Leveraging the properties of the Christoffel -
function for anomaly detection in data streams

Louise Travée-Massuyes
Kévin Ducharlet, Jean-Bernard Lasserre

A

2¢me Congrés de la SAGIP
29-31 mai 2024
Villeurbanne




Anomaly detection
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Fault detection
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DIAGNOSIS

Anomalies

» Root cause




Anomaly detection in data streams
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Data stream
requirements

* detection on the fly

No knowledge
Just data



Peculiarities of data streams and requirements
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» Transiency: the significance of each < fast update to match incoming
data point diminishes over time measurement frequency

» Time dependency: a data point is <» Dynamic learning to deal with non
assessed in a changing temporal context stationarity

» Infinity: samples cannot be stored in < frugality allowing to embed outlier
memory entirely = detection models in low memory and

» Arrival rate: may vary over time CPU capacity devices

» Concept drift: data distributions are * Unsupervised dynamic learning to
non-stationary handle unlabelled data

» Non labelled data: continuous +
evolution renders labeling impractical
and it can swiftly become outdated Little or no fine-tuning to meet

automation and generalization needs



State of the Art
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Long time research initiated by statisticians:

F. Y. Edgeworth (1887) XLI. On discordant observations. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 23(143):364-375. https://doi.org/
10.1080/14786448708628471

» Supervised methods that rely on the availability of datasets labeled
with the outlierness status of samples

» Semi-supervised methods that rely on datasets in which only normal
samples are labeled

» Unsupervised methods that can accept datasets without any
information on outlierness



State of the Art
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ot account for concept drift



State of the Art
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» Ada lon_of time series method

* Prediction models, e.q. ponential smoothing or LSTM
« Trends and ities must follow r pattern that is not guaranteed with data stream
ot account for concept drift

» Dynamic clustering
« Qutliers do not belong to clusters or are in low density clusters

» Methods relying on KNN (k Nearest Neighbours)

« Based on number of neighbours, e.g., MCOD
« Based on local density (LOF and variants)

» Statistical methods

« Parametric methods, e.g., based on Gaussian Mixed Models (Smartsifter)
* Non parametric methods, e.g., on line Multiple Kernel Density Estimation (MKDE)

Many methods deal with fransiency, concept drift, infinity and time dependency,
mostly through the use of windows
But no rapid model update and no memory of previously acquired knowledge,




Windowing techniques

ISR =
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e Landmark windows
e Sliding windows
e Damped windows

e Adaptive windows

Strong window size dependency

W 7" : satisfying results

o

W N : fast model update
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A hybrid Al anomaly detection method for data streams that:

» |everages the Christoffel function

» related to the Christoffel-Darboux kernel borrowed from the theory of approximation and
orthogonal polynomials
» advocated for data mining by J.-B. Lasserre and E. Pauwels (2019)

» benefits from a clean algebraic framework
» fulfils all data stream requirements The

Christoffel-Darboux :
» needs little tuning or no tuning at all Kernel for Data Analysis

Jean Bernard Lasserre, Edouard Pauwels
and Mihai Putinar

(Lasserre, Pauwels & Putinar 2022)
https://doi.org/10.1017/ 9781108937078
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A collaboration between two ANITI chairs:

» Polynomial Optimization for Machine Learning and Data Analysis
(Jean-Bernard Lasserre)

» Synergistic Transformations in Model Based and Data Based Diagnosis
(Louise Trave-Massuyes)

PhD thesis of Kévin Ducharlet
Détection d'anomalies dans les flux de données pour une application

dans les réseaux de capteurs (in french), PhD thesis, Computer science &

o Control, INSA, defended on Septembre 28, 2023.
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Capturing the shape of a cloud of points
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Consider a cloud of data points
(x(7))ien CRP

The red curve is the level set:
Ly={x:Qu(x) <}, veR,

of a certain polynomial Q4 €R[x1, x2] of
degree 2d.

