
HAL Id: hal-04794452
https://hal.science/hal-04794452v1

Preprint submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning for Fluid Mechanics: an
overview on Fundamentals from a Control Perspective

Onofrio Semeraro

To cite this version:
Onofrio Semeraro. Reinforcement Learning for Fluid Mechanics: an overview on Fundamentals from
a Control Perspective. 2024. �hal-04794452�

https://hal.science/hal-04794452v1
https://hal.archives-ouvertes.fr

Reinforcement Learning for Fluid Mechanics: an
overview on Fundamentals from a Control Perspective

Onofrio Semeraro∗

Laboratoire interdisciplinaire des sciences du numérique (LISN), CNRS
Université Paris-Saclay, 91400 Orsay, France

November 20, 2024

This chapter introduces some theoretical foundations of reinforcement learning and its
applications to fluid mechanics from a control theory perspective. This choice is intended
to provide the reader accustomed to flow control the key ideas in a more familiar vocabu-
lary and a perspective on a vast literature blooming with tremendous momentum. First,
we set the stage by introducing flow control and re-framing motivations and goals using
reinforcement learning. Next, we shift our focus on some basic concepts by discussing the
Hamilton-Jacobi-Bellman equation, the dynamic programming for nonlinear optimal con-
trol, and the iterative schemes used for approximate solution. Finally, the chapter closes
by reconciling these elements with the terminology of reinforcement learning practice.

∗onofrio.semeraro@universite-paris-saclay.fr

VKI - 1 -

Contents
1 Flow control and reinforcement learning 3

1.1 Standard approaches in flow control: a brief overview 4
1.2 Reinforcement learning in flow control . 5
1.3 Organization of the chapter . 7

2 From nonlinear control to reinforcement learning 8
2.1 Nomenclature and state space representation 8
2.2 Optimal control in linear system: the Riccati equation 10
2.3 The Hamilton-Jacobi-Bellman equation . 12

2.3.1 From the HJB equation to the Riccati equation in linear plants . . 13
2.3.2 A quick observation on the Hamiltonian function 14

2.4 Discrete systems . 14
2.4.1 The linear quadratic regulator (LQR) in discrete systems 15

2.5 Bellman’s principle of optimality . 15
2.5.1 LQR using Bellman equation backward in time 16

2.6 Approximating the Bellman equation: iterative methods 18
2.6.1 Policy iteration (PI) . 18
2.6.2 Value iteration (VI) . 19
2.6.3 Generalized policy iteration . 20

2.7 Reinforcement learning (RL) . 21
2.7.1 Markov decision processes (MDP) 21

3 Elements of reinforcement learning in practice 23
3.1 A short glossary . 23
3.2 Identifying the policy . 24

3.2.1 Temporal difference (TD) . 25
3.2.2 Q-learning and SARSA . 25
3.2.3 Actor-critic algorithms . 25

3.3 Numerical approximations . 26

4 Essential bibliography and final remarks 28

VKI - 2 -

1 Flow control and reinforcement learning
Control applications in fluid mechanics have attracted the attention of numerous research
efforts as it is nowadays recognized that the optimization of aerodynamic flows in aircraft
and vehicles design may have a deep impact on the reduction of pollutant emissions,
mitigation of acoustic noise or control of highly complex conditions such as separation
and stall (Abergel and Temam, 1990; Gad-el Hak, 2000; Kim and Bewley, 2007; Brunton
and Noack, 2015; Duriez et al., 2016; Rowley and Dawson, 2017). Several methodologies
have been applied to control fluids, ranging from passive to active strategies. Here, we
consider active flow control (AFC): the dynamics is modified by injecting energy into the
system using actuators, acting as transducers for the flow manipulation (Cattafesta III and
Sheplak, 2011). The action of the actuators is modulated by policies aimed at optimizing
the performance and the dynamic response in a prescribed manner (open-loop) or as a
function of some observations of the system at hand (closed-loop). The identification of
these policies based on measurements and models of the physics is the objective of the
control design.

In principle, AFC strategies optimize the flow in real time; in practice, these techniques
are mostly used in limited numerical and experimental test cases. Indeed, approximations
based on reduced-order models of the physical system can critically lose accuracy when
control is applied, resulting in poor performance and lack of robustness. Addressing these
challenges using machine learning (ML) tools (Brunton et al., 2020) and, more specifically,
reinforcement learning (RL) can be a key factor in extending flow control to realistic cases
by circumventing models limitations or lack of robustness due to their data-driven nature.
A possible definition based on the main goals of RL is the following:

"RL studies how to use past data to enhance the future manipulation of a
dynamical system" (Recht, 2019).

The description applies equivalently to standard control theory. This suggestive similarity
in definition and purpose is not coincidental: the common roots of RL and modern control
theory can be found in dynamic programming (DP), a nonlinear optimization protocol
based on the Bellman equation (Bellman, 1958). Starting from DP, these two disciplines
evolved in parallel in the last decades, leading to the co-development of different ap-
proaches to similar problems (Bertsekas, 1995; Sutton and Barto, 2018). The solution of
the Bellman equation is the value function, a nonlinear function, which is related to a
score associated with a given action or controlled trajectory. Once the value function is
known, one can determine the optimal policy. However, the Bellman equation results to
be computationally impractical in most cases, even when models are available or direct
methods applied. For this reason, a large body of literature is dedicated to the numerical
approximation of the Bellman equation and the iterative schemes used for its solution.
Iterative methods are particularly interesting as they can be applied with and without a
prior model at hand: from a theoretical viewpoint these are the premises on the top of
which RL algorithms stand (Sutton and Barto, 2018).

RL algorithms are iterative, data-driven and solely relying on limited measurements;
models are completely replaced or updated during the iterative process by exploration: the
state space of the system is learnt by using past data extracted from the measurements
and the interactions of the system or agent with the environment. The set of all the

VKI - 3 -

actions the agent can act out in an environment is called action space and a score is
assigned to each action for the value function evaluation. In the limit of full knowledge
of this space, the resulting policy is optimal if the Bellman equation associated with the
value function is fulfilled. In that sense, RL is inspired by nature as it tries to mimic the
process of learning of living beings.

A further ingredient is represented by artificial neural networks (ANN). The success
of ML applications in very diverse fields, ranging from computer vision and natural lan-
guage processing to medical diagnosis, is mainly due to the versatility of ANN and their
effectiveness in supervised and unsupervised learning (Goodfellow et al., 2016). From
a mathematical viewpoint, their versatility is motivated by their properties of universal
approximators of nonlinear functions: the combination of ANN, for the approximation
of the policy and the value function, with RL led to the Deep RL (DRL) framework.
The first application of ANN in RL is often credited to the work by Tesauro (1994), who
developed a program – TD-Gammon – combining temporal difference and ANN to play
backgammon. In the same years, the application of ANN in combination with dynamic
programming was discussed in seminal works on the subject by Bertsekas (1995), under
the name of neuro-dynamic programming; the recent developments in the field of deep
learning and the super–human performance achieved by DRL in solving games such as
go and shogi (Silver et al., 2017) boosted the popularity of the approach. Together with
the vast availability of open-source packages, this is also one of the reasons why DRL is
often seen "only" as one of the main subfields of ML and used as a black-box tool. How-
ever, this limited perspective risks being rather simplistic: RL is well grounded in optimal
control theory, and the interaction between these two disciplines could play a key role in
future technological challenges such as the development of driverless cars, self-supervised
learning or flow control.

1.1 Standard approaches in flow control: a brief overview
In the following, we introduce a brief, non-exhaustive overview of active flow control.
From a physical point of view, the range of applications is as broad as the cases in which
the presence of a fluid impacts the efficiency or performance of the dynamical system
under investigation; among the examples we can cite, control mechanisms range from
quenching the instabilities responsible for the transition to turbulence at relatively low
Reynolds numbers (Sipp and Schmid, 2016) to the modification of the mean-flow or of
the large scale structures for turbulent cases (Kühnen et al., 2018).

