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Abstract13

Hybrid systems, which combine both continuous and discrete behavior, are used in many fields,14

including robotics, biological systems, and control systems. However, due to their complexity, finding15

an accurate model is a challenge. This paper discusses the usage of symbolic regression to learn16

hybrid systems from data and specifically analyses learning parameters for a recent algorithm.17

Symbolic regression is a powerful tool that can automatically discover accurate and interpretable18

mathematical models in the form of symbolic expressions.19

Models generated by symbolic regression are a valuable tool for system identification and20

diagnosis, e.g., to predict future system behavior or detect anomalies. A major opportunity of our21

approach is the ability to detect transitions between different continuous behaviors of a system22

directly based on the dynamics. From a diagnosis perspective, this can advantageously be used to23

detect the system entering fault modes and identify their models. This paper presents a parameter24

study for a symbolic regression based identification algorithm.25
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1 Introduction39

Hybrid systems are abstract models of systems that exhibit both continuous and discrete40

behavior. For this, hybrid systems have a finite number of modes, each representing a specific41

dynamic behavior of the system. They are used to model a wide range of systems, including42
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Figure 1 Steps of Hybrid System Identification [22]

cyber-physical systems or manufacturing systems, and systems with normal and faulty modes43

[2].Due to their inherent combination of continuous and discrete behavior, the identification44

of hybrid systems is a challenging task. Nevertheless, accurate abstract models are essential45

for verification, diagnosis, and debugging of these systems.46

We recently proposed a novel approach for automatic identification of hybrid system47

modes from data using Symbolic Regression (SR) [23]. Like most methods for hybrid system48

identification, we use a general procedure consisting of four steps as shown in Fig. 1. We use49

SR for the steps (1) to (3) of the identification process. In step (1), we detect transitions50

between different modes of a hybrid system. Step (2) and (3) are combined in one algorithm.51

SR is able to identify complex behavior from data [26, 15].Here, the particular opportunity52

of SR is the ability to detect transitions between different continuous behavior of a system53

directly based on the dynamics. This goes beyond existing identification strategies, which54

use similarities of observations to separate and group different modes of a hybrid system55

in observed data [3, 29, 19]. The goal of this paper is to gain a deeper insight into the56

capabilities and challenges of using SR for hybrid system identification, leveraging new57

possibilities for diagnosis on symbolic models in the future.58

Like other learning algorithms for system identification, hybrid system identification with59

SR requires selecting parameters for learning. In this paper, we analyze the impact of the60

parameters on the identification of hybrid systems and discuss the trade-offs between runtime,61

accuracy and descriptiveness of the identified models. Finally, we evaluate the approach on a62

set of selected examples.63

In Plambeck et al. [23], we introduced the basic idea of the identification algorithm.64

In addition to that, we now have the following contributions 1) a discussion of SR in the65

context of hybrid system identification, 2) the identification of relevant parameters for the66

identification of hybrid systems using SR, and 3) a structured analysis of learning parameters67

considering multiple example systems including a physical simulation of a two-state power68

converter, a two tank system, and a static electrical circuit with multiple power sources.69

The paper is structured as follows: in Section 2, we review related work on system70

identification, specifically for hybrid systems and SR. In Section 3, we introduce the necessary71

formal definitions. In Section 4, we revisit the algorithm presented in [23] and discuss the72

impact of parameters on the identification of hybrid systems. In Section 5, we perform an73

intensive parameter study. The algorithm and the parameter study are open source and74

available at [21]. Finally, in Section 6, we conclude the paper.75

2 Related Work76

Symbolic Regression (SR) is a method for regression and system identification that aims to77

find a symbolic expression that matches a given data set. Contrary to traditional regression78

methods, SR is not restricted to a specific set of functions or structure of an expression79

like, e.g., polynomial regression, but uses a set of basic operators to construct complex80

expressions freely. The development of SR has been supported by the advancement of genetic81

programming, which is commonly used to implement SR algorithms [15]. In addition to82

genetic programming, there exist further approaches for SR, e.g., using deep reinforcement83
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learning [20] or lattices [6].84