Notice that £, captures the shape of the
cloud.
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Capturing the shape of a cloud of points (2)

Level sets obtained for a multi-density two disks dataset

CF level sets (d=6)
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v' The red level set nicely captures the two @
clusters
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Capturing the shape of a cloud of points (2)
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Level sets obtained for a multi-density two disks dataset with CF and MKDE gaussian kernel

CF level sets (d=6) MKDE level sets
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\::,"/ Method AUROC AP ~

CF 0.9644 0.7250
KDE 0.9372 0.6042
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The Christoffel function
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» Let 1. be a Borel measure on a compact set (2 C RP with nonempty interior,
» Form the vector vy4(x) from a basis of p-variate polynomials of degree at most d:

p+d>

va(x) = (P1(x),...,Psa)(x))" of size s(d) = ( P

= QY(x) = vg(x)" Mg(p)tvg(x), VxeRP

Moment matrix of .

The Christoffel function A}, : R — R, is defined by:
Ay(®)™ = Qy(x)

A!; encodes properties of the underlying measure .
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Empirical measure

AW CNRS/ J/

In our case
1
= Z x()

is the EMPIRICAL measure associated with the cloud of data points (x(/));<, sampled
from an unknown measure . on (.

Empirical moment matrix of 1,:

Ma(1) = fge Va(X)Va(x)" dpu(x) —> Ma(un) = § 2yex Va(x)va(x)'

If nis large enough compared to d, it has been proved that, by the strong law of large
numbers, A" and A}, share the same properties.

A}, encodes properties of the underlying measure .

17



Moments serve to quantify three essential parameters of distributions

» The location of a distribution is given by the
position of its center of mass.

» The scale denotes the extent to which a
distribution is spread out
» the shape of a distribution encompasses its

overall geometry, including characteristics
such as bimodality, asymmetry, and heavy-

tailedness.

: location, shape and scale.

Aﬁl‘-rbol\);zos

» The first moment delineates a distribution’s
location

» The second moment characterizes its scale

» Higher moments collectively elucidate its
shape
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Capturing the support

Property: The samples belonging to the support 2 of the empirical measure .., are
confined by a specific level set Q2,, , where v4, = Cd3"/? and C a problem-related
constant (cf. (Lasserre et al. 2022), Theorem 7.3.3).
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Specific level set

CF level sets (d=6)

1.0 1

0.5

0.0 1

—-1.0 A

The red level set corresponds to the set dep with the

threshold y,,=d>P/? as dictated by the CF theory (C=1)
20



In summary

In our case

1 n
Mn = n ;5X(i)
=

is the EMPIRICAL measure associated with the cloud of data points (x(/));<, sampled

from an unknown measure 1 on ().

IZ” .. and quite remarkably
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The level sets of Al"(x)~! match
the density variations of the cloud of

points (x(/))i<n

— AL"(x)~! is a good scoring
function for anomaly detection

\

7

In particular, the level set
{x€RP: A" (x)™" < 74, = Ca®P/?}

identifies the support €2 of 1, even for
moderate values of d.




Dealing with data streams: DyCF method

1) Low memory: My(u,)~! can be seen as en encoding of the whole data
set

2) Low computation: incremental update of AL"(x)~* with rank-one update
of the inverse My(p,) ™

When a point ¢ is added to the cloud of n
points, i.e.,

1
—> n O-
Hn n-l (N pn +6¢)

— a new cloud with n+1 points

IF" The Sherman-Morrisson-Woodbury
formula allows for a simple RANK-ONE
UPDATE of the inverse My (1) *
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Incremental inversion of a matrix A with the Sherman-Morrison-Woodbury formula:
AW AT

1+viA-1y
The moment matrix My (u,.1) can be rewritten with the incremental formula:

A+uw’)y1=A""

My (N-n— 1 ) =

1
n+1 [gMd(,U'nl + l’d (xn+1lzd (xn+1 ) Z]

v v v

A u vl

(NMy(120)) ™ va(Xnp1)Va(XKnp1) T (MM g(12n)) ™"

—  ((n+ l)Md(,un—l))_l = (nMd(ﬂ'n))_l - 1+ vg(Xne1) T(MMy(12n)) = tvg(Xne1)
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Christoffel function score
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DyCF requires only one parameter to be fixed: d

The theory dictates to use the level set defined by 2., _, where v, , = Cd;/2,

Yd,p?