The DP framework provides the theoretical ground for generalizing the optimal con-
trol problem from linear to nonlinear cases (Bertsekas, 1995, 2019). A special case is the
linear quadratic regulator (LQR), a standard solution of optimal control which can be
derived directly from the Bellman equation and reduces to the algebraic Riccati equa-
tion in the linear, steady limit (Lewis et al., 2012); when the LQR is combined with
optimal estimators, we obtain the linear quadratic Gaussian (LQG). In these hypothe-
ses, LQR/LQG controllers are an ideal benchmark for assessing the optimality of the
policies. In flow control, examples can be found in Högberg and Henningson (2002); Hög-
berg et al. (2003); Chevalier et al. (2007). In alternative to the direct methods, one can
resort to the adjoint-based formulation in the same linear/linearized limit (Luchini and
Bottaro, 2014); the latter can be extended to nonlinear cases and model predictive con-

VKI - 4 -

trollers (MPC) (Glad and Ljung, 2000; Bewley et al., 2001; Xiao and Papadakis, 2019) or
adaptive controllers (Åström and Wittenmark, 2008). These techniques have been widely
used in fluid mechanics and require for the control design a physical model, describing
the behavior of the system1.

When a physical model is available, as in the case of fluid mechanics, solving the
governing equations can be too slow with respect to the dynamics at play to be useful,
if not even unfeasible: for instance, direct computations of LQR controllers are limited
by the degrees of freedom n that cannot exceed n ≈ 104, unless resorting to iterative
methods (Semeraro et al., 2013b). Alternatively, one can reduce the problem’s dimen-
sionality by identifying suitable low-order models that preserve the system’s dynamics
for control design while meeting computational and real-time constraints. In fluid me-
chanics, model reduction and system identification enjoyed widespread popularity in the
last two decades, with applications ranging from balance truncation (Rowley, 2005; Ma
et al., 2011) to system identification (Ljung, 1999; Noack et al., 2011; Hervé et al., 2012)
or subspace iteration methods (Van Overschee and De Moor, 2012; Juillet et al., 2014).
Review works can be found in Kim and Bewley (2007); Bagheri et al. (2009); Brunton and
Noack (2015); Sipp and Schmid (2016); Rowley and Dawson (2017). Despite this large
amount of applications, low-order models are prone to decay of performance and lack of
robustness with respect to the modeling uncertainties or change of flow parameters; also,
estimation and low-observability deteriorate the performance of model-based controllers
when more realistic, experimental setups characterized by noise in the measurements or
localized/geometrically-constrained sensors are considered. For example, we can consider
the delay of laminarâĂŞturbulent transition, generally tested within the limit of small
amplitudes or in highly controlled wind-tunnel tests (Semeraro et al., 2013a; Fabbiane
et al., 2015). Higher amplitudes are characterized by nonlinearities limiting model-based
AFC, although some improvements can be achieved by using adaptive filters on relatively
slow time-scale (Sturzebecher and Nitsche, 2003; Fabbiane et al., 2014), robust control
(Bewley et al., 2000; Leclercq et al., 2019) or model-predictive control (Losse et al., 2011;
Goldin et al., 2013; Arbabi et al., 2018; Marra et al., 2024).

1.2 Reinforcement learning in flow control
Some of the limitations of model-based controllers can be circumvented by data-driven
tools, being inherently based on measurements and past data taken from local sensors
to identify control policy without relying on a-priori physical model. Among the early
works on flow control using RL, those by Guéniat et al. (2016); Rabault et al. (2019,
2020); Fan et al. (2020) are worth mentioning. These works are representative of very
different approaches within RL and allow us to quickly glance at the large variety of
available techniques. In Rabault et al. (2019), an actor-based method is applied for the
control of a flow developing past a cylinder using proximal policy optimization (PPO). In
PPO, parametric policies are evaluated by registering the system for a long period of time
and calculating the cumulative reward; optimization is performed by stochastic gradient-
descent algorithms to update the policy. PPO is thus an on-policy, gradient-descent policy

1Note: the term model will refer only to physical models, including low-order ones. In contrast, in
the ML community, the term defines approximations or parameterized functions, such as input-output
relations mediated by ANN.

VKI - 5 -

(a) (b) (c)

(d)

(e)

Figure 1: Example of a nonlinear dynamical system controlled using localized actua-
tors, localized sensors, and an actor-critic algorithm (see Sec. 3); the figure is adapted
from Bucci et al. (2019). In (a), the uncontrolled dynamics governed by the Kuramoto-
Sivashinsky equation is shown in phase-space, by projecting on the first three Fourier
modes (êi). Red dots indicate the 4 unstable equilibria (E) and 2 travelling waves (TW)
characterizing the dynamics when the domain length L = 22 (Cvitanović et al., 2010).
Chaotic behavior is observed. In (b), the system controlled by RL is shown: three policies
are computed, driving the system towards each nontrivial equilibrium. The controlled
trajectories are shown in the spatio-temporal plots (c)-(d)-(e) for E3 → E1, E1 → E2,
and E2 → E3, respectively.

method. A prototype of this class of strategies is the reinforce algorithm; the resulting
solution in these cases does not satisfy Bellman’s optimality principle. A dual approach is
to approximate the state-value-action function or Q-function (Watkins and Dayan, 1992).
In these approaches, usually termed value-based, a critic is introduced such that Bellman
optimality is guaranteed if the system analyzed is Markovian and completely known from
observables. An early application based on Q-learning was presented for fluid control by
Guéniat et al. (2016). A disadvantage of the critic algorithms is the discrete representation
of the action, in case a continuous system is considered. For this reason, these two
philosophies are often found combined, resulting in a number of different solutions. One
example is the previously mentioned Proximal Policy Optimization (PPO) algorithm,
that incorporates a critic part estimating the value of the policy. The critic is trained
using the cumulative rewards computed along the trajectories, but it does not intervene
directly in the process of policy learning. Instead, the critic helps to refine the policy by
providing feedback on its performance. On the other hand, algorithms where the critic
is based on Q-learning can be coupled with an actor part, in order to learn a continuous
policy. A recent experimental example is provided by the work of Fan et al. (2020).
With a similar strategy, in Bucci et al. (2019) an actor-critic RL algorithm, the Deep
Deterministic Policy Gradient (DDPG) (Silver et al., 2014; Lillicrap et al., 2015) is used
for the control of the nonlinear dynamics governed by the Kuramoto-Sivashinsky equation,
without prior knowledge of the system. The work was among the first demonstrations of
control of chaotic dynamical systems by RL. An overview of the results is shown in Fig. 1:
the highly nonlinear dynamics (a) is stabilized (b) around unstable fixed points (c-e) only
by relying on limited measurements and localized equispaced actuators. In principle, the

VKI - 6 -

combination of actor and critic allows an approximation of the policy and ensures that
the function is a solution of the Bellman equation when Markiovanity conditions are met.

Besides optimal control of fluid flows, RL has also attracted attention in a variety of
applications ranging from bio-mimetic optimization to numerical analysis. Among the
numerous contributions available in the literature, it is worth mentioning the early work
by Vergassola et al. (2007) on infotaxis as a navigation strategy without gradients; this
landmark work gave the impulse to numerous works inspired by bio-mimetics where RL is
used for the control of gliding or perching (Reddy et al., 2018; Novati et al., 2019), optimal
swimming (Verma et al., 2018; Borra et al., 2022) and point-to-point navigation (Biferale
et al., 2019). Shape optimization has been discussed in the works by Viquerat et al. (2021);
Keramati et al. (2022); Dussauge et al. (2023). From the numerical analysis viewpoint, a
recent trend in turbulence modeling consists of automating the closure term by multi-agent
RL (Novati et al., 2021), including wall models applications (Bae and Koumoutsakos,
2022). Adaptive mesh applications through RL have been recently proposed by Yang
et al. (2023) and Foucart et al. (2023).

The interested reader can find extensive reviews on data-driven control in fluid me-
chanics in Brunton and Noack (2015); Brunton et al. (2020). A recent review of RL in
fluid mechanics was authored by Vignon et al. (2023). Finally, it is worth to mention the
work by Pino et al. (2023), where a comparative analysis of ML methods for active flow
control is proposed, focusing in particular on genetic programming and RL, benchmarked
against global optimization techniques such as Bayesian and Lipschitz optimizations.

1.3 Organization of the chapter
The remainder of the chapter is organized as follows. In Sec. 2, we focus on the Hamilton-
Jacobi-Bellman (HJB) equations and DP for nonlinear optimal control. The HJB equation
is a classical result that extends the linear optimal control to nonlinear cases (Sec. 2.3).
The discrete counterpart of the HJB equation – the Bellman equation – is at the heart
of DP (Sec. 2.5) and RL. Iterative solutions to the Bellman equation – namely, the value
iteration and policy iteration – are introduced in Sec. 2.6. To avoid an abstract discussion
of these methods, we introduce the linear limits as an illustration. The chapter closes
with a section where the introduced elements are reconciled with the terminology of RL
practice in Sec. 3 and a short bibliography in Sec. 4.