Genetic programming methods like SR have been applied to a wide range of problems,85

including the identification of physical concepts from data [26], hybrid dynamical systems86

[18] mining the expression of diagnosis indicators [11].Thus, SR is one of several methods for87

system identification together with a broad range of other identification methods such as88

linear or nonlinear regression, neural networks, or kernel-based methods. Schoukens et al. [27]89

provides a comprehensive overview on these methods. In Koza [14], general hypotheses90

about the capabilities and convergence of SR are already discussed. Other and recent works91

investigate the influence of specific parameters such as the population size and number of92

generations on the performance of SR [16].93

Hybrid systems, exemplified by hybrid automata, are the focus of this paper. Existing94

approaches for identification of hybrid systems from data, present several different strategies.95

Among them are clustering methods [3], machine learning with neural networks [19], and96

linear inequalities [29]. The general procedure, separating the process of learning in multiple97

steps as shown in Fig. 1, is similar in all of these approaches. Nevertheless, the detection of98

transitions in these methods is based on the similarity of signals, e.g., based on windows of99

the observations [29] or on distances between signals [3] or in the frequency domain [19]. Here,100

our approach using SR offers the opportunity to detect the decision points for transitions101

directly based on (an estimate of) the dynamics of the observed data.102

3 Preliminaries103

In this section, we introduce the basics of Symbolic Regression (SR) and formally define104

hybrid systems and system observations. We follow the presentation given in [23].105

3.1 Symbolic Regression106

SR is a machine learning technique that aims to find a mathematical expression describing the107

relationship between multiple input variables and a single output variable, i.e., SR searches a108

function r with o = r(i), where i are the input variables and o is the output variable. The109

function r is represented as a mathematical expression in terms of elementary functions and110

operators [14]. The search for the best symbolic expression is guided by a fitness metric that111

evaluates the quality of candidate expressions on a data set. Learning algorithms typically112

represent the expression as a tree structure, where nodes represent basic operators and leaves113

represent variables or constants.114

▶ Definition 1 (SR Search & Solution Space). The search space E is the set of possible tree115

structures defined by a set of operators as well as a set of variables and constants. The116

solution space S ⊆ E is the set of expressions, i.e., tree structures, whose fitness is above a117

predefined threshold.118

The search space is often constrained by limiting the maximum depth of the tree, the number119

of nodes, or the set of operators [9, 20].120

In the scope of this work, we use the framework PySR for SR, which uses Genetic121

Programming (GP) [14, 9]. Using GP, the search for the best symbolic expression is122

performed by evolving a population of candidate expressions over so-called iterations as123

shown in Fig. 2. The population is initialized with random expressions. In each iteration,124

the population is evaluated using a fitness function. New solutions are generated by applying125

genetic operators, such as mutation and crossover, to the best candidates. The process is126

repeated until a stopping criterion is reached, e.g., predefined number of iterations.127

DX 2024
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Figure 2 Genetic Programming Algorithm for Symbolic Regression

Nevertheless, for GP-based algorithms, there is no guarantee that the learned expression is128

the exact one, because the underlying search process is randomized, there exist mathematically129

or logically equivalent solutions, and learning data might be noisy. Thus, SR is most useful130

in domains where close approximations to an explicit solution exist and are useful [24].131

SR has shown to rapidly approach the close neighborhood of the optimal solution,132

struggling only in converging to a precise result [14]. Thus, we can expect that the learned133

expressions represent the most dominant dynamics of the system and are compact. Several134

studies show that the performance of SR improves by using a suitable parametrization.135

The population size and the number of iterations are usually considered the most crucial136

parameters – usually a larger population and number of iterations leads to higher accuracy137

[10, 17, 16].138

Another known problem in the evolution of learned expressions in SR is bloat. Bloat139

describes the growth of the learned expression without a significant improvement in the140

fitness. Bloat is often addressed by using a parsimony pressure [24]. In this case, SR141

solves a multi-objective optimization problem, where the fitness of the expression is not only142

determined by the quality of the approximation but also by the size of the expression. The143

parsimony coefficient regulates the trade-off between the two objectives.144

3.2 Hybrid Systems145

The literature identifies types of dynamical systems, which are hybrid, i.e., involve discrete and146

continuous dynamics. These types of systems illustrate different levels of model expressiveness147

needed to represent the dynamics.148

Jump linear systems are described by stochastic processes [8]. They are often represented149

by a Markov chain where modes are associated with different linear systems.150

Piecewise affine systems for which flow functions are affine functions [7] and the state151

space is partitioned into polyhedral regions.152

Switched systems for which the flow functions are general continuous functions.153