. . . A (x) 71
Normalized scoring function : Sy ,(x) = dv(:i :

[ If C=1, a point x is defined as an outlier if Sy p(x) > 1. ]

24



Leveraging the growth properties of CF

As d grows, AL(x)~! has:
POLYNOMIAL growth  INSIDE
EXPONENTIAL growth OUTSIDE

[

O
G exp(ad)

¢ [exp(aVd)
Cf. (Lasserre et al. 2022), Lemmas 4.3.1 and 4.3.2
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CF growth property
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Normalized score:
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DyCG: Dynamic CF Growth method

DyCG : two DyCF models of degrees d,,i, and dp,ax

DyCG Sconng funCtlon Séfmax Amin p(x) = Sdmax’p(x)—sdmimp(x)

dmax - dmin

Outlierness threshold is 0:

Inliers — Sy, p(x) < Sq,,, p(X) — S

max »

dmimp(x) < O

OUtlierS —> Sdmax,p(X) 2 Sdmin’p(X) —> S&min,dmax-.p(x) Z 0

dmin @nd dnax are fixed at 2 and 8 once and for all: DyCG is tuning free.
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Evaluation

* Labelled synthetic data streams
 Unlabelled real-world data streams
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Synthetic data streams

e Multimode distributions
e Transitions according to assigned probabilities

200k point 200k point
o 10 o
15 Type | outliers: ® @
Uniformly distributed 8 .
with specified P °
occurence probability a-.e@'».{&».s
6 0.8
10 Type Il outliers: °
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Industrial luggage conveyor data stream

Carl Berger-Levrault project

ISR =

Multimode system, 5 conveyors, 2 variables, 7 successive days, measurements every second (86400 samples per day)

Speed

1.0 1

0.8 1

1.6 A

0.4 4

0.2 4

0.0

Normal running mode

\HeaVV luggage
x Stopping transitions =
x
x
J;
X Stop mode Startup transitions
® > >
0.60 0.125 0.'50 0.'75 1.('JO 1.'25 l.lSO 1.115
Intensity
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» Labelled synthetic data streams

* AUROC (Area Under the ROC Sensitivity-Specificity curve)
o The higher, the better (a value of 0.5 is not better than a random classifier)

* AUPRC (Area Under the Precision-Recall Curve) estimated as AP (Average Precision)
o Higher value indicates better precision-recall performance
o Relevant for imbalanced data sets

» Unlabelled real-world data streams
* EM (Excess-Mass curve): the higher, the better

* MV (Mass-Volume curve): the lower, the better

« EM and MV evaluate the extent to which a scoring function aligns with the statistical distribution of samples

» Computation time for one iteration
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Sliding window Multivariable
Kernel Density Estimation

Based on discounting
learning of a GMM
model

Based on estimating the number
of neighbors laying at a given
distance

(parameter « radius »)

Method that contrasts sample
local density with that of its
neighbors

No deep learning method because no frugality, no fast update, no low tuning.