VKI - 7 -

2 From nonlinear control to reinforcement learning
In this section, we state the optimal control problem for linear and nonlinear systems,
showing how the Hamilton-Jacobi-Bellman equation can be used for generalizing the re-
sults obtained in the linear framework. The discrete counterpart – the Bellman equation
– is analyzed in the second step. The solution of the Bellman equation is at the heart of
dynamic programming. Direct and basic iterative solutions are quickly described. Finally,
reinforcement learning is introduced.

2.1 Nomenclature and state space representation
Due to numerous commonalities characterizing the two frameworks, it is interesting to
introduce the basic nomenclature of control theory and RL in parallel. We start by
considering the simplified block diagram in Fig. 2; this sketch is adapted from a block-
diagram in the book by Sutton and Barto (2018), but it is analogous to many other
diagrams that it is possible to find in control books. The sketch depicts a closed-loop
system where a feedback is introduced for the control of the plant; by definition, the plant
is the system to be controlled equipped with a set of actuators and sensors. Sensors detect
the system and, in the case of flow control, velocity or pressure probes can be used for
this purpose. Actuators introduce energy into the system through volume forcing (such as
plasma actuators), blowing and suction jets or active surfaces (Cattafesta III and Sheplak,
2011).

From an analytical viewpoint, a plant corresponds to the open-loop input-output sys-
tem. We consider here a time-continuous, space-discrete representation and introduce the
state vector x(t) ∈ Rn, with n the number of spatial degrees of freedom of the system. We
thus introduce a nonlinear system denoted by F : Rn ×Rnu ×Rnd → Rn; the state-space
representation can be written as

ẋ(t) = F(x, u, d, t)
z(t) = C1x(t) + νz

y(t) = C2x(t) + νy. (1)

The input u(t) ∈ Rnu is the control signal and it is the unknown of the control problem,
with nu entries (multi-input). The noise process or disturbance d(t) ∈ Rnd is regarded
as an input or forcing on the system. The outputs are y(t) ∈ Rny and z(t) ∈ Rnz . The
sensors are modeled using the operators by C1 ∈ Rnz×n and C2 ∈ Rny×n, assuming both
relations to be linear, and in both cases an additive noise process is added for modeling
errors or noise in the measurements.

So far, we have assumed the most general situation where the governing equations
and the interactions with control inputs are nonlinear. However, special cases are also
possible. A first case consists of a linear description Bu(x) of the actuation as a function
of x(t), written in the form

ẋ(t) = F(x, d, t) + Bu(x)u(t).

When the system can be modeled by means of linearization around the equilibrium points
of the state space (also denoted as singular or stationary points), or approximated by a

VKI - 8 -

Figure 2: Simplified block diagram showing a closed loop. The system to be controlled
is defined as plant or environment following control or RL terminology, respectively. The
system is equipped with inputs and outputs. The outputs are y(t) and z(t). A feedback
law is computed starting from y(t) in order to minimize or maximize the measurements
z(t): in optimal control, we define it as a cost function; in RL is mostly found as a reward
or value function. A compensator is designed to compute a control input u(t) based on
outputs. In RL, the compensator is called agent. Finally, the disturbance input d(t)
drives the system’s dynamics as input noise or external forcing.

linear time-invariant model, the linear mapping is computed as A = ∇xF|x=x̄, where
x̄ denotes one of these points and A ∈ Rn×n, assuming u = 0. Similarly, we obtain a
representation for the actuator as Bu = ∇uF|u=ū at x = x̄, where Bu ∈ Rn×nu . The
resulting state equation reads as

ẋ(t) = Ax(t) + Buu(t) + Bdd(t). (2)

where we introduce Bd ∈ Rn×nd as a model mimicking the external disturbances. The
plant can be a simplified model of the environment or coinciding with that. In flow control,
it is the case when Linearized Navier-Stokes equations (the plant) are used to control a
nonlinear flow (the environment). The main aim of control design and RL is maximizing
or minimizing quantities of interest described by a performance index. According to the
context, the quantities of interest of the optimization are denoted as cost function when
minimized, reward when maximize or value function. Classic quantities of interest in
fluid mechanics correspond to measurements chosen for maximizing lift, reducing draft,
or mitigating noise emissions. The optimization is achieved by inferring efficient and
robust control strategies or policies, modulating the action of the actuators on the system.
In control, the compensator provides this action; the compensator consists typically of
an estimator, used for reconstructing the state based on the estimation measurements
and/or augmenting its expressivity, and the controller indicated by the feedback control
law K ∈ Rnu×n, providing the input signal based on the reconstructed state approximating
the full state such that x̂(t) ≈ x(t) ∈ Rn, and u(t) = Kx̂(t). Note that it is not necessary
to consider a full-order estimated state, if the input-output behaviour of the system is
well represented by a reduced-order model and its associated state. In this case the
reconstructed state can be nr � n and u(t) = Krx̂r(t), with Kr ∈ Rnu×nr . A further
reduction is obtained when an output feedback control is considered: in this case the
control law reduces to the transfer function u(t) = Kyy(t), with Ky ∈ Rnu×ny (Lewis
et al., 2012). In RL, the compensator roughly corresponds to the agent, while the policy

VKI - 9 -

corresponds to the controller. Indeed, from a technical viewpoint, the policy is a nonlinear
function u(t) = π(y(t)) based on the measurements y(t).

In summary, one can say that the agent is the compensator, while the pairs environment-
plant and policy-controller can be used alternatively according to the contexts but defined
similarly.

2.2 Optimal control in linear system: the Riccati equation
We can now introduce the optimal control problem by considering the time-invariant,
continuous linear system

ẋ = Ax + Buu, (3)

already introduced in Sec. 2.1. For improved readability, the time dependence of the
variables is omitted except where necessary for clarity. We aim at identifying a control
law as a function of time u(t) ∈ Rnu such that an associated performance index or cost
function is minimized. The cost function is chosen to be quadratic and reads

J (x(t0), t0) = 1
2x(T)TPTx(T) + 1

2

∫ T

t0

(
xTQx + uTRu

)
dt. (4)

The terminal cost at time T is defined by the quadratic form xTPTx, with PT ≥ 0 positive
semi-definite. The second term is an integral in time where the integrand is a sum of two
terms: an energy associated with the state vector x(t) and a norm of the control signal
u(t), with Q ≥ 0 and R > 0 the respective weights determining the relative penalties.
To ease the discussion, without loss of generality, we choose a null terminal state, i.e.
x(T) = 0. We aim at determining the optimal signal u∗(t) defined in the interval [t0, T].
An optimal quantity will be indicated with (∗) in the following whenever needed.

The solution of the control problem can be obtained by introducing the following
Hamiltonian function

H = 1
2
(
xTQx + uTRu

)
+ λT (Ax + Buu) , (5)

where the first term is associated with the cost function, while the second term is the
constraint represented by the dynamical system under consideration, and the state λ ∈ Rn

is the co-state or adjoint state. Minimization is performed by considering the gradients
of H with respect to the parameters of the problem

ẋ = ∂H
∂λ

→ ẋ = Ax + Buu with x(0) = x0, (6)

−λ̇ = ∂H
∂x

→ λ̇ = −ATλ−Qx with λ(T) = 0, (7)

0 = ∂H
∂u

→ 0 = Ru+ BT
uλ. (8)

By zeroing the last relation, we obtain the optimal control law

u∗ = −R−1BT
uλ.

VKI - 10 -

Note that Eq. 7 is the equation associated with the adjoint state and is marched backward
in time. The iterative solution of the resulting system of equations provides the optimal
solution u(t) in Eq. 8, which is minimizing since ∂2H/∂u2 = R > 0.

In alternative, one can cast the equations in Eq. 6-8 into an algebraic equation: the
control algebraic Riccati equation (CARE). To this end, we assume that λ(t) = Px(t),
with P ≥ 0; this procedure is called sweep method (Lewis et al., 2012). The last relation
can be derived in time and the relations Eq. 6-7 plugged in

λ̇ = Ṗx + Pẋ
−ATλ−Qx = Ṗx + P (Ax + Buu) .

The relation can be further manipulated by introducing the optimal solution Eq. 8 and
the relation λ(t) = Px(t)

− Ṗx = ATPx + PAx−PBuR−1BT
uPx + Qx. (9)

In the stationary case, Ṗ = 0; since the solution is valid ∀x, the resulting CARE reads

0 = ATP + PA−PBuR−1BT
uP + Q. (10)

The solution P enables to compute the control gain K: it is sufficient to consider

u∗ = −R−1BT
uλ = −R−1BT

uPx, (11)

and define the feedback gain as K = R−1BT
uP. This is the solution to the linear quadratic

regulator (LQR) problem.
In perfect analogy, it is possible to define an optimal estimation problem, where we

aim at minimizing the following error norm

min ‖y(t)− ŷ(t)‖, (12)

where the measurement ŷ(t) is associated with the estimated state x̂(t). The combination
of an optimal estimator and the LQR leads to the linear quadratic Gaussian compensator
(LQG). For the separation principle, the LQG compensator is optimal (Glad and Ljung,
2000).

Further observations can be made; first of all, since the Riccati equation is not directly
solvable for systems characterized by a large number of degrees of freedom, say N > 104,
the direct-adjoint system is often solved instead, see for instance Bewley et al. (2016),
Luchini and Bottaro (2014), Semeraro et al. (2013b) and citations therein. Additionally,
optimization based on a finite sliding temporal window leads to the development of MPC
(see e.g. Bewley et al., 2001). Another aspect that can be noted is on the modeling of
disturbances. The LQR problem is defined based on the linear time-invariant in Eq. 3 and
solved using the CARE in Eq. 10; the CARE is written using the state matrix A, the model
for the actuation Bu, and the metric related to the cost function. In principle, a full-order,
perfect model does not require any assumption on the disturbances driving or affecting the
system. In practice, this becomes a critical part of the estimation process, particularly in
accounting for model uncertainties. Within control theory, robust control is a significant
field dedicated to addressing these limitations. Interestingly, Riccati equations can be also
cast for robust control synthesis (Glad and Ljung, 2000; Zhou et al., 2002). As previously
mentioned, our objective here is to tackle these challenges through data-driven solutions.

VKI - 11 -

2.3 The Hamilton-Jacobi-Bellman equation
We can now introduce informally the Hamilton-Jacobi-Bellman (HJB) equation, a non-
linear partial differential equation that is at the heart of the optimal control problem
in nonlinear systems and provides necessary and sufficient conditions for the optimality.
Its solution is the optimal cost function. Once the cost function is known, the optimal
control or policy can be computed by maximization or minimization. In this sense, we
shift the focus from determining the optimal policy to the computation of the optimal
cost function. This dual viewpoint characterizes also the RL applications, where the cost
function is typically referred to as value function.

We consider the plant in Eq. 1 and assume the state to be fully known and not recorded
from the measurements. We define the cost function through the following performance
index

J (x(t0), t0) = h(T,x(T)) +
∫ T

t
r(x, u)dτ, (13)

where we are interested in determining the optimal control u∗(t) in the interval t ∈ [t0, T].
As t is the current time, a dummy variable τ is introduced in the integral. The integrand
of the second term denoted r(x, u) is the reward function. The first term is a function
associated with the terminal condition at final time T . The cost-to-go J (x, t) can be
rewritten as

J (x, t) =
∫ t+∆t

t
r(x, u)dτ +

∫ T

t+∆t
r(x, u)dτ + h(T,x(T))

=
∫ t+∆t

t
r(x, u)dτ + J (x + ∆x, t+ ∆t), (14)

where t+∆t is a future time close to t. For optimizing the cost-to-go J (x, t), the integral
has been broken into two terms: the first associated with the reward computed in the
interval [t, t + ∆t], and a second term associated with the future rewards, appropriately
replaced by the future cost function. The last expression describes all the possible values
for the cost from time t to the time horizon T ; however, if we know the optimal cost for
all the possible states x + ∆x in the time interval, we can cast the following minimization

J ∗(x, t) = min
u(τ)

t≤τ≤t+∆t

[∫ t+∆t

t
r(x, u, t)dτ + J ∗(x + ∆x, t+ ∆t)

]
. (15)

The expression can be manipulated by performing the integral corresponding to the in-
stantaneous reward and introducing a Taylor series for the J ∗(x + ∆x, t + ∆t). The
resulting equation reads

J ∗(x, t) = min
u(τ)

t≤τ≤t+∆t

r∆t+ J ∗(x, t) +
(
∂J ∗

∂x

)T
∆x + ∂J ∗

∂t
∆t
 . (16)

By substituting a first-order approximation ∆x = F∆t, and observing that the second
and fourth terms are not affected by the minimization, we obtain

�����J ∗(x, t) = min
u(τ)

t≤τ≤t+∆t

r∆t+
(
∂J ∗

∂x

)T
F∆t

+ �����J ∗(x, t) + ∂J ∗

∂t
∆t (17)

VKI - 12 -

that, for ∆t→ 0, results in the HJB equation

− ∂J ∗

∂t
= min

u(t)

r(x, u) +
(
∂J ∗

∂x

)T
F(x, u)

 . (18)

The result of this equation is the optimal J ∗ as a function of time. Note that it is solved
backward in time, as in the adjoint problem underneath the optimal control problem in
the linear limit.

A problem with the HBJ equation is the difficulty of computing a solution since it
is a nonlinear partial differential equation, where we assume the solution J ∗ to be a
differentiable function. When it is possible to solve the HJB equation, the associated
policy π can be obtained by optimization. Among the possible techniques that one can
employ, we could consider the expansion in power series of the functions F and J , if these
are real analytic close to the origin. Such a strategy allows solving the HJB in terms of the
power series coefficients (Glad and Ljung, 2000), starting from the linear order, similarly
to the weakly nonlinear expansions.

2.3.1 From the HJB equation to the Riccati equation in linear plants

In the previous section, we have shown that the HJB equation determines the optimal
cost function for a nonlinear dynamical system with an associated reward. It is possible
to show that the Eq. 18 in the linear limit is directly related to the class of optimal control
problems discussed in Sec. 2.2.

We consider the linear plant in Eq. 3 associated with a quadratic cost function Eq. 4.
The HJB is rewritten as following

− ∂J ∗

∂t
= min

u(t)

1
2
(
xTQx + uTRu

)
+
(
∂J ∗

∂x

)T
(Ax + Buu)

 . (19)

By minimizing the right-hand side, we get the optimal u∗ in the following form

u∗ = −R−1BT
u

(
∂J ∗

∂x

)T
. (20)

By substituting it into the HJB equation, we obtain

−∂J
∗

∂t
=

1
2xTQx +

(
∂J ∗

∂x

)T
Ax

+
1

2(u∗)TRu∗ +
(
∂J ∗

∂x

)T
Buu

∗

=

1
2xTQx +

(
∂J ∗

∂x

)T
Ax

− 1
2

(
∂J ∗

∂x

)
BuR−1BT

u

(
∂J ∗

∂x

)T
.

Without loss of generality, we set the terminal condition to be null at t = T . We now
follow the sweep method and assume there exists a solution P(t) for t < T and use it for
writing the cost function as a quadratic form. By plugging in this position in the HJB,
we get

0 = 1
2xT Ṗx + 1

2xTQx + xTPAx− 1
2xTPBuR−1BT

uPx. (21)

where the derivatives of J with respect to t and x are now written using P. The resulting
expression can be further manipulated by

VKI - 13 -

- replacing the third term as 2PA = PA + ATP;

- observing that this relation holds for any trajectory x(t) emanating from all the
possible initial conditions x(t0);

- assuming the state to be steady.

Following these three steps, the Riccati equation is finally obtained as

0 = ��̇P + Q + PA + ATP−PBuR−1BT
uP, (22)

with optimal signal u∗(t) = −R−1BT
uPx(t). Interestingly, we can observe that the adjoint

state used in the Hamiltonian formulation adopted in the linear case corresponds to the

term
(
∂J ∗

∂x

)T
. In other words, in the linear limit, the following equivalence holds

λ(t) =
(
∂J ∗

∂x

)T
= Px(t), (23)

that allows us to stress once again the relation with adjoint solutions.