Mixed logical dynamical systems include logical variables to model discrete events or154

conditions in the system description [28].155

Projected dynamical systems extend the expressiveness of flow functions to non-linear156

expressions [13].157

Here, building upon Branicky [5], we use a generalizing definition of hybrid systems which158

incorporates all the known system types listed above.159

▶ Definition 2 (Hybrid System [5]). A Hybrid System is defined by a 6-tuple (X, Q, F , T , Σ, R)160

where161

X = {x1, x2, ..., xn} = I ∪ O ∪ S is the set of system variables which consist of input162

variables I, output O and state variables S. Derivatives of variables may form individual163

variables in X.164

Q is the set of modes.165
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F is the set of flow functions. Every flow function fq ∈ F defines the change of the state166

variables S as well as the current output variables O over the continuous time t within167

the mode q based on the current values of state variables and the external inputs I, i.e.,168

[O(t), Ṡ(t)] = fq(S(t), I(t), t).169

T : Q × Σ → Q defines transitions between modes Q. A transition is triggered if the170

corresponding event σ ∈ Σ is active.171

Σ is a set of events leading to transitions between modes. Each event is guarded by a set172

of conditions on the variables in X. A transition is triggered if the conditions are met.173

R is a reset relation R : Q × Σ × X → X capturing discontinuous changes of the internal174

variables.175

A hybrid system, according to this definition, combines discrete and continuous behavior.176

Discrete behavior is captured by the discrete modes Q and transitions T , while the flow177

functions F describe the continuous dynamics. Transitions are usually triggered by conditions178

on the variables or discrete control signals for mode transitions. In the scope of this paper,179

the goal is to identify a model of a real system according to Definition 2. We focus on the180

identification of modes and flow functions while excluding the construction of conditions.181

This usually implies that transition conditions are defined by external control signals. Within182

this scope, dynamics define the physical behavior of the real system. In the abstraction given183

by the model, i.e., the hybrid system, the dynamics are represented by the flow functions184

of the modes. Finally, observations of dynamics, i.e., changes in the values of the variables,185

are considered as trajectories defined as an observation in form of a multi-dimensional time186

series of the variables X = {x0, x1, . . . , xn}.187

4 Identification of Hybrid Modes188

In this section, we first revisit the approach presented in Plambeck et al. [23] and identify189

the parameters which are used in the parameter study.190

4.1 Overview & System Properties191

Our approach might model all of the system types encompassed by Definition 2, while192

we focus here on Jump Linear Systems, Piecewise Affine Systems, and Switched Systems,193

i.e., systems with continuous flow functions. The most characteristic property of hybrid194

systems is the combination of continuous dynamics (defined by the flow functions F) with195

discrete modes (Q). To learn both parts, identification of hybrid systems includes multiple196

subproblems as shown in Figure 1 and as similarly introduced in Saberi et al. [25]:197

1. detection of discrete transitions between dynamics, separating the trajectories into198

segments,199

2. grouping of segments with identical dynamics, forming discrete modes,200

3. identification of the continuous dynamics for each mode, i.e., the flow functions of F ,201

4. model construction, i.e., accumulation of the results in a single hybrid system.202

The modeling strategy covers steps 1. to 3. in which steps 2. and 3. are combined, both203

based on SR. Our approach, hence, involves two algorithms: one algorithm to detect the204

transitions between modes (segmentation) and, further on, a second algorithm to group and205

identify the flow functions of modes using the segmented trajectories (grouping). We assume206

a positive residence time in each of the hybrid modes. This residence time should provide207

sufficiently many data samples such that the original dynamics can be reconstructed.208

DX 2024
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4.2 Identification Algorithm209