Method Parameters Values
Threshold Meaningless
Window size 1000
KDE Kernel Gaussian
Bandwidth Scott’s rule
Threshold Meaningless
. Nb components 12
SmartSifter Discounting parameter le-3
Stability parameter 1.5
Nb neighbors Meaningless
Search radius 0.1
DBOKDE Window size 1000
Kernel Epanechnikov
Bandwidth Scott’s rule
Threshold Meaningless
Nb neighbors 10
Window size 1000
ILOF Min children 3
Max children 12
Reinsertion strategy close
Reinsertion tolerance 4
Degree 6
DyCF C (threshold-like) Meaningless
DyCG Degrees (2, 6)
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Evaluation process

Devices Data Streams Eull Results

g Conveyor 1 Subds 1 || Subds?2 Sub ds 7 Method 1 Method 2 --- Method j
©
_‘é’ Conveyor 2 ||| Subds 1 |[ subds 2 Sub ds 7 Conveyor 1 Mean,Std || Mean,Std | - - - | Mean,Std
5 R
g
5 Conveyor 5 Mean,Std || Mean,Std | - - - | Mean,Std
O | Conveyor 5 Subds 1 || Subds?2 Sub ds 7

Evaluate - Global conveyors |Mean,Std || Mean,Std | - - - | Mean,Std

performances of all Statistics
H methods on all sub of metrics

Q data streams
© H .
5 | synthetic 1 subds 1 M subds 2 1---[Sub ds 10 Synthetic 1 Mean,Std | [ Mean,Std Mean,Std
3 Synthetic 2 Mean,Std || Mean,Std - | Mean,Std
m .
T | Synthetic2 ||| Subds1 || Subds 2 [---|Sub ds 10 Synthetic 3 Mean,Std || Mean,Std | - - - | Mean,Std
5
_g Synthetic 3 subds 1 M subds 2 1---[Sub ds 10 Global synthetics | Mean,Std | Mean,Std | - - - | Mean,Std
c
>
(%]
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Results for the synthetic data streams

AUROC 7 AP 7 Duration

Method 0.7 0.010

KDE | | | 2 dimensions

SmartSifter 08

DBOKDE | ‘ ) 008 .

ILOF 06

mmm DyCF 3 S0.4 ) g 006
== DyCG g r>°0.3 >
AUROC / AP 0.0 0.0 \ J 0.000 : |—-——' Duration
Lo . 2 dimensions
Performance v B | DyCF and
of DyCF at ) | DyCG
least on outperform
par (close to other methods
the best).
pnoc i

DyCG
exhibits . | | | 3 dimensions
slightly lower | I In 3 dimensions,
performance. SmartSifter is

slightly better
(dependence in p)

H 5




Results for the 5 industrial conveyors

Method
KDE
SmartSifter

EM 7 MV Duration i

mmm DyCF

000175 I 008 | == DyCG 16
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000125 12
| X 10
3 0.00100 3 003 2
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0.00075 |
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4
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0 0.05 2
0.04 20
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3 g o003 S5
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\_'_'
™ : DyCF provides by far the
‘ ‘ best results in all categories

Duration ™

{

{

=
= 00015

00000

' ! DyCG has lower performance but does not need
e | — tuning at.all (and it may be due to the EM and
MV metrics). No metric rewards no tuning effort.
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Industrial luggage conveyor data stream
Carl Berger-Levrault project ANITIESH

Multimode system, 2 variables, 166926 observations (15000 for initial training), 17 introduced outliers
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Conclusions
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» DyCF and DyCG are simple and easy-to-use methods with very little tuning
or no tuning at all

» They achieve excellent results compared to other more tricky anomaly
detection methods

» The Christoffel function provides interesting theoretical foundations

» It nicely deals with data streams thanks to the moment matrix encoding
and its incremental update

» Future work:
* Adding forgetting ability
 Scaling up to high dimensions
* Extending to abnormal trajectory detection

Ducharlet K, Travé-Massuyes L, Lasserre JB, Le Lann MV, Miloudi Y, Leveraging the Christoffel Function for Outlier Detection in
Data Streams, submitted to the Int. J. of Data Science and Analytics.

Lasserre JB, Pauwels E, Putinar M (2022) The Christoffel-Darboux Kernel for Data Analysis. Cambridge Monographs on Applied
and Computational Mathematics, Cambridge, University Press, https://doi.org/10.1017/9781108937078 38
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