2.3.2 A quick observation on the Hamiltonian function

In the previous section, we observed that the HJB written for the linear plant in Eq. 3
reads as

− ∂J ∗

∂t
= min

u(t)

1
2
(
xTQx + uTRu

)
+
(
∂J ∗

∂x

)T
(Ax + Buu)

 . (24)

The reader may note that on the right-hand side we have the Hamiltonian function used in
Eq. 5. This is not a coincidence, and it can be shown formally by reviewing the formulation
of the optimal control problem in variational form. Further analysis are beyond the scope
of this chapter, but it is interesting to observe that also for the nonlinear cases the HJB
can be rewritten as

− ∂J ∗

∂t
= min

u(t)
[H(x, u,J ∗, t)] (25)

where

H(x, u,J ∗, t) = r(x, u) +
(
∂J ∗

∂x

)T
F(x, u). (26)

From the physical viewpoint, the Hamiltonian function is associated to the energy content
along the trajectories. The HJB equation requires that the Hamiltonian value is minimized
given a prescribed policy. For time-invariant systems, the Hamiltonian function is constant
along an optimal trajectory and for the differential form Ḣ = Ht = 0.

2.4 Discrete systems
In the following sections, the introduced algorithms are formulated in a time-discrete
setting. Considering a time-discrete variable a(t), the corresponding discrete formulation
is

ak = a(k∆t), k = 1, 2, ... (27)

VKI - 14 -

where the sampling period ∆t is constant. Accordingly, the time-discrete state-space
system is defined as

xk+1 = Ãxk + B̃uuk + B̃ddk (28)
yk = C̃2xk + (νy)k (29)
zk = C̃1xk + (νz)k, (30)

where Ã = exp (A ∆t), B̃d,u = Bd,u∆t and C̃1,2 = C1,2, while the remaining quantities are
the time-discrete counterparts of the quantities previously introduced as time-continuous.
For more details, the interested reader can refer to any control book (see e.g. Glad and
Ljung, 2000). In the following, the (̃·) will be dropped to ease the readability.

2.4.1 The linear quadratic regulator (LQR) in discrete systems

As already done in continuous formulation, the linear optimal control is introduced as a
benchmark. We consider the cost function in discrete form as

J (xk) = 1
2

N−1∑
i=k

(
xTi Qxi + uTi Rui

)
+ 1

2xTNPNxN , (31)

and the plant in Eq. 30. By following the sweep method and the procedure adopted in
the continuous case in Sec. 2.2, it can be shown that the optimal control relation reads

uk = −Kxk = −(BT
uPBu + R)−1BT

uPAxk, (32)

with the corresponding discrete algebraic Riccati equation written as

0 = Q−P + ATPA−ATPBu(BT
uPBu + R)−1BT

uPA. (33)

Also in this case, P ∈ Rn×n is a symmetric matrix, positive semi-definite.

2.5 Bellman’s principle of optimality
In parallel to what was done before, we consider now a nonlinear, discrete system intro-
ducing the index k for the time sampling

xk+1 = F(xk) + Bu(xk)uk. (34)

Note that we consider a system where the actuation is modeled using linear relations.
The performance index to be minimized is

Jπ(xk) = h(N,xN) + γ
N−1∑
i=k

r(xi, ui). (35)

The cost function Jπ is the criterion to be minimized with respect to the policy π. Note
that the second term is a sum over the rewards associated with each state xk under control
action uk; also, a parameter is introduced, the discount factor γ ∈ (0, 1), for guaranteeing
convergences of the series. In analogy to the continuous case, we rewrite the performance

VKI - 15 -

index by neglecting the final cost – without loss of generality – and separating the reward
at k from the future one i ≥ k + 1

Jπ(xk) = r(xk, uk) + γ
N−1∑
i=k+1

r(xi, ui)

= r(xk, uk) + γJπ(xk+1). (36)

As already seen in the continuous case, the optimal cost is obtained by minimizing the
following expression

J ∗π (xk) = min
π

[r(xk, uk) + γJ ∗π (xk+1)] . (37)

Eq. 37 is the Bellman equation and describes the behavior of J backward in time. On
the right-hand side of the equation, the minimization is performed on the sum of the
two terms: the instantaneous reward r(xk, uk), function of xk and the control signal uk,
and the future cost function. Moreover, we can observe that Eq. 37 enables to break the
problem in a number of smaller problems. Let’s assume that we can compute the optimal
cost from k + 1 to N for all the possible states xk+1: the optimal cost is thus dependent
on the state xk+1. This is at the heart of the Bellman principle, that we can state using
the following quote taken from Bellman (1957):

"An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision."

This principle is often found in engineering problems of navigation or optimal path. As an
example, one can consider the traveling salesman problem, the aircraft routing problem
or the flight path optimization. Eq. 37 allows optimizing backward in time, from N . It
is called functional equation of dynamic programming (DP). The corresponding optimal
policy is obtained as the minimizer of the expression. Note that these procedures are
by nature off-line planning methods. Indeed, they involve solutions that are backward
in time and knowledge of models (as in the Riccati equations case). From the historical
viewpoint, it was noted within this context that the Bellman equation is the discrete
counterpart of the Hamilton-Jacobi equation that, since then, is now recalled as HJB.

2.5.1 LQR using Bellman equation backward in time

As an exercise, we derive in the following the discrete solution of the LQR problem, based
on the Bellman equation. We consider the quadratic, time-discrete performance index
introduced in Eq. 31

J (xk) = 1
2

N−1∑
i=k

(
xTi Qxi + uTi Rui

)
+ 1

2xTNPNxN ,

with Q ≥ 0, R > 0 and PN ≥ 0. We want to minimize the performance index by
determining u∗k. In order to do that, we proceed by going backward from the last instant
of time N . At k = N , the cost reduces to the terminal cost

JN = 1
2xTNPNxN , (38)

VKI - 16 -

acting here as boundary condition. Stepping backward at k = N − 1, the cost is

JN−1 = 1
2xTNPNxN + 1

2
(
xTN−1QxN−1 + uTN−1RuN−1

)
. (39)

In the evaluation at N −1, we can substitute the terms at k = N and the linear mapping,
obtaining

JN−1 = 1
2 (AxN−1 + BuuN−1)T PN (AxN−1 + BuuN−1)

+ 1
2
(
xTN−1QxN−1 + uTN−1RuN−1

)
. (40)

The optimization is unconstrained, so we perform the gradient ∂JN−1/∂uN−1 = 0, and
get the expression

0 = BT
uPN (AxN−1 + BuuN−1) + RuN−1, (41)

from which we get the optimal action at N − 1. We can collect the terms appearing in
the last relation introducing the feedback control law KN−1 as

u∗N−1 = −KN−1xN−1 (42)
KN−1 =

[
(R + BT

uPNBu)−1BT
uPNA

]
. (43)

We can know get the optimal cost at k = N − 1,

J ∗N−1 = 1
2xTN−1

[
(A−BuKN−1)T PN (A−BuKN−1) + KT

N−1RKN−1 + Q
]

︸ ︷︷ ︸
PN−1

xN−1 (44)

= 1
2xTN−1PN−1xN−1. (45)

The optimal action u∗N−2 can be found by proceeding as done before for N − 1. So by
recursion, proceeding backward as k = N − 1, . . . , 0, we finally find for the k-th step

u∗k = −Kkxk (46)
Kk =

[
(R + BT

uPk+1Bu)−1BT
uPk+1A

]
(47)

Pk =
[
(A−BuKk)T Pk+1 (A−BuKk) + KT

kRKk + Q
]

(48)

with optimal cost given by

J ∗k = 1
2xTk Pkxk. (49)

The solution is equivalent to the Joseph stabilized version of the Riccati equation (Lewis
et al., 2012). It is interesting to observe that the sequence Pk is time varying. As a
consequence a time-varying feedback control law is found also if the system is linear time
invariant. This sequence can have different behaviours, as it can converge or not to a
steady-state matrix. When it converges to the limit Pk = Pk+1, we get a stationary
policy with control law uk = −Kxk. In this case, Eq. 48 corresponds to the algebraic
Riccati equation.

VKI - 17 -

2.6 Approximating the Bellman equation: iterative methods
The solution of the Bellman equation is impractical in most cases because its direct, exact
computations can be performed when a model is known but not too large as the com-
putational costs quickly become prohibitive; it is an example of curse of dimensionality.
However, the properties of the Bellman equation in Eq. 37 can be used for approximating
the exact solutions. In particular, we can make use of the Bellman principle that – as
already seen – allows to break the optimal problem into a set of sub-optimal problems
and observe that the Bellman equation is a contracting, fixed point equation.

In this section we introduce two fundamental iterations: the policy iteration and the
value iteration. The difference between the two strategies is rather subtle, and relies on
the evaluation that is performed first: in one case the focus is on the update of the policy,
while in the second case we consider updates on the value function. We remind that the
cost function is frequently referred to as the value function in the context of maximization
problems. For consistency with the RL literature, regardless of the optimization problem,
we preferably refer to J in Eq. 37 as value function in the following.

2.6.1 Policy iteration (PI)

In policy iteration, we start by choosing an arbitrary policy. We introduce two indexes:
a temporal index k related to the time sampling and an iteration index j related to the
policy iteration. The aim is to cast an iteration process where, at each step j, the policy is
improved. For a given time k, we consider the Bellman equation in Eq. 37 at the iteration
j + 1 as

Jj+1(xk) = r(xk, uk) + γJj+1(xk+1), (50)

based on the policy estimated at the step j. This step is called policy evaluation and
consists of the solution of the Bellman equation in Eq. 50. Based on the computed value
function, it is possible to estimate the associated policy by minimization (Sec. 2.5). Thus,
the policy is evaluated and improved at iteration j + 1 as

πj+1(xk) = arg min
π
Jj+1(xk) = arg min

π
[r(xk, uk) + γJj+1(xk+1)] . (51)

This optimization corresponds to the policy improvement. The resulting policy j + 1 is
used at the following step of the policy iteration.

In summary, at each time k we cast an iteration process consisting of two phases: the
policy evaluation through the solution of the Bellman equation Eq. 50 and the policy
improvement based on the minimization of Eq. 51. The policy computed at the j-th step
is improved until convergence. Once the policy is converged, we move forward in time.

Example: policy iteration in LQR As an example, we consider the iterative solution
of the linear LQR using the policy iteration. This algorithm is described in Hewer (1971)
and Lewis et al. (2012) and allows the computation of the steady state gain K by forward
iteration instead of solving the discrete Riccati equation. We start from the Bellman
equation written for the linear case

Jj+1(xk) = 1
2
(
xTk Qxk + uTkRuk

)
+ Jj+1(xk+1) (52)

VKI - 18 -

with γ = 1. The optimal cost, being quadratic, is written by introducing the variable P

J ∗j+1(xk) = 1
2xTk Pj+1xk, (53)

from which the Eq. 52 is rewritten

xTk Pj+1xk =
(
xTk Qxk + uTkRuk

)
+ xTk+1Pj+1xk+1. (54)

We assume a stationary, linear policy K such that the control action is given by uk =
−Kxk and recall that the discrete state equation reads xk+1 = Axk + Buuk. The policy
evaluation is thus obtained by solving the Lyapunov equation

Pj+1 = Q + KT
j RKj + (A−BuKj)T Pj+1 (A−BuKj) , (55)

corresponding to the Bellman equation in the linear case. The policy improvement is
obtained by introducing the minimization

arg min
uk

[
xTk Qxk + uTkRuk + (Axk + Buuk)T Pj+1 (Axk + Buuk)

]
,

performed with respect to uk. This minimization leads to the following relation

Ruk + BT
uPj+1Buuk + BT

uPj+1Axk = 0,

reordering with respect of uk, we get

Kj+1 =
(
R + BT

uPj+1Bu

)−1
BT
uPj+1A.

In summary, at each step j of the policy iteration, a Lyapunov equation is solved and
Pj computed; based on Pj, the policy is updated until convergence to the solution of
the discrete Riccati equation defined at time index k. In case of stationary policies,
the solution is steady; the reader can compare this procedure with the solution of the
backward algorithm analyzed in Eq. 2.5.1.

2.6.2 Value iteration (VI)

A drawback of policy iteration scheme described in the previous section is the policy
evaluation step consisting of the solution of the Bellman equation in Eq. 50. In the linear
limit, corresponding to the LQR problem, this step corresponds to the solution of the
Lyapunov equation in Eq. 55. In both cases, the solution can be challenging, for instance
when the dimension of the problem is large. In alternative, we can leverage the properties
of the Bellman operator, that is a contraction map: the solution iteratively converges
towards a fixed point being the solution of the equation. Thus, instead of solving the
Bellman equation in Eq. 37, we consider a value iteration for circumventing it. The main
idea is to replace this direct solution with a recursion. By introducing the index i, for
avoiding mis-interpretations, the following relation is obtained

J i+1(xk) = r(xk, uk) + γJ i(xk+1). (56)

VKI - 19 -

We note that the left-hand side is evaluated at step i + 1, computed on the estimates of
the previous step i. This marks a substantial difference as the Eq. 56 is not anymore a
Bellman equation. The policy is computed based on J i+1(xk) by minimizing the following
relation

πi+1(xk) = arg min
π

[
r(xk, uk) + γJ i+1(xk+1)

]
. (57)

Instead of evaluating and then improving the value function, the value iteration algorithm
updates the state value function iteratively by calculating all possible rewards in the
minimization by looking ahead.

Both policy iteration and value iteration are guaranteed to converge to the optimal
values as they imply the fulfilment of the Bellman equation; policy iteration converges
quicker than value iteration to the optimal solution, but it requires the solution of a
Bellman equation at each step of the loop. In this sense, value iteration is a slower
process, but it has the advantage of approximating by recursion the Bellman solution.

Example: value iteration in LQR As mentioned in Sec. 2.6.1, in the linear limit, the
solution of the Bellman equation corresponds to the solution of an associated Lyapunov
equation. Analogously, value iteration is a Lyapunov recursion. We consider the value
function with quadratic reward and γ = 1

J i+1(xk) = 1
2
(
xTk Qxk + uTkRuk

)
+ J i(xk). (58)

We rewrite the value function as a quadratic form by means of P. Following the same
steps used for the Hewer algorithm, we get to the relation

Pi+1 = Q + (Ki)TRKi +
(
A−BuKi

)T
Pi
(
A−BuKi

)
. (59)

Once again, it is worth stressing that on the left-hand side the index is i+ 1, while on the
right-hand side we are considering quantities computed at the previous iteration step i.
So, this is not a Lyapunov equation, but the corresponding recursive form based on the
idea that the solution converges to a fixed point. The algorithm proceeds by computing
the policy associated with the updated P.

2.6.3 Generalized policy iteration

The value iterations allows to avoid the solution of the Bellman equation. We can borrow
this idea for generalizing the policy iteration. As already mentioned, the policy iteration
consists of two steps: the policy evaluation and the policy improvement. Let’s reconsider
the policy evaluation at step j: we replace the Bellman equation with a recursion over
the index i, using the value iteration trick. As a consequence the following relation is
obtained

J i+1
j (xk) = r(xk, uk) + γJ i

j (xk+1) (60)

that is iterated until convergence of the value function. Once J i+1
j associated with the

policy πj is converged, we improve the policy using Eq. 51

πj(xk) = arg min
π
J i+1
j (xk) = arg min

π

[
r(xk, uk) + γJ i+1

j (xk+1)
]

VKI - 20 -

and get πj+1. This process is called iterative policy iteration: it shares the same scheme of
the policy iteration, but includes the recursive scheme of the value iteration in the policy
evaluation step.

The iterative policy iteration is characterized by two nested iterations. In practice,
it is not necessary to iterate until convergence the evaluation step. This idea leads to
the concept of generalized policy iteration, where the simultaneous processes of policy
evaluation and policy improvement are performed; the interested reader can refer for
further details to the review work by Bertsekas (2011).

2.7 Reinforcement learning (RL)
DP allows us to find the optimal value and policy backward in time. Approximations are
possible using the time-forward iterations analyzed in the previous section. However, we
can take a further step and observe that the policy iteration and the value iteration can
also be applied without a physical model at hand. By inspecting the Bellman equation,
we observe that estimates of the value function J and the scores associated with the
reward r can be obtained by solely registering an observable of the state yk

Jπ(yk) = min
π

[r(yk, uk) + γJπ(yk+1)] . (61)

We can do a parallel with standard tools designed on identified model of the system
to be controlled: it is not necessary to estimate the full state xk, but it is sufficient to
identify a proxy x̂k or directly compute the transfer functions capturing the correct input-
output behavior of the system (see i.e. Kim and Bewley, 2007). In perfect analogy, we
note that it suffices to observe yk and measure the reward r for recovering Jπ(yk) from
the interactions of the system with the environment under the policy π. This enables
to circumvent the need of a large model of the system, while preserving the possibility
of approximating optimal solutions. In fact, using iterative methods, it is possible to
approximate the DP by learning a policy interacting with the system, forward-in-time,
and without the knowledge of a model a-priori. These elements define the perimeter of
reinforcement learning (RL), where the agent interacts with the environment and learns
from it the optimal or suboptimal policies based on sequential decisions that improve the
control actions on the experience by observing the response of the system. In principle,
the identified policy is optimal if the associated Jπ(yk) is an approximate solution of the
Bellman equation.

2.7.1 Markov decision processes (MDP)

For conciseness and easiness of the discussion, we have described how, from standard
control, it is possible to get to the definition of the Bellman equation and how the lat-
ter can be approximated iteratively. We have applied deterministic linear or nonlinear
descriptions of the systems at hand. However, the most natural framework for studying
RL is statistical and is represented by Markov decision processes (MDP). MDP can also
be applied for describing the numerous control strategies mentioned so far, such as opti-
mal control, adaptive control or model-predictive control. As such, it represents an ideal
framework for a unifying perspective.

VKI - 21 -

We introduce a set of states X (or state space), a set of actions U (or action space).
The transition probability P : X × U × X → [0, 1] provides the conditional probability

Pux,x′ = p {x′|x, u} , (62)

transitioning from the state x ∈ X to the state x′ ∈ X under a given action u ∈ U . We also
define a reward R : X ×U ×X → R that provides a score associated with the transition.
The MDP is thus defined by the four elements (X ,U ,P ,R). The Markov property (or
Markovianity) refers to the temporal dependence of the transition probabilities solely
related to the transitions from the state x to the following x′ without being a function
of previous steps. Within this context, the policy is a map π : X × U → [0, 1] with
conditional probability

π(x, u) = p {x|u} (63)

of taking an action u ∈ U when the MDP is in x ∈ X . Note that the policy is stochastic
and is defined by a distribution. If the probability is 1, the policy is deterministic.

Starting from these elements, it is possible to rewrite the policy iteration, its gener-
alized form, and the value iteration, which lead to numerous versions of RL. We refer to
the books by Bertsekas and Tsitsiklis (1996); Puterman (2014); Sutton and Barto (2018)
for a detailed analysis.

VKI - 22 -

3 Elements of reinforcement learning in practice
The overview proposed in the previous section enables to capture the traits in common
between control and reinforcement learning (RL), starting from dynamic programming
(DP). In RL, the learning step of the policy is performed interacting with the system,
forward-in-time, and without the knowledge of a model a-priori. If we are able to identify
policies that are approximate solutions of the Bellman equation, we can also guarantee
these policies to be sub-optimal within a threshold or optimal. Some definitions were
already introduced in Sec. 2.1 and in Sec. 2.7.1, where we have seen that the most ap-
propriate framework for describing RL is Markov Decision Processes (MDP). However, as
the reader may notice, the common practice of reinforcement is characterized by a specific
jargon. We aim here at reconciling at least partially this gap by introducing some defi-
nitions and concepts to help the reader establish connections with the common practice,
and categorize the different algorithms currently available in literature.

3.1 A short glossary
In the following, we provide some definitions commonly found in RL. The first distinction
is related to the nature of the policies. In particular, we define as

- Target policy, the policy that an RL agent learns for fulfilling the value function;

- Behavior policy, a policy that the agent learns during the exploration, i.e. when
the agent interacts with the environment.

The distinction between target and behavior policies allows to define on-policy and off-
policy learning. In particular

- On-policy learning seeks or improves the policy during exploration: behavior and
target policies are identical. Examples of on-policy are provided by Monte-Carlo
searching or the Proximal Policy Optimization (PPO), see Schulman et al. (2017).

- Off-policy learning is characterized by a learning process where behavior policies
differs from target policies. A landmark example is provided by Q-learning (see
Watkins and Dayan, 1992, and below).

On-policy and off-policy are naturally related to the concepts of exploration and exploita-
tion, already mentioned in this chapter. We can now define them as follows

- Exploration allows the agent to improve the knowledge of the environment and
the interaction between action and environment in order to maximize/optimize long-
term decisions. Behavior policies are key in this process.

- Exploitation tends to get the best short-reward by exploiting the current estimates
of the action-state space. It is associated with the notion of greedy action, as it is
characterized by a short-term reward. However, this may lead to a sub-optimal
behavior.

VKI - 23 -

These two strategies are often seen as opposites, giving rise to the so-called exploration-
exploitation dilemma. Balancing these strategies is essential in RL problems, as explo-
ration and exploitation replace modeling when no model is available. Currently, both
model-free and model-based RL algorithms can be found in the literature, with the sec-
ond class gaining momentum; an example is RL based on modeling Gaussian processes
informed (Chua et al., 2018). Among the classical strategies, we can distinguish three
classes (Lewis et al., 2012)

- Exact computations If complete knowledge of the system is available, for instance
by system identification or reduced-order modeling, one can run exact computations.
The controller is designed upon the preliminary identification step, typically in an
open loop – thus off policy. Literature in flow control insofar has been mostly
based on this approach. In principle, dynamic programming (DP) can be applied,
including iterative approximations.

- Monte Carlo (MC) learning MC learning strongly relies on the idea of episodic
task and exploration: we sample different trajectories of the system emanating from
prescribing the initial state and assess it. The expected values are approximated by
repetitively averaging along the sampled paths, thus convergence is guarantee if we
go through all the states many time. In order to do this, we assume the Markov
decision process (MDP) model to be ergodic. Iterative learning control and machine
learning control are closely related. This sampling methodology is fully model-free.

- Temporal difference methods These methods lie at the intersection of DP and
MC methods: they are model-free (like MC) but can be implemented online with
step-by-step computations (unlike MC). Combined with the policy iteration and
value iteration, it constitutes the basis of a large body of algorithms included in RL.
More details are given in the next section.

3.2 Identifying the policy
Among the possible classifications of RL algorithms, one of the most common ways is to
consider the update of the policy and if the associated value function is a solution of an
approximated Bellman equation or not; we thus introduce the actor and critic.

- Actor-based algorithms This approach characterizes the policy-based methods,
where the policy is learnt without learning the expected outcomes of different poli-
cies. Optimality of the policy is not guaranteed. An example is given by the
reinforce algorithm (Williams, 1992).

- Critic-based algorithms In this approach, we introduce a state-value function
that we learn during the training process and aim at maximizing. The actions are
chosen by evaluating each state; thus, we don’t identify a policy as the actions
are discrete in time. The resulting action can be associated with optimal value
functions, evaluated using temporal difference (TD). An example of this technique
is the Q-learning (Watkins and Dayan, 1992).

VKI - 24 -

Actor-based algorithms are often referred to as policy search (PS) algorithms, as the pol-
icy is sought via optimization techniques (gradient-based or gradient-free). Critic-based
algorithms instead are closely related to value iteration and policy iteration, combined
with TD.

3.2.1 Temporal difference (TD)

Temporal difference (TD) stands between Monte Carlo methods and dynamic program-
ming (DP): in TD, the learning process is performed by bootstrapping from the current
estimate of the value function, thus we sample from the environment (like in MC), but per-
form updates based on current estimates (like DP methods). For simplicity, we consider
the Bellman equation along one trajectory, associated with a given policy π as

Jπ(xk) = rk + γJπ(xk+1) . (64)

We introduce the so-called TD, as the error between the left hand side and the right hand
side of Eq. 64

ek = rk + γJπ(xk+1)− Jπ(xk). (65)

In principle, the Bellman equation is fulfilled when the error ek → 0. In practice, we can
achieve optimality of the solution if we minimize the expression in Eq. 65. TD can be
applied in policy iteration or value iteration.

3.2.2 Q-learning and SARSA

An example of TD algorithm is represented by the Q-learning (Watkins and Dayan,
1992). Q-learning is an off-policy method, which – we remind – means that the optimal
action-value function Q is estimated independently of the current policy (exploration).
An optimal Q-learning step can be expressed as

Qk+1(xk, uk)← Qk(xk, uk)(1− α) + α
[
rk+1 + γmin

uk+1
Qk(xk+1, uk+1)

]
, (66)

where 0 ≤ α ≤ 1 is the learning rate and 0 ≤ γ ≤ 1 is the discount factor. The action u
is discrete.

It is interesting to compare this strategy with the SARSA (State-Action-Reward-State-
Action) algorithm (Sutton and Barto, 2018). In contrast to Q-learning, which is an off-
policy algorithm, SARSA considers the actual action taken by the agent, incorporating
the policy’s exploration behavior into its updates. Thus, it is an on-policy algorithm
relying on TD where the updates of the action-value function are based on the current
action taken by the agent. This often leads to more conservative policies in environments
with high variability.

3.2.3 Actor-critic algorithms

This approach combines policy-based (actor) and value-based (critic) methods, allowing
for simultaneous learning of both the policy and the value function. In these architectures,

VKI - 25 -

the policy and the value function are defined by distinct parametric structures. Different
learning procedures can be considered.

In policy search algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017), the agent interacts with the environment, and a score is assigned to each
trajectory. These scores enable the update of the critic, which evaluates the quality of the
actions taken. Consequently, the critic is trained based on the values estimated during
the rollout of the policies.

A different approach is taken in algorithms like the Deep Deterministic Policy Gradient
(DDPG) (Silver et al., 2014) or the soft actor-critic (SAC) (Haarnoja et al., 2018). These
algorithms are more closely related to value-based strategies. In these cases, the TD error
is utilized for updating the critic, as described by (Sutton and Barto, 2018)

Qk+1(xk, uk)← Qk(xk, uk) + αeTD (67)
eTD = rk+1 + γQk(xk+1, uk+1)−Q(xk, uk). (68)

The target Q-value is computed using the reward and the estimated Q-value of the next
state by minimizing eTD. Importantly, the actor is updated by using the gradients of the
Q-value with respect to the parameters defining the actor’s policy.

The sequence of updates highlights a significant distinction between the two ap-
proaches. In the value-based actor-critic algorithms (DDPG, SAC), the policy update
is directly guided by the critic, allowing for the potential acquisition of optimal policies if
the Bellman equation is accurately approximated during the TD process. In contrast, in
actor-based actor-critic algorithms (PPO), the policies are selected with the help of the
critic but optimality is not guaranteed through a proxy of the Bellman equation.

3.3 Numerical approximations
A final aspect that is crucial in the practice of RL is the numerical approximation of the
value function and the policy. So far we have referred to the approximation of analytical
solutions using the appropriate iterative schemes. In practice, however, these functions
must be represented and updated during the learning process with the appropriate ex-
pansion, whether linear or nonlinear.

A first example of approximation, in presence of linear or quadratic terms in the value
function, is provided by the product of vectors. The quadratic form can be manipulated
as follows

J (xk) = 1
2xTk Pxk = 1

2vec(P)T (xk ⊗ xk) = vec(P)Tφ(xk), (69)

where the operator vec(P) stacks the column of the matrix P in a vector. The Kronecker
product ⊗ allows to define φ, where the entries are the pairwise products of the vector
components (Lewis et al., 2012). Due to the redundant terms, given n the dimension of
the vector xk, the resulting new vectors are of dimension n(n+1). Assuming the Bellman
equation has a smooth solution, locally, higher order approximation can also be obtained
as

J (xk) ≈
L∑
i=1

wiφi(xk) + εL(xk) = WTΦ(xk) + εL(xk), (70)

VKI - 26 -

where εL is the approximation error. When introducing the basis vector Φ, the problem
is translated into the identification of the coefficients of expansion W. The basis can
be represented by polynomials or Volterra series; recent applications of RL using sparse
identification of nonlinear dynamics (SINDy) rely on this idea, see Arora et al. (2022);
Zolman et al. (2023).

As mentioned in the introduction, artificial neural networks (ANN) are the current
working-horse for the function representation. The use of ANN was already suggested
in early form the 90is by Bertsekas and Tsitsiklis (1996) (neuro-dynamic programming)
because of the remarkable versatility in representing strongly nonlinear functions. In the
case of ANN, L is the number of hidden-layer neurons, the basis is composed by the
activation functions (sigmoid, hyperbolic tangent, Gaussian radial basis functions...), and
the weights are the ones associated with the ANN. The drawback of ANN, however, is
the tendency to data hungriness as well as the risk of introducing more parameters than
are actually needed for the problem. In other words, the expressivity of the ANN can
prove detrimental in terms of data required during the training and lack of generalization
(over-fitting problem). A first remedy is to limit the number of layers and neurons to
the necessary, possibly including physics constraints (linear policies, quadratic cost func-
tions). In alternative, one can choose parsimonious representations such as tensor-based
composition (Gorodetsky, 2017).

VKI - 27 -

4 Essential bibliography and final remarks
Machine learning (ML) applications have gained tremendous momentum in the last decade;
thus, it is rather natural to expect a quick evolution of standard approaches of analysis
and optimization of fluid flows boosted by statistical learning, and more specifically RL.
However, some caveats are in order. As mentioned in these pages, reinforcement learn-
ing shares elements from numerous related fields, ranging from applied mathematics and
statistics to control, engineering, and, more recently deep learning. Because of the vast-
ness of the topic and the different angles one can use for tackling the problem, the risk is
to approach RL in naïve way: we believe that a simple combination of off-the-shelf algo-
rithms and environments to be controlled while opening new venues of research in terms
of possible applications, can result detrimental on the longer run in the full deployment
of RL’s potential. Also, we like to emphasize the importance of a preliminary analysis
of the open-loop system, since the physics to be controlled may limit the performance
and robustness of the closed loop and thus require specific choices of sensing and control
authorities, as well as the need for improved modeling and algorithms.

As mentioned in this chapter, solutions in RL were found in parallel with control so-
lutions, departing from the same roots, namely the Hamilton-Jacobi-Bellman equation
and dynamic programming (DP). Not surprisingly, model predictive control can be ana-
lyzed as part of reinforcement learning (RL), while a note written by Sutton et al. (1992)
highlights the close relation between adaptive filters and actor-based RL controllers; re-
markably, introducing a critic into adaptive control one may guarantee optimality. This is
currently a rather active field of research that opened up at the crossing between control
and RL, which, in fact, now can be reconciled.

This chapter is far from being exhaustive, as it provides only a quick overview of some
of the main concepts behind RL. Nonetheless, we hope it can trigger the curiosity to
develop solutions better suited for fluid mechanics problems. The interested reader can
explore the subject further starting from the works of F. L. Lewis and collaborators in
optimal control (Lewis et al., 2012) and the numerous references by D. Bertsekas, among
which it is worth citing Bertsekas (1995) and Bertsekas (2019). For a viewpoint from
statistics, being the framework inherently based on Markov decision processes, a landmark
reference is the book by Puterman (2014). Together with the classic by Sutton and Barto
(2018), these works are excellent starting points. Numerous resources are available online,
including recordings of classes. We can mention the material provided by S. Levine. From
a fluid mechanics perspective – besides research papers – the interested reader can start
from the review by Brunton et al. (2020) and the book by Brunton and Kutz (2022) for
a larger perspective on the need for data-driven tools in the current engineering practice.
A review in RL for fluids can be found in Vignon et al. (2023), while a first comparative
analysis with different tools is carried out by Pino et al. (2023). The packages in OpenFoam
by Wang et al. (2022) and the one in FEniCS by Paehler et al. (2023) provide convenient
platforms for testing RL in fluids, complementing the numerous implementation available
online such as Gymnasium from OpenAI or Tensorforce.

We believe this is only the beginning of an exciting venue of research with several
open questions. Among these issues, we can note that optimality of the solution is not
always guaranteed in practice, and a detailed analysis of the robustness of these policies
has been so far elusive. However, a successful protocol based on RL should require the

VKI - 28 -

https://people.eecs.berkeley.edu/~svlevine/
https://github.com/Farama-Foundation/Gymnasium
https://tensorforce.readthedocs.io/en/latest/

assessment of the performance with respect to the uncertainties of the system, such as
the evolution of the environment parameters, or the impact that plant limitation has
such as the presence of input-output time-delays. In this sense, the certification problem
must be considered. Among the numerous venues of research for future works, safe RL
is particularly appealing to ensure reasonable system performance with respect to the
constraints during the exploration/exploitation through external knowledge, physics or
the guidance of a risk metric (Garcıa and Fernández, 2015).

Acknowledgