ = :̂W, f̃ = f̂WA, g = ĝWA, ?̂ = ?̂′A, (5.14)628

whereA and W are defined in (5.5). Then, (5.12) can be solved asymptotically by expanding629
the growth rate and perturbations with ĝ in the form630

f̂ = f̂0 +
ĝ

�ℎ
f̂1 + ĝ2

(
qf̂21 +

1
�2
ℎ

f̂22 + '̃4
(
2Ω2 +

1
'>

)
f̂23

)
+ O(ĝ3), (5.15a)631

632

u = u0 +
ĝ

�ℎ
u1 + ĝ2

(
qu21 +

1
�2
ℎ

u22 + '̃4
(
2Ω2 +

1
'>

)
u23

)
+ O(ĝ3), (5.15b)633

where u = (D̂A , D̂I , ?̂
′)) . The order ĝ2 has been decomposed into three parts in order to be634

able to quantify separately the effects of the different terms at second order in (5.12).635
Replacing (5.15) into (5.12) gives for the first three orders in ĝ636

f̂0I
′
u0 = L0u0, (5.16a)637

638
f̂0I

′
u1 + f̂1I

′
u0 = L0u1 + L1u0, (5.16b)639640

f̂0I
′
u21 + f̂21I

′
u0 = L0u21 + L21u0, (5.16c)641642

f̂0I
′
u22 + f̂1I

′
u1 + f̂22I

′
u0 = L0u22 + L1u1 + L22u0, (5.16d)643644

f̂0I
′
u23 + f̂23I

′
u0 = L0u23 + L23u0, (5.16e)645

where the different operators I ′ ,L0,L1,L21,L22,L23 are defined in appendix B. The leading646
order problem (5.16a) is identical to (5.11). Considering the most unstable eigenmode u0,647
the Fredholm solvability condition for the first order (5.16b) gives648

f̂1 =
〈L1u0 · u†〉
〈I ′u0 · u†〉

, (5.17)649

where D† is the solution of the adjoint problem: f̂∗0 I ′u† = L†0u
†, where L†0 is defined in650

appendix B and the scalar product is defined as651

〈D0 · D1〉 =
∫ +∞

−∞
D0 .D

∗
1dA. (5.18)652

Similarly, the Fredholm solvability conditions for the three problems at the second order give653
654

f̂21 =
〈L21u0 · u†〉
〈I ′u0 · u†〉

, (5.19a)655
656

f̂22 =
−〈f̂1I ′D1 · u†〉 + 〈L1D1 · u†〉 + 〈L22u0 · u†〉

〈I ′u0 · u†〉
, (5.19b)657

658

f̂23 =
〈L23u0 · u†〉
〈I ′u0 · u†〉

. (5.19c)659

Figure 20(0) shows the normalized growth rate f̂A = R4(f̂) as a function of the normalized660
wavenumber :̂ given by (5.15a) for ĝ = 0 (black line), i.e. corresponding to the Rayleigh661
equation (5.11). The linear solution (5.1,5.4) for ) = '4−1/3C = ∞ is taken as base flow662
for two angles \ = 0 (solid line) and \ = c/2 (dashed line). The maximum growth rate is663
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f̂A<0G ≈ 0.116 for :̂<0G ≈ 0.54 when \ = 0 and f̂A<0G ≈ 0.107 for :̂<0G ≈ 0.59 when664
\ = c/2. The flow is therefore slightly more unstable for \ = 0 in agreement with the results665
of Boulanger et al. (2008).666
Figure 20(1) shows the real part of the coefficients f̂21 (black lines) and f̂22 (red lines)667

for \ = 0 (solid lines) and \ = c/2 (dashed lines). The coefficients f̂1 and f̂23 are not shown668
since they are purely imaginary. This implies that the normalized growth rate reads669

f̂A = f̂A0 + ĝ2

(
qf̂A21 +

1
�2
ℎ

f̂A22

)
+ O(ĝ3). (5.20)670

Therefore, knowing f̂A21 and f̂A22, the growth rate can be easily predicted for any values of671
�ℎ, '> and Y and '4 via q and ĝ provided that ĝ is sufficiently small. In particular, since672
f̂A21 and f̂A22 are both negative around the most amplified wavenumber :̂<0G (figure 20(1)),673
second order effects are stabilizing and we can deduce directly that the growth rate will674
decrease when '> decreases (i.e. q increases), when �ℎ decreases or when ĝ ∝ '̃>/'42/3675
increases (i.e. '̃> increases or '4 decreases). As an illustration, the growth rate predicted676
by (5.15a) for �ℎ = 4 and '> = 20 is plotted in figure 20(0) for ĝ = 0.207 (red lines) and677
ĝ = 0.413 (green lines) for \ = 0 (solid lines) and \ = c/2 (dashed lines). We see that the678
growth rate can be reduced significantly by second order effects compared to the prediction679
of the pure Rayleigh equation (5.11) (black lines).680
By using (5.14) and the scaling C̃ = C/g, the growth rate (5.20) can be rewritten in unscaled681

form fA3� = f̃A/g = f̂AWA/g, giving682

fA3� =
WA
g
f̂A0 +

g

WA

(
qf̂A21 +

1
�2
ℎ

f̂A22

)
+ O(g2), (5.21)683

whereA and W are given by (5.5) and we recall that g = Y1/3'̃4
−2/3. Table 1 gives the values684

of these parameters for various '4, �ℎ and '̃>. Considering the linear solution (5.1,5.4) for685
) = '4−1/3C = ∞, for the most amplified wavenumber :̂ = :̂<0G at leading order for \ = 0,686
we have687

fA3�<0G = 0.116
WA
g
+ g

WA

(
−1.712q − 1

�2
ℎ

0.802

)
+ O(g2), (5.22)688

for any '4, �ℎ and '̃>. The growth rate (5.22) depends on '4 and '̃> only through the689
parameter g = 1/(Y'42/3). This qualitatively agrees with figure 8(2) where the growth rate690
of three-dimensional vertical vorticity fluctuations are seen to remain approximately constant691
when '4 is varied keeping Y'42/3 constant (green open circles). However, figure 20(2) shows692
thatfA3�<0G decreases significantly as g increases. This is both due to the fact that the growth693
rate is inversely proportional to g at the leading order and to the stabilizing second order694
effects. Hence, when '4 is increased from '4 = 2000 to '4 = 10000 keeping '̃> constant as695
in figure 7(0), fA3�<0G increases significantly since g decreases from g = 0.25 to g = 0.09.696
While an increase of the growth rate of three-dimensional vertical vorticity fluctuations is697
indeed observed when '4 is increased from '4 = 2000 to '4 = 6000 (blue open circles698
in figure 8(2)), this is no longer the case when the Reynolds number is further increased to699
'4 = 10000. As already mentioned, this indicates that the three-dimensional instability no700
longer develops during the saturated regime of the base flow, as assumed above by taking the701
linear solution for ) = ∞, but already during the initial inviscid regime.702
Finally, it should be kept in mind that if a finite time ) or the non-linear solution (5.1,5.3)703

are considered, the same approach can be used but the coefficients f̂A0, f̂A21 and f̂A22 in704
(5.21) will depend on ('̃>, �ℎ, '4) and will have to be computed for each set of parameters.705
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'4 �ℎ '̃> A W g j