For the segmentation step, we begin with a small window of observed data, learning a210

symbolic expression. The window is gradually enlarged until the expression’s fitness declines,211

indicating a decision point where a mode transition occurs. With each window increase,212

the expression adapts incrementally to capture changes in the dynamics. Pseudocode for213

segmentation is shown in Algorithm 1.214

In the subsequent grouping step, SR is reused to learn expressions on unions of the215

previously detected segments. When the loss of combined segments decreases compared to216

individual segments, they are grouped, identifying the mode. By this segments with the same217

dynamics, describable by the same flow functions, are grouped. Pseudocode for grouping is218

in Algorithm 2.

Data: trajectory
Result: T , expressions

1 istart ← 0; iend ← linit; n← ninit;
2 while iend < len(trajectory) do
3 while segmentationCriterion fulfilled do
4 window← trajectory[istart, min(iend, len(trajectory))];
5 learnExpression(window,n);
6 iend ← iend + lstep;
7 n← nupdate;
8 end
9 T ← T ∪ {window[0, end− lstep]};

10 istart ← iend − lstep; iend ← istart + linit; n← ninit;
11 resetSR;
12 end

Algorithm 1 Detection of Mode Transitions: given an observed trajectory of the system, we
process over this trajectory using a window (Line 4). Initially, this window covers a fixed initial
length at the beginning of the trajectory. As long as the segmentation criterion is fulfilled, the
window is extended to the right (Line 6). When the segmentation criterion is no longer met, a
mode transition is detected, and the window is stored as a segment in the set T . In the inner
loop, the symbolic expression is learned incrementally, i.e., nupdate-many iterations of the SR are
performed [23].

219

From this review of the algorithms, we find the following set of parameters as given in220

Table 1. The segmentation and grouping criteria as given in Plambeck et al. [23] are used.221

Symbol Occurrence Description
linit Segmentation initial window size when learning an expression
lstep Segmentation step-width for extending the window
ninit Segmentation number of iterations of SR when learning an expression

nupdate Segmentation number of iterations of SR for updating the expression on an
extension

τ Segmentation threshold for the segmentation criterion
φ Grouping relaxation parameter for the grouping criterion
ng Grouping number of iterations of SR when learning on grouped data

ρs, ρg General SR Parsimony coefficient (length-accuracy trade-off) for segmenta-
tion and grouping

ps, pg General SR Population size for segmentation and grouping
Table 1 Parameters of the Learning Process.
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Data: T
Result: G, expressions

1 G← {S[0]};
2 for s ∈ T do
3 groupFound ← False;
4 for g ∈ G do
5 exp, fit ← learnExpression(s ∪ g, n);
6 if groupingCriterion fulfilled then
7 g ← s ∪ g;
8 expressions[g]← exp; groupFound ← True; break;
9 end

10 end
11 if not groupFound then
12 G.append(s);
13 end
14 end

Algorithm 2 Grouping of Modes: the input to the grouping is the set of detected segments T .
The first segment is a first candidate group as stated in Line 1. Afterward, we iterate for every
segment in T in Line 2 over all known groups in Line 4. The current segment and the current group
are combined to one data set and an expression is learned (see Line 5). If the loss of the learned
expression is small, the current segment is included in the current group (see Lines 6 and 7). If
no matching group is found for the current segment, the segment forms a new group as stated in
Line 11 [23].

5 Experiments & Parameter Study222

In this section, we evaluate the feasibility and capability of SR for hybrid system identification223

using our proposed algorithm. Thus, the evaluation scenario focuses the learning step. We224

use a single trace observed on an example system, for which we know both, the ground truth225

decision points of the trace and the ground truth expressions of the flow functions of the226

systems. Our analysis focuses the accuracy, that the SR-based learning is able to achieve227

compared on the learning trace and with respect to the ground truth information. The228

evaluation of the learned model on an evaluation data set is out of scope here.229

In the following, we first showcase the usability on two simple examples which we will230

use for a further discussion on system and model properties later on. Afterwards, we present231

an intensive parameter study for the presented algorithm on two real-world examples. This232

study provides additional insights in the usability of SR for the identification of hybrid233

systems and aligns with the previous introduction of SR. Furthermore, the study provides234

indications on how to choose parameters for to be learned systems.235

5.1 Usability of SR-Based Hybrid System Identification on Simple236

Examples237

We consider two versions of a passive electrical circuit, which are shown in Figure 3. In238

both examples, the goal is to learn the flow functions o(t) = fq(i(t)), where the inputs239

i = [U1, U2, U3] are the voltage levels of the sources and the output o = I1 is the main current240

in the circuit. The first circuit in Fig. 3a is described by the equation. Depending on the241

position of the switch, one of the three sources is selected. This is a simple example of a242

hybrid system with three modes.243

DX 2024
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(a) Version 1 – Switched sources (b) Version 2 – Connected sources

Figure 3 Passive Electrical Circuits
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Figure 4 Current and Voltage of Circuit 2

I1 =


U1
2·R , switch in 1st position
U2
2·R , switch in 2nd position
U3
2·R , switch in 3rd position

. (1)244

The second circuit shown in Fig. 3b also contains three sources, but here all of them245

are connected within the circuit. Fig. 4 shows the output current I1 and the three voltages246

over the discrete sampling points k. From visual inspection of I1, we might assume three247

operational modes of the system. Nevertheless, the different appearances of I1 solely result248

from changes in the input signals. In fact, the system is completely described by the equation249

I1 = U1 + U2 + U3

4 · R
. (2)250

Even though this circuit does not show a hybrid behavior, we consider this as an interesting251

example, as one might assume different modes from visual inspection. Also, this example252

shows that whether multiple modes are needed or not can be ambiguous as both of the253

circuits might lead to identical observations. There are multiple approaches that could resolve254

this issue. One possibility is to choose the most compact representation.255

For SR, both circuits use the same set of basic operators which contains addition,256

subtraction, multiplication, and division operators. The three voltages U1, U2, U3 and the257

values of the resistance R are given as variables for learning an expression for I1. Both258

circuits use R = 10Ω for all resistors. The parameters for learning as listed in Table 1 are set259

to linit = 200, lstep = 100, ninit = 20, nupdate = 5, lhist = 1, τ = 1 · 10−7, ngroup = 20, and260

φ = 1.5.261

Table 2 shows the results of the identification process for the two circuits. For the262

first circuit all five transitions are detected correctly and no false positive, i.e., additional263

transitions are detected. For the second circuit, no transitions are detected, as the system is264
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System |S| TP FP |G| Learned Expressions

Circuit 1 5 100 0 3
Group 1 –
Group 2 –
Group 3 –

U1/(2 ·R)
U2/(2 ·R)
U3/(2 ·R)

Circuit 2 0 - - 1 Group 1 – (U1 + U2 + U3)/(4 ·R)
Table 2 Identification Results for the Simple Examples, True Positives (TP) and False Positives

(FP) are given in percent, |S| is the number of detected transitions, |G| is the number of detected
groups

actually not hybrid. This shows that the approach is able to identify identical dynamics even265

though the visual inspection of the trajectories may suggest different modes as discussed for266

Figure 4.267

The learned expressions for both circuits are equivalent to the ground truth expressions.268

Thus, leading to a mean-square error loss of zero for the predicted trajectories. The results269

show that the approach is able to identify the structure of the hybrid systems from data270

perfectly for simple examples.271

5.2 Parameter Study272

Having shown the usability of the SR-based algorithm on simple examples, we now present a273

parameter study on two real-world examples introduced in the following. The first example274

is the two tank system, which is a known benchmark system for hybrid systems. The second275

example is a power converter, which is a real-world system with a complex behavior.276

5.2.1 Two Tank System277

The two tank system [4] is a benchmark system for hybrid systems, which consists of two278

tanks with a pump pumping water into the first tank. A valve Vb regulates whether water279

flows from the first to the second tank. The system is described by the following differential280

equation:281

ḣ1 =


Qp−Cvb·

√
h1−h2

A , if h1 > h2, Vb open
Qp+Cvb·

√
h2−h1

A , if h1 ≤ h2, Vb open
Qp

A , if Vb closed,

(3)282

where h1 and h2 are the heights of the water in the first and second tank, respectively, ḣ1283

is the derivative, i.e., the change in the water level, of the first tank. Qp is the flow rate of284

the pump, Cvb is the valve conductance, and A is the cross-sectional area of the first tank.285

The simulation involves noise and a realistic controller which applies a zero-order hold to the286

observed height of the tank. The noise is additive white noise with a maximum amplitude of287

10−6 for all sensors.288

In the modeling process, we consider two different versions of the two tank:289

Version 1 (with substitution): the pre-calculated term
√

|h1 − h2|, is given as an additional290

variable. The operators for learning involve addition, subtraction, multiplication, and291

division.292

Version 2 (without substitution): the pre-calculated term is not given as a variable.293

The operators for learning involve addition, subtraction, multiplication, division, and,294

additionally the square-root.295
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Figure 5 Series and Parallel Representation of the Power Converter [30]

For both versions, variables for SR are the inflow Qp and the height of the two tanks296

h1 and h2 as well as the constants Cb and A. The goal is to learn the derivative ḣ1, i.e.,297

the flow function which defines the state change ṡ(t) = fq(s(t), i(t)), with s = h1 and298

i = [h2, Qp, Cb, A].299

5.2.2 Power Converter300

The power converter [30] is a real-world system that has a controlled input voltage vs = σVg301

where Vg is a constant input and σ is a switching variable which can be either 1 or −1. In302

addition to the voltage source, the circuit consists of a capacitor C, an inductance L, and a303

resistor R. The circuit can be either a parallel or a series configuration, as shown in Figure 5.304

As presented in [30], we use a transformed coordinate system to describe both configurations305

with the same equations. The system is described by the following differential equation:306

ẇ =
(

0 α

−α −β

)
w +

(
0
α

)
σ, (4)307

where α = 1√
LC

and β = 1
RC (parallel case) or β = R

L (serial case). The transformed308

coordinates w = [w1, w2]T are constructed from the quantities in Figure 5 as309

w1 = vc

Vg
and w2 = 1

Vg

√
L

C
· ic.310

Our goal is to model the state variable w2. The inductance, capacity, and resistor have the311

values R = 400Ω, L = 8µH, C = 10.5nF and Vg = 20V .312

For SR, the power converter uses addition, subtraction, multiplication, and division313

as well as the square-root as basic operators. Variables for learning are w1, w2, and the314

continuous time t of a sampling point. Constants are not given as variables, but are315

estimated by the learner. The goal is to learn an expression for ẇ2, where the derivation316

is numerically performed. Thus, we learn the flow function which defines the state change317

ṡ(t) = fq(s(t), i(t), t), with s = w2 and i = [w1].318

5.2.3 Experimental Results319

For both systems, we analyze the parameters linit, lstep, ninit, nupdate, and τ for the320

segmentation step and ngroup, φ, and pg for the grouping step. Additionally, the parsimony321

coefficients ρs and ρg for SR during the segmentation and grouping step, respectively, are322

analyzed. The parameter study is executed with the hyperparameter optimization library323

Optuna [1] with at least 100 trials for every study. The optimization uses an objective324

function. Parameter importances are found with the fANOVA approach [12] of Optuna.325
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Figure 6 Parameter importances, Two Tank System with Substitution (green), Two Tank System
without Substitution (red), Power Converter (blue)

More information on optuna, the objective functions and fANOVA can be found in the326

project’s repository [21].327

The parameter importances, as calculated with Optuna using the fANOVA approach328

[12], show that for most examples, the initial window width linit as well as the length for329

extending the window lstep are relevant. Figure 7 shows these two parameters against the330

objective value. Note, that this and the following plots always show all runs, i.e., also other331

than the presented parameters are varied over the runs. We observe, that linit against the332

objective value has a sweet spot around 60, which is about the mean number of samples,333

that the system stays within a mode. These observations are intuitive as the best initial334

window size would be the one that captures exactly one occurrence of a mode. This implies335

that prior knowledge or a good assumption on the expected time spent in a mode improves336

the model learning procedure. For lstep, the plot indicates that smaller values usually lead to337

smaller objective values. Thus, a small step size when increasing the window identifies the338

decision points more accurately. Still, a smaller step width leads to longer runtime.339
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Figure 7 Segmentation: parameters against objective value for Two Tank without substitution
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Figure 8 Segmentation: parameters against objective value for Two Tank with substitution
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The number of generations ninit and nstep are also relevant parameters. Figure ref-340

fig:twotanksubsegiter shows the two parameters in a contour plot of the objective value,341

where dark colors indicate good, i.e., small objective values. For this example, the number of342

initial iterations ninit is best around 100 to 150. This number of iterations allows to pre-learn343

the dynamics without overfitting such that the inclusion of new data is possible on window344

extension. The number of generations for updating the population nstep has low influence on345

the objective value. To reduce runtime, we could, thus, choose a small value for nstep.346

The saturation threshold for the segmentation criterion τ shows a clear impact as shown347

in Figure 8a. As introduced earlier, this threshold assures that the extension of the window348

is continued as long as the loss stays below the threshold. Thus, the value of τ has to be349

below a certain level to correctly identify decision points.350

For the grouping step, the grouping factor φ is the most important parameter, because351

the choice of this parameter clearly separates experiments with a low and a high objective352

value. We also have a clear dependency of the objective in other parameters such as the353

number of iterations ngroup. Figure 9b shows the number of iterations and the size of the354

population against the objective value. A larger number of iterations is preferable, because a355

higher number of generations allows for a better exploration of the solution space. The size356

of the population has less influence on the objective value. Figure 9a shows the factor φ for357

the grouping criterion against the objective value. Here, we find a clear minimum around358

φ = 1, i.e., where we require a strict decrease in the loss when adding a segment to a group.359
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Figure 9 Grouping: parameters against objective value for Converter

5.3 Accuracy of Predicted Trajectories360

In the last step, we showcase the accuracy of the learned models with good parametrization361

with respect to our objective functions. The results are shown in Table 3.362

We observe that the learned expressions are not identical to the ground truth expressions,363

but represent the most dominant behavior. This aligns with the known property of SR364

which tends to converge to solutions close to the optimum, but matching the exact correct365

expression is difficult especially if the solution space is large, i.e., the expression to be learned366

is complex. A deeper discussion and comparison of the predicted and the original trajectories367

can be found in [23].368

6 Conclusion369

In this paper, we provide a deep discussion of symbolic regression for hybrid system iden-370

tification. Revisiting a proposed method for hybrid system identification with symbolic371
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System |S| TP FP |G| Learned Expressions Loss

Converter 4 100 0 2 Group 1
Group 2

3.37 · 10−3 − 4.71 · 10−3 · w1
−6.28 · 10−3 ·

√
w1 + 0.396 4.76 · 10−7

Two Tank 1 27 92.9 3.7 3
Group 1
Group 2
Group 3

Qp/A

(−Cvvb ·
√
|h1 − h2|+ Qp)/A

(−Cvb + Qp/h1)/A

5.26 · 10−6

Two Tank 2 28 92.9 0 3
Group 1
Group 2
Group 3

Qp/A−
√

Qp · h1

Qp/A√
Cvb −A

4.68 · 10−6

Table 3 Identification Results, True Positives (TP) and False Positives (FP) are given in percent,
|S| is the number of detected transitions, |G| is the number of detected groups

regression, separated in two algorithms, we cover three major aspects. First, we discuss372

known properties of symbolic regression regarding accuracy and convergence and put them in373

the context of hybrid system identification. Furthermore, we provide an intensive parameter374

study of the two identification steps. We see that a higher number of generations leads to375

more accurate models. Furthermore, prior knowledge on the system behavior can support376

the learning process. The last part of the paper is dedicated to a discussion of system types377

in the regime of hybrid systems and within the context of symbolic regression. We argue that378

the complexity in the expression of dynamics and the number of modes of a model form a379

solution space where large models with simple expressions form similarly accurate models as380

small models with complex expressions. The choice of model size and expression complexity,381

thus, can be seen as a design decision during model learning.382
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