2000 4 40 0.976 0.625 0.126 0.06
2000 4 115 0.976 0.625 0.362 0.50
10000 4 40 0.976 0.625 0.043 0.01
2000 2 40 0.799 0.781 0.126 0.12

Table 1: Examples of the values of A, W, g and j for various '4, �ℎ and '̃>.

Figure 20: (0)Normalized growth rate f̂A obtained from (5.15a) as a function of the
normalized vertical wavenumber :̂ for \ = 0 (solid line) and \ = c/2 (dashed line). The
different colored curves correspond to: (0) ĝ = 0 (black line), ĝ = 0.207 (red line) and

ĝ = 0.413 (green line) for �ℎ = 4 and '> = 20.
(1) Coefficients f̂A21 (black line) and f̂A22 (red lines) for \ = 0 (solid lines) and \ = c/2

(dashed lines). The linear solution (5.1,5.4) at ) = ∞ is taken as the base flow. (2)
Asymptotic growth rate fA3�<0G given by (5.22) (black line) as a function of g for

�ℎ = 4 and '> = 20. The red line shows the growth rate at leading order, i.e.
fA = 0.116 WAg . The linear base flow (5.1,5.4) is taken at ) = ∞ and \ = 0.

In supplementary materials, the order $ (g2) of the growth rate (5.21) is also computed.706
This next order comprises the stabilizing effect of the dissipative terms and a destabilizing707
effect of the vorticity correction Z1. However, its consideration does not significantly improve708
the predictions compared to (5.21).709

5.4. Local two-dimensional stability analysis710

As for the three-dimensional instability, we will only consider the scenario for which the two-711
dimensional instability develops during the saturated regime of the base flow (5.1) and not712
during the initial inviscid phase as considered by Wang & Balmforth (2021). The following713
analysis is therefore expected to apply to all the cases investigated in §4 except those for714
'̃> = 80 and '4 > 6000. In the saturated regime, the vertical vorticity anomaly '̃4Z1 is715
then of order '̃4, i.e. of order unity when '̃4 = $ (1). This implies that the gradient of the716
vertical vorticity anomaly is large, of order$ ('̃4Y−2/3), instead of order unity as assumed by717
Wang & Balmforth (2021). Accordingly, we again use the local viscous radius Ã as in (5.9).718

However, these equations assume that m/mI = O(Y−2/3'̃4
1/3), i.e. that the perturbations vary719

along the vertical as rapidly as along the radius. In other words, the dimensional vertical720
wavenumber : should be large. These equations are therefore not valid when : is small and721
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in particular in the two-dimensional limit m/mI = 0. To treat this limit, we introduce different722
scalings for the pressure, the azimuthal and time derivatives723

?̄ = '̃4
1/3
Y−2/3?, (5.23a)724

725
m

m\̄
= '̃4

−1/3
Y2/3 m

m\
, (5.23b)726

727
m

mC̄
=
m

mC
+Ω2

m

m\
, (5.23c)728

where the new time C̄ is introduced to simplify the following calculations conveniently.729
The scaling for the azimuthal coordinate \ implies that the azimuthal wavenumber of the730
disturbances scales like '41/3 in the azimuthal direction, similarly as the vertical wavenumber731
in the previous section. The two-dimensional linear stability analyses of the DNS flows for732
different Reynolds numbers for constant '4Y2 have indeed shown that the variation of the733
dominant azimuthal wavenumber with the Reynolds number is compatible with this scaling734
law (figure 15(1)).735
Then, (5.7) reduces at leading order in Y to736

mDA

mC̄
+

(
ÃΩ

′
2 + '̃4Ω1

) mDA
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−

(
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2
'>

)
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mÃ
(5.24a)737
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mD\

mC̄
+

(
ÃΩ

′
2 + '̃4Ω1

) mD\
m\̄
+

(
Z2 + '̃4Z1 +

2
'>

)
DA = −

1
A2

m ?̄

m\̄
(5.24b)739

740
mDA

mÃ
+ 1
A2

mD\

m\̄
= 0, (5.24c)741

whereas the equations (5.7c,5.7d) for DI and 1 do not need to be considered since742
they are decoupled from (5.24). By introducing perturbations of the form (DA , D\ , ?̄) =743

(D̂A (A), D̂\ (A), ?̂)efC̄+i<̄\̄ , a Rayleigh equation is again recovered744 [
f

'̃4
+ i<̄

(
ÃΩ

′
2

'̃4
+Ω1

)] [
m2

mÃ2 −
<̄2

A2
2

]
D̂A = i<̄

m2Ω1

mÃ2 D̂A , (5.25)745

since Z1 = A2mΩ1/mÃ . It is the same as (5.11) with A2
(
ÃΩ

′
2/'̃4 +Ω1

)
and <̄/A2 replacing746

*̃I and : , respectively. This equation governs the growth rate of azimuthal disturbances747
on the local azimuthal velocity profile near the critical layer. We have observed that such748
local continuous approach provides more accurate predictions for any parameters than by749
approximating the global vorticity profile by piecewise profiles as done in Toghraei & Billant750
(2022).751
In contrast to the three-dimensional case, the dependence on '̃4 can not be completely752

eliminated from (5.25). This is because the angular velocity correction Ω1 is of the same753
order as the term ÃΩ

′
2/'̃4 coming from the pre-existing angular velocity Ω0. However,754

most of the dependence of Ω1 on A2 can be eliminated by the further rescaling Ã = Â/W,755
Ω1 = Ω̂1A/(A2W2), <̄ = <̂A2W, f = f̂'̃4A/W. Then, (5.25) becomes756 [

f̂ + i<̂
(
−Â j + Ω̂1

)] [
m2

mÂ2 − <̂
2
]
D̂A = i<̂

m2Ω̂1

mÂ2 D̂A , (5.26)757

where the control parameter j is758

j =

��Ω′2 ��WA2
'̃4A

. (5.27)759
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This parameter depends on the Froude number �ℎ through the position of the critical layer, the760
Reynolds number '4 and the non-traditional Rossby number '̃> through '̃4. Some examples761
of values are also listed in table 1. We can already notice that the dependence on '̃4 alone is762
consistent with figure 15(2) where the growth rate from two-dimensional stability analyses763
of the DNS flows is approximately constant when '̃4 is kept constant (red open circles).764
Like for the three-dimensional case, the boundary conditions used to solve (5.26) are that765
the perturbations vanish as |Â | → ∞. We therefore implicitly assume that no outer solutions766
need to be considered away from the critical radius, contrary to the analysis of Wang &767
Balmforth (2021) when the gradient of the vorticity anomaly is of order unity. To check this768
point, we have also directly determined the two-dimensional stability of the angular velocity769
and vorticity profiles (5.1c-5.1d) in cylindrical coordinates without any local assumption and770
in the full domain 0 6 A 6 ∞ by means of Chebyshev polynomials (Antkowiak & Brancher771
2004). The results have been found to be very close to those obtained from the local stability772
equation (5.26).773
Figure 21(0) shows the normalized growth rate f̂A obtained from (5.26) for four values774

of j. The angular velocity correction Ω̂1 has been taken as the linear solution (5.6) for775
�ℎ = 4, '4 = 2000 at two different times ) = '4−1/3C = 4 (dashed line) and ) = 8 (solid776
line). Since the angular velocity correction increases with time and saturates only when )777
is very large, the growth rates increase significantly when ) varies from ) = 4 to ) = 8.778
These times correspond to C = 50 and C = 100 for '4 = 2000. Figure 21(0) shows also that779
the maximum growth rate f̂A<0G increases whereas the cutoff wavenumber decreases as j780
increases from j = 0.06 (black line) to j = 0.5 (blue line). Such variation of j corresponds781
to '̃> varying from '̃> = 40 to '̃> = 115 for �ℎ = 4 and '4 = 2000. These trends with j782
are explained in appendix C by considering piecewise profiles for Ω̂1. Figure 21(1) displays783
the corresponding unscaled growth rate fA = f̂A '̃4A/W, as a function of the unscaled784

wavenumber < = <̂'̃4
1/3
Y−2/3A2W. The curves are now in reverse order compared to figure785

21(0) since fA is proportional to '̃4f̂A . Hence, if f̂A were independent of '̃4 and ) , the786
maximum growth rate of the two-dimensional instability would simply scale as '̃4 = '4Y2.787
However, since f̂A decreases via j as '̃4 increases, the dependence of fA on '̃4 is slower788
than a linear relationship. Furthermore, since the instability appears earlier as '̃4 increases,789
the time C12 corresponds to approximately ) = 8 for '̃> = 115 ('̃4 = 0.6) and ) = 4 for790
'̃> = 40 ('̃4 = 5). Therefore, this effect also reduces the linear scaling of fA on '̃4. It is also791
interesting to notice in figure 21(1) that the most unstable azimuthal wavenumber ranges792
from < = 2 to < = 4 depending on j (i.e. '̃4).793
Figure 21(2) shows the variation of the normalized growth rate f̂A of the azimuthal mode794

< = 2 over a larger range of j for ) = 4 and ) = 8. This azimuthal wavenumber is of795
particular interest since it corresponds to the one always observed in the DNS even when it796
is not the most unstable (see §3.2 and §4.3). We can see that the growth rate for this fixed797
azimuthal wavenumber < first increases and then decreases with j in agreement with the798
trends observed in figure 21(0, 1). We have attempted an asymptotic analysis for small j to799
predict the growth rate of the instability (See supplementary materials). However, as seen in800
figure 21 (2) (dotted-dashed lines), it is valid only for very small j and does not allow us to801
fully describe the dependence of f̂A on j. As an alternative, 4th-degree polynomials fit well802
the growth rate curves (dashed lines in figure 21(2)). Hence, the normalized growth rate for803
< = 2 can be approximated by804

f̂A2� ' f̂A0 + f̂A1j + f̂A2j
2 + f̂A3j

3 + f̂A4j
4, (5.28)805

where (f̂A0, f̂A1, f̂A2, f̂A3, f̂A4) = (0.022, 0.28,−0.43, 0.26,−0.066) for ) = 8 and806
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Figure 21: (0) Normalized growth rate f̂A obtained from (5.26) as a function of the
normalized azimuthal wavenumber <̂ and (1) growth rate fA as a function of the

azimuthal wavenumber <. The linear base flow (5.1,5.6) has been taken at ) = 4 (dashed
line) and ) = 8 (solid line) for '4 = 2000 and �ℎ = 4. The different colored curves
correspond to: j = 0.06 (black line), j = 0.13 (green line), j = 0.24 (red line) and

j = 0.5 (blue line). (2) Growth rate f̂A of the azimuthal mode < = 2 as a function of j for
) = 4 (black lines) and ) = 8 (blue lines) for '4 = 2000 and �ℎ = 4. The solid lines show
the growth rate obtained from (5.26). The dashed-dotted lines show the asymptotic growth

rate derived in supplementary materials. The dashed lines display the fit (5.28) by
4th-degree polynomials.

(0.011, 0.29,−0.88, 0.93,−0.39) for ) = 4 for �ℎ = 4 whereas the dependences on '4 and807
'̃> occur only via j (see 5.27). These fits will enable us to predict the unscaled growth rate808
of the two-dimensional instability for < = 2, i.e.809

fA2� =

��Ω′2 ��A2
j

f̂A2� , (5.29)810

for any value of '̃> and '4 for �ℎ = 4.811
In summary, the unscaled growth rates of the two-dimensional and three-dimensional812

instabilities have been found to scale at leading order in Y like '̃4 = Y2'4 and Y−1/3'̃4
2/3

=813
Y'42/3, respectively, when they develop during the saturated regime of the base flow in814
the critical layer. From these scalings, one would therefore expect that the two-dimensional815
instability is dominant at large Y (i.e. small '̃>) and the three-dimensional instability at small816
Y for a given Reynolds number in contradiction with the results of the DNS for '4 = 2000817
(section §3.1) and the stability analysis (section §4). However, we will see in the next section818
that the additional dependencies of the growth rates on the parameters discussed above can819
account for the observations.820

6. Comparison between the stability analyses of the DNS flows and the theoretical821
solutions in the critical layer822

6.1. Comparisons for variable '̃> for '4 = 2000823

We now compare the predictions of the local stability analyses to the results of the stability824
analysis of the DNS flows performed in section §4 for different non-traditional Rossby825
numbers for '4 = 2000. For each value of '̃>, the comparisons are conducted at the two826
different times C11 and C12 indicated in figure 16. The local three-dimensional stability analysis827
considers that \ = 0 since the maximum growth rate is larger than for \ = c/2 (figure 20).828
We remind also that this analysis is expected to be valid only for large vertical wavenumbers.829
Figure 22 compares the growth rate of the DNS flow (black line) for '̃> = 40 at C11 = 40830
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(figure 22(0)) and C12 = 50 (figure 22(1)) to the growth rate predicted by the local two-831
dimensional (square symbols) and three-dimensional (red and green lines) analyses. The832
dashed and solid lines show the prediction of the leading order equation (5.11) and of the833
second order equation (5.15a), respectively. The green and red colors correspond to the linear834
solution (5.1,5.4,5.6) and to the non-linear solution (5.1,5.3) as base flow, respectively.835
The local three-dimensional stability analysis predicts a growth rate peak around : ' 3−5836

whatever the base flow and the stability equation used, in good agreement with the stability837
analysis of the DNS flow at both times. All the various local analyses reasonably predict the838
growth rate peak, although there are some variations depending on which stability equation839
and which base flow solution are used. However, it is difficult to say that one prediction is840
particularly in better agreement with the stability analysis of the DNS flow than the others.841
Away from the three-dimensional growth rate peak, the local stability analyses depart from842
the stability analysis of the DNS flow since the former neglects any azimuthal variations of843
the disturbances and of the base flow. However, at : = 0, the local two-dimensional stability844
analysis, which does take into account azimuthal disturbances, predicts a growth rate (square845
symbols) in good agreement with the growth rate computed at : = 0 for the DNS flow.846

For '̃> = 60 (figure 23) and '̃> = 80 (figure 24), growth rates given by (5.15a) are slightly847
in better agreement with the stability analysis of the DNS flow. In addition, the predictions848
of the Rayleigh equation (5.11) start to depart from the predictions of (5.15a). As shown849
in figure 20(0), this is due to the fact that the stabilizing second order effect increases as850
ĝ increases from ĝ = 0.207 for '̃> = 40 to ĝ = 0.413 for '̃> = 80. The locations of the851
growth rate peak are also in good agreement. We can also notice that there are much fewer852
differences between the green and red curves than for '̃> = 40 (figure 22) since the linear853

and non-linear solutions become closer as '̃4 = 4'4/'̃>2 decreases, i.e. as '̃> increases for854
a fixed Reynolds number '4. The local two-dimensional stability analysis (square symbols)855
is also in very good agreement with the stability analysis of the DNS flow at : = 0 and856
C = C12. For C = C11, the agreement is less good probably because the vorticity anomaly is857
less concentrated around the critical radius at this early time so that the local assumption is858
not well verified.859
Finally, figure 25 displays the comparison for '̃> = 115. Again, we can see that the local860

two-dimensional stability analysis agrees well with the stability analysis of the DNS flow at861
C = C12. The predictions from (5.11) and (5.15a) for the three-dimensional instability are now862
clearly different, the latter being in closer agreement with the stability analysis of the DNS863
flows even if there exist some departures.864
Figure 26 summarizes the figures 22, 23, 24 and 25 by showing the growth rate of the865

two-dimensional instability at : = 0 (dashed lines with square symbols) and the maximum866
growth rate of the three-dimensional instability (lines with circle symbols) as a function of the867
non-traditional Rossby number '̃>. The latter growth rate is taken as the maximum growth868
rate in the wavenumber range : > 4. For simplicity, only the results for the time C = C12869
and the results of the local stability analyses of the non-linear flow (5.1,5.3) (red curves) are870
plotted. The solid and dashed black curves represent again the growth rate obtained from the871
stability analysis of the DNS flows. In addition, the prediction (5.22) of the maximum growth872
rate of the three-dimensional instability is also shown (orange solid line without symbols).873
The growth rates of the two instabilities obtained from the stability analyses of the DNS874

flows clearly decrease differently as the non-traditional Rossby number increases. Hence,875
the two-dimensional instability is expected to become dominant for '̃> & 100. The growth876
rate trends are clearly well predicted by the local stability analyses (5.15a) and (5.25) even877
though there exist some shifts so that the cross-over between the two-dimensional and three-878
dimensional instabilities occurs for a larger non-traditional Rossby number: '̃> & 120. Figure879
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Figure 22: Growth rate fA of the DNS flow (black solid line) and predicted by the local
stability analyses (colored curves) as a function of the vertical wavenumber : for '̃> = 40
and Re = 2000, �ℎ = 4, '> = 23.1 at (0) C11 = 40 and (1) C12 = 50. The dashed and solid
lines have been obtained from (5.11) and (5.15a), respectively. The square symbols show
the maximum growth rate obtained from the two-dimensional Rayleigh equation (5.25).
Green and red colors correspond to the linear solution (5.1,5.4,5.6) and the non-linear

solution (5.1,5.3), respectively.

Figure 23: Same as figure 22 but for '̃> = 60 and '> = 21.2 at (0) C11 = 40 and (1)
C12 = 60.

26 also shows clearly that the growth rate predicted by the pure three-dimensional Rayleigh880
equation (5.11) (red dashed line with circles) decays slower than observed in the stability881
analyses of the DNS flows as '̃> increases and always remains well above the growth rate of882
the two-dimensional instability in the range of '̃> investigated: '̃> 6 115. The difference883
between the growth rate predicted by (5.15a) and (5.22) is due to three reasons. In the first884
case, the base flow is taken as the non-linear solution at different times (indicated by square885
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Figure 24: Same as figure 22 but for '̃> = 80 and '> = 20.7 at (0) C11 = 45 and (1)
C12 = 75.

Figure 25: Same as figure 22 but for '̃> = 115 and '> = 20.3 at (0) C11 = 50 and (1)
C12 = 100.

symbols in figure 16) and the wavenumber is the most amplified wavenumber computed886
for each case. In the second case, the base flow is the linear solution at ) = ∞ and the887
wavenumber is fixed to the most unstable wavenumber at leading order, i.e. predicted by888
(5.11).889

6.2. Comparisons for different Reynolds numbers890

The dominant vertical wavenumber and maximum growth rate predicted by local three-891
dimensional stability analyses have been also computed by means of (5.15a) for different892
Reynolds numbers keeping constant either '̃> or Y'42/3 as for the three-dimensional DNS893
presented in §3.2. For each set of parameters, the linear solution (5.1,5.4,5.6) and the non-894
linear solution (5.1,5.3) have been taken as base flow at the time C1 at which the instability895
grows linearly in the DNS (indicated by square symbols in figure 7 and given in the caption of896
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Figure 26: Maximum growth rates of the two-dimensional instability (lines with square
symbols) and of the three-dimensional instability (lines with circle symbols) at C = C12 as
a function of '̃> for '4 = 2000, �ℎ = 4 and Ω1 = 0.1 ('> ≈ 20). The different colors
correspond to the stability analyses of the DNS flow (black) and the non-linear local

solution (5.1,5.3) (red). Dashed and solid lines with circles symbols have been obtained
from (5.11) and (5.15a), respectively. The dashed red line with square symbols has been
obtained from (5.25). The expressions (5.22) for the three-dimensional instability (orange
line without symbols) and (5.28) at ) = 8 for the two-dimensional instability (blue line

without symbols) are also represented.

figure 8). The results are indicated in figure 8 by the symbols× (linear) and + (nonlinear) with897
the same color as for the corresponding DNS (open circles). There is a good agreement with898
the DNS for both the dominant vertical wavenumber : (figure 80, 1) and maximum growth899
rate f (figure 8(2)) for the two sets of DNS for '̃> = 80 and Y'42/3 = 3.97. In particular,900
for constant Y'42/3, the vertical wavenumber increases like '41/3 whereas the maximum901
growth rate is approximately independent of '4 as expected. It is also noteworthy that the902
vertical wavenumber and the maximum growth rate tend to become constant for '̃> = 80903
and large Reynolds number '4 > 4000 as in the DNS. This agreement is unexpected, as the904
assumption of a viscous local radius in the local asymptotic stability equations is a priori no905
longer valid for these parameters, since the three-dimensional instability develops during the906
initial inviscid regime of the base flow (5.1).907
Similarly, the predictions of the local two-dimensional stability equation (5.25) have been908

computed for different Reynolds numbers, keeping '̃> or Y2'4 constant. As seen in figure909
15, the predicted most amplified azimuthal wavenumber and maximum growth rate (× and +910
symbols) agree quite well with those obtained from the linear stability analyses of the DNS911
flows (open circles) for all the parameters investigated in the range 2000 6 '4 6 50000. For912
'̃> = 80 and '4 > 20000, the asymptotic stability analyses of the linear (× symbols) and913
nonlinear solutions (+ symbols) differ since '̃4 becomes large. In this case, the latter agrees914
better with the stability analysis of the DNS flows. In contrast, for Y2'4 = 1.25, there is little915
differences between the predictions based on the linear and nonlinear solutions.916

917

7. Map of the parameter space ('̃>, '4)918
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We now investigate the effect of the Reynolds number on the critical non-traditional Rossby919
number between the three-dimensional and two-dimensional instabilities.920

Figure 27 displays the DNS in the parameter space ('4, '̃>) where the two-dimensional921
instability (light blue circles), the three-dimensional instability (dark blue circles) or no922
instability (yellow circle) have been observed. As before, the Froude number and background923
rotation rate are fixed to �ℎ = 4 and Ω1 = 0.1 (i.e. '> ≈ 20). Figure 27 is therefore similar924
to figure 8 in Toghraei & Billant (2022) except that the Froude number was lower �ℎ = 2 in925
the latter figure. Figure 27 shows that the two-dimensional instability is the most dangerous926
instability in an intermediate range of '̃> for each '4 investigated. The three-dimensional927
instability is dominant only for lower '̃>. The grey dashed line shows the theoretical critical928
non-traditional Rossby number for the existence of the two-dimensional instability derived929
in Toghraei & Billant (2022) (equation (6.14) for �ℎ = 4, 0 = ∞ and 2 = 0.4).930

The transition between the two-dimensional and three-dimensional instabilities occurs931
when '̃> is well above the lines Y2'4 = 1.25 (red dashed line) and Y'42/3 = 3.97 (green932
dashed line). Hence, the instabilities in this region are expected to develop during the saturated933
regime of the critical layer. We can therefore legitimately use the results of the local stability934
analyses performed in §5 to predict a critical non-traditional Rossby number (black dashed935
line) by comparing the maximum growth rate of the three-dimensional instability predicted936
by (5.22) and of the two-dimensional instability for < = 2 given by the fit (5.28) at ) = 8. In937
other words, the black dashed line indicates the parameters ('̃>, '4) for which938

fA2� = fA3� . (7.1)939

Because of the complicated dependencies of (5.22) and (5.28) with '̃> and '4 via g and940
j, it is however not possible to obtain an explicit expression for the critical non-traditional941
Rossby number. As seen in figure 27, it reasonably agrees with the observations from the942
DNS.943

8. Effect of the traditional Rossby number944

The effect of the traditional Rossby number '> has been investigated for the parameters945
'4 = 2000, �ℎ = 4 and for a constant non-traditional Rossby number '̃> = 40 by means946
of DNS. When '> is decreased from '> = 23.1 (figures 2 and 3) to '> = 5 (not shown),947
the three-dimensional instability continues to be observed but becomes weaker. However,948
when '> is further decreased down to '> = 2.5 (figures 28 and 29), the three-dimensional949
instability is no longer observed. The two-dimensional instability then develops at a later950
time (figures 28(2, 5 ) and 29(2, 5 )).951

The local stability analysis of the non-linear solution (5.1,5.3) has been investigated for952
the same parameters. Figure 30 shows the maximum growth rates of the three-dimensional953
instability given by (5.15a) (red circles) and of the two-dimensional instability given by954
(5.25) (red squares) as a function of the traditional Rossby number for '̃> = 40, '4 = 2000955
and �ℎ = 4. When the traditional Rossby number is reduced from '> = 23.1 to '> = 1.5,956
the growth rate of the three-dimensional instability drops and becomes lower than the growth957
rate of the two-dimensional instability that is independent of '>.958

This decay of the growth rate of the three-dimensional instability can be directly understood959
from the formula (5.22) for the growth rate of the most amplified wavenumber at the leading960
order. Indeed, the effect of the traditional Rossby number appears explicitly through q. Hence,961
when '> decreases from 23 to 2.5, q increases from q = 0.067 to q = 1.07 leading to a962
reduction in growth rate Δf = −1.7Δqg/(WA) = −0.35.963
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Figure 27: Map of the dominant instability in the parameter space ('4, '̃>) for �ℎ = 4
and Ω1 = 0.1 ('> ≈ 20). Two-dimensional and three-dimensional instabilities are

represented by light and dark blue circles, respectively. The two-dimensional instability
has not been observed at the yellow circle. The dashed grey line represents the criterion
(6.14) of Toghraei & Billant (2022) for �ℎ = 4, 0 = ∞ and 2 = 0.4. The black dashed line

represents the prediction of the critical non-traditional Rossby number between the
two-dimensional and three-dimensional instabilities obtained by comparing the

asymptotic growth rate of the three-dimensional instability (5.22) and the fit (5.28) for
) = 8 of the growth rate of the two-dimensional instability. The dark blue circles

connected by dashed lines represent the three series of DNS for '̃> = 80 (blue dashed
line), Y2'4 = 1.25 (red dashed line) and Y'42/3 = 3.97 (green dashed line).

9. Conclusion964

We have studied the three-dimensional evolution of a stratified vortex under the complete965
Coriolis force by means of DNS when the Froude number is larger than unity. When the966
initial conditions are purely two-dimensional, Toghraei & Billant (2022) have reported that967
the dynamics remains strictly two-dimensional but with three-velocity components. Due to968
the non-traditional Coriolis force, a vertical velocity field and vertical vorticity anomaly are969
generated at the critical radius A2 where the angular velocity of the vortex is equal to the970
inverse of the Froude number (the Brunt–Väisälä frequency in dimensional form). After an971
inviscid growth, the vertical velocity field and vertical vorticity anomaly saturates towards an972

amplitude proportional to '41/3/'̃> and '4/'̃>2, respectively. They are concentrated around973
the critical radius A2 over the viscous length scale Ã = '41/3(A−A2). A two-dimensional shear974
instability develops below a critical non-traditional Rossby number '̃> due to the inflection975
point created by the vorticity anomaly. This evolution resembles the one reported by Wang976
& Balmforth (2020, 2021) for a forced baroclinic critical layer in a horizontal shear flow.977
To test the robustness of this dynamics with respect to small three-dimensional pertur-978

bations, we have performed DNS of the vortex with its velocity field disturbed initially by979
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Figure 28: Vertical velocity field in a horizontal croos-section at I = ;I/2 (first row) and a
vertical cross-section at H = ;H/2 (second row) at three different times: (0, 3) C = 40,

(1, 4) C = 56, (2, 5 ) C = 85 for '4 = 2000, �ℎ = 4, '> = 2.5 and '̃> = 40.

a small three-dimensional white noise for four different non-traditional Rossby numbers980
ranging from '̃> = 40 to '̃> = 115 while keeping the other parameters fixed to '4 = 2000,981
�ℎ = 4 and '> ≈ 20. In the presence of such perturbations, the initial evolution of the982
vortex remains identical to the one described in Toghraei & Billant (2022). For all the983
investigated parameters, the vortices eventually become unstable. For '̃> . 80, a three-984
dimensional instability with a dominant vertical wavenumber : ≈ 4 develops. It resembles985
the instability reported by Boulanger et al. (2007, 2008) on a stratified tilted vortex. For986
'̃> = 115, the instability is two-dimensional, as observed by Toghraei & Billant (2022).987
Hence, the dominant instability can be two-dimensional or three-dimensional, depending on988
the parameters.989
The effect of the Reynolds number on the three-dimensional instability has been also990

investigated by means of DNS. In order to explore different regions of the parameter space991
('4, '̃>), two cases have been considered: the non-traditional Rossby number '̃> has been992
either kept constant when the Reynolds number is increased, or it has been increased along993
with '4 so as to keep constant Y'42/3. The latter quantity is the typical amplitude of the994
gradient of the vertical velocity when the critical layer is smoothed by viscous effects. When995
'̃> = const, the dominant wavenumber first increases and then saturates as '4 is increased.996
In contrast, if Y'42/3 = const, the dominant wavenumber : continuously increases with '4997
in a consistent manner with the scaling : ∝ '41/3.998
In order to understand the competition between the two instabilities when '̃> is varied for999

'4 = 2000, we have performed a linear stability analysis of the DNS flows by freezing them1000
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Figure 29: Same as figure 3 but for '> = 2.5 and '̃> = 40: (0, 3) C = 40, (1, 4) C = 56,
(2, 5 ) C = 85.

Figure 30: Maximum growth rates of the two-dimensional instability (red dashed line with
square symbols) and of the three-dimensional instability (red solid line with circle

symbols) obtained from local stability analyses of the non-linear solution (5.1,5.3) as a
function of '> for '̃> = 40, '4 = 2000 and �ℎ = 4 at C12 = 50.
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at a given time C1, before the onset of the instabilities. The results are fully consistent with1001
the DNS. They show that the growth rate peak near the vertical wavenumber : = 4 gradually1002
decays as '̃> increases and becomes lower than the growth rate in the two-dimensional limit1003
(: = 0) for '̃> = 115.1004
To gain a deeper understanding of the instabilities, we have next conducted stability1005

analyses of the local linear and non-linear solutions in the vicinity of the critical radius1006
provided by Toghraei & Billant (2022). We have first shown that these local solutions are1007
in good agreement with the flows in the DNS. However, two scenarii for the instabilities1008
development have been encountered in the DNS: they can arise during the initial unsteady1009
inviscid regime of the critical layer for sufficiently large Reynolds numbers when '̃> is kept1010
constant, whereas they develop during the viscous regime or during the transition between the1011
inviscid and viscous regimes for the other parameters, i.e. for Y'42/3 = 3.97, for Y2'4 = 1.25,1012
or below a critical Reynolds number for '̃> = 80. In the present asymptotic analyses, we1013
have only considered the second scenario for which the use of a local viscous scale in the1014
critical layer seems legitimate. For the other scenario, it would be necessary to follow the1015
inviscid approach of Wang & Balmforth (2021).1016
Another difference with the asymptotic analyses of Wang & Balmforth (2021) is that the1017

local asymptotic stability analyses have been conducted by freezing the theoretical flows at1018
the times where the instabilities are observed to grow linearly in the DNS. When the two-1019
dimensional instability occurs during the saturated regime of the critical layer, this implies1020
in particular that the gradient of the vorticity anomaly is large since the vorticity anomaly1021
is of order unity for '̃4 = $ (1) at that times. In contrast, the asymptotic analysis of Wang1022
& Balmforth (2021) describes the simultaneous development of the base flow and the two-1023
dimensional shear instability by assuming that the instability is triggered when the gradient of1024
the vorticity anomaly is of order unity. The method and scalings used by Wang & Balmforth1025
(2021) are therefore distinct from those considered herein but they apply to different regions1026
of the parameter space ('4, '̃>).1027
The local three-dimensional stability analysis assumes also that the vertical variations1028

are of the same order as the radial variations since the dominant vertical wavenumber has1029
been observed to scale as '41/3 in the DNS when Y'42/3 is fixed. In addition, it neglects1030
any azimuthal variations following Boulanger et al. (2008). At leading order, the problem1031
reduces to aRayleigh equation governing the two-dimensional stability of the vertical velocity1032
field for a given angle \ as if it were non-stratified and non-rotating. The growth rate then1033
scales as 1/g = '42/3/'̃>. Next order effects have been taken into account by means of an1034
asymptotic analysis. The resulting growth rate formula (5.21) shows that the buoyancy force1035
and the traditional Coriolis force lead to a reduction in growth rate proportional to g/�2

ℎ
1036

and gq, respectively. Thereby, the maximum growth rate drops significantly compared to1037
the Rayleigh equation as the non-traditional Rossby number increases for a given Reynolds1038
number. Results have also shown that the vertical velocity profile at \ = 0 is more unstable1039
than at \ = c/2 in agreement with Boulanger et al. (2008). Such local three-dimensional1040
stability analysis is not valid at small vertical wavenumbers, especially at : = 0. Therefore,1041
we have also conducted a local two-dimensional stability analysis in the horizontal plane that1042
takes into account radial and azimuthal dependencies. The azimuthal wavenumber has been1043
assumed to scale like '41/3 as for the vertical wavenumber in the three-dimensional stability1044
analyses. This scaling law is compatible with the results of the linear stability analyses of the1045
DNS flows that show an increase of < with '4 keeping Y2'4 fixed, i.e. when the instability1046
arise during the saturated regime of the critical layer. The perturbations are governed by1047
Rayleigh’s stability equation with the angular velocity near the critical point as base shear1048
flow. The dependence of the growth rate on '4 and '̃> has been found to be of the form1049
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fA = F (j)/j (see 5.29) where j ∝ '4/'̃>2 (see 5.27) and F is a function that can be fitted1050
by a 4the-degree polynomial (see 5.28). For the values '4 = 2000 and 40 6 '̃> 6 115, the1051

dependence of the growth rate of the two-dimensional instability on '4/'̃>2 is therefore not1052
a simple scaling relationship.1053
In the second step, we have compared the results of these local stability analyses to1054

the stability analysis of the DNS flows for various '̃> for '4 = 2000. The local three-1055
dimensional stability analysis predicts well the growth rate decay observed in the stability1056
analysis of the DNS flows when '̃> increases keeping '4 fixed. The local two-dimensional1057
Rayleigh equation also correctly predicts the growth rate at : = 0 of the DNS flows. Its decay1058
as '̃> increases for a constant '4 is much slower than for the three-dimensional instability.1059
Thereby, the stability analyses of the local theoretical solutions in the critical layer predict1060
that the two-dimensional instability should dominate the three-dimensional instability for1061
'̃> & 120 in fair agreement with the DNS.1062
The effect of theReynolds number on the characteristics of the three-dimensional instability1063

extracted from theDNS is alsowell predicted by the local three-dimensional stability analyses1064
for all the parameters investigated, even for '̃> = 80 and large Reynolds numbers, i.e. when1065
the instability arises as soon as the first inviscid regime of the critical layer. However, the1066
asymptotic approach followed by Wang & Balmforth (2021) would be needed to properly1067
describe the latter cases. The results of the two-dimensional stability analyses of the DNS1068
flows for variable Reynolds number have been also recovered by the local two-dimensional1069
stability analyses for Reynolds numbers up to '4 = 50000. The predictions of the latter1070
analyses turn out to be much more accurate than those of the stability analyses of broken1071
line profiles performed by Toghraei & Billant (2022). In particular, the results show that the1072
dominant azimuthal wavenumber scales as '41/3 when Y2'4 is fixed. In contrast, for constant1073
'̃> = 80, the azimuthal wavenumber tends to saturate to a constant value for '4 > 200001074
similarly as the vertical wavenumber in the three-dimensional stability analyses.1075
While there is a good agreement between the two-dimensional stability analyses of theDNS1076

flows and theoretical flows, these linear stability results disagree with the two-dimensional1077
DNS since the azimuthal wavenumber is always observed to be < = 2 for all the parameters1078
investigated. As discussed by Toghraei & Billant (2022), this difference could be due to1079
the fact that the non-traditional Coriolis force generates not only an axisymmetric vorticity1080
anomaly but also a subdominant vorticity field with an azimuthal wavenumber < = 2 that1081
could favor perturbations with this wavenumber. In addition, the azimuthal wavenumber1082
< = 2 could be selected at early times when the critical layer is smoother and is still evolving1083
with time as shown by Wang & Balmforth (2021).1084
We have determined the dominant instability in the parameter space ('4, '̃>) for larger1085

values of '4 up to '4 = 10000 by means of DNS. The two-dimensional instability is1086
dominant in an intermediate range of '̃> for each Reynolds number investigated. The three-1087
dimensional instability is dominant only for lower '̃>. An implicit threshold for the cross-1088
over between the two-dimensional and three-dimensional instabilities derived from the local1089
stability analyses reasonably agrees with these observations. We have also investigated the1090
effect of the traditional Rossby number '> by means of DNS. As '> decreases while keeping1091
the other parameters fixed, the strength of the three-dimensional instabilityweakens so that the1092
two-dimensional instability becomes dominant for the lowest value of '> investigated. The1093
local stability analyses are in full agreement with this behavior. As the traditional Rossby1094
number '> decreases, the second order terms increase and damp the three-dimensional1095
instability, whereas the two-dimensional instability is independent of '>.1096
In summary, when small three-dimensional perturbations are introduced initially, the1097

evolution of a vortex under the complete Coriolis force becomes three-dimensional for1098
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certain parameters while for others, it remains purely two-dimensional as in Toghraei &1099
Billant (2022). The three-dimensional and two-dimensional instabilities are due to different1100
mechanisms and components of the flow generated in the critical layer. The two-dimensional1101
instability comes from the shear of the angular velocity profile, whereas the three-dimensional1102
instability comes from the shear of the vertical velocity field. For a given Froude and1103

Rossby numbers, �ℎ, '>, their growth rate depends on '4/'̃>
2 and '42/3/'̃>, respectively,1104

when they develop during the saturated regime of the critical layer. In addition, the three-1105
dimensional shear instability is sensitive to the damping effects due to the traditional Coriolis1106
force and the buoyancy force opposing three-dimensional variations.1107
These instabilities are expected to alter significantly vortices only when the Froude number1108

is in the range 1 < �ℎ . $ (10), i.e. when the critical radius exists and is not too far from1109
the vortex core. Interestingly, common atmospheric vortices are reported to be either very1110
large, such as tropical cyclones, or much smaller, such as tornadoes (Schecter &Montgomery1111
2006). The corresponding Froude number is much lower than unity or much greater than1112
unity, respectively. It could be hypothesized that atmospheric vortices of intermediate size,1113
i.e. with a Froude number of order $ (1 − 10), can not exist or persist because they are1114
rapidly destroyed by the instabilities triggered by the non-traditional Coriolis force. Testing1115
this hypothesis in configurations close to real atmospheric conditions would be interesting.1116
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Appendix A. Unscaled equations for the local base flow in the critical layer1123

Here, the governing equations (5.3) for the local base flow in the critical layer are rewritten1124

in terms of the unscaled variables *̂I1 = Y1/3'̃4
1/3
*̃I1, Ω̂1 = Y

2/3'̃4
2/3
Ω1, C = '41/3) and1125

A = A2 + Ã'4−1/3,1126

m*̂I1
mC
+ iΩ

′
2 (A − A2)*̂I1 + iΩ̂1*̂I1 =

i
4
YA2Ω2 +

1
2'4

(
1 + 1

(2

)
m2*̃I1

mA2 , (A 1a)1127

1128

mΩ̂1
mC

= −Y i
2A2

(
*̂∗I1 − *̂I1

)
+ 1
'4

m2Ω̂1

mA2 . (A 1b)1129

1130
Appendix B. Definition of the operators of the local three-dimensional stability1131

analysis1132

The different operators defined in (5.16) are

I
′
=


1 0 0
0 1 0
0 0 1

 , L0 =


−i:̂*̂I 0 −m/mÂ
−m*̂I/mÂ −i:̂*̂I −i:̂
m/mÂ i:̂ 0

 , (� 1a, b)

L1 =


0 0 0

−m�̂/mÂ
f̂0+i:̂*̂I

0 0
0 0 0

 , L21 =


−1

f̂0+i:̂*̂I
0 0

0 0 0
0 0 0

 , (� 2a, b)
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L22 =


0 0 0

f̂1m�̂/mÂ
( f̂0+i:̂*̂I )2

−1
f̂0+i:̂*̂I

0
0 0 0

 , L23 =


−Z1

f̂0+i:̂*̂I
0 0

0 0 0
0 0 0

 . (� 3a, b)

Appendix C. Effect of j1133

The effect of j in the non-dimensional stability equation (5.26) can be qualitatively1134
understood by modeling Ω̂1 by a triangular piecewise profile1135

Ω̂1 =


0 for Â < −0,
−Ω(1 + Â/0) for −0 < Â < 0,
−Ω(1 − Â/0) for 0 < Â < 0,
0 for 0 < Â,

(C 1)1136

where 0 and Ω are the size and amplitude of the angular velocity anomaly. The total flow1137
therefore corresponds to the sum of a triangular jet Ω̂1 and the linear shear flow −jÂ. By1138
solving (5.26) in each domain and applying continuity and jump conditions at the three1139
interfaces (Drazin 2002), the following dispersion relation is obtained1140

?3 − ?2(3− 2<̂0) + ?(4γ2 − γ4 − 4V2<̂202) − γ4(2<̂0 + 1) − 4V2<̂202(2<̂0 − 3) = 0, (C 2)1141

where ? = 2if̂/Ω + 1, V = j0/Ω and γ = exp(−<̂0). When V = 0, the dispersion relation1142
of a triangular jet is recovered (Drazin 2002). Figure 31(0) shows that the maximum growth1143
rate increases and the most amplified wavenumber decreases as V increases as observed in1144
figure 21(0) for the continuous profiles.1145
This can be understood by considering the vorticity waves that propagate at the three1146

different interfaces following Carpenter et al. (2011). Their frequencies can be obtained by1147
considering the dispersion relation in the limit γ = 0 amounts to neglecting the interactions1148
between the different waves. The dispersion relation (C 2) then factorizes into1149

(? − 3 + 2<̂0) (?2 − 4V2<̂202) = 0, (C 3)1150

showing that there are three neutral solutions: f̂0 = −iΩ(1− <̂0) and f̂±0 = iΩ(1/2± V<̂0)1151
corresponding to the vorticity waves at Â = 0 and Â = ±0, respectively.1152
As reviewed by Carpenter et al. (2011), the instability for a triangular jet (i.e. V = 0) can1153

be understood as a resonant interaction between the vorticity waves at Â = 0 and those at1154
Â = ±0 around the wavenumber <̂80 = 3/2 for which their frequencies are equal: f̂±0 = f̂0.1155
When V is non-zero and positive, only the frequency of the wave at Â = −0 (i.e. on the side1156
of the jet where the shear is higher) can cross the frequency of the wave at Â = 0 for any1157
V. This occurs for the wavenumber <̂80 = 3/(2 + 2V). Since the instability is expected to1158
be maximum around this wavenumber, this explains why the most amplified wavenumber1159
decreases when V (i.e. j) increases. Furthermore, the interaction between the vorticity waves1160
will be enhanced when the wavenumber decreases since it is proportional to γ. Hence, an1161
increase of the growth rate is also expected as V increases.1162
The same phenomenon occurs for the simpler configuration of a shear layer (figure 31(1)),1163

i.e. when the base flow (C 1) for Â > 0 is replaced by a uniform flow Ω̂1 = −Ω. In this case,1164
the dispersion relation is1165

f̂

Ω
= i
<̂0

2
(1 − V) ± i

2

√
(<̂0(1 + V) − 1)2 − γ2, (C 4)1166

and the frequency of the wave at Â = 0 now becomes f̂0 = −iΩ(1/2 − <̂0). The two wave1167
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Figure 31: Growth rate f̂/Ω given by (0), (C 2) and (1), (C 4) as a function of <̂0 for
various values of V. The open circles indicate the growth rate of the wavenumber <̂80 for

each case.

frequencies f̂0 and f̂−0 are then equal for the wavenumber <̂80 = 1/(1 + V). We directly1168
see in (C 4) that the growth rate for such wavenumber is then f̂A/Ω = exp(−<̂80)/2. Hence,1169
f̂A/Ω increases from exp(−1)/2 to 1/2 as V increases from zero to infinity.1170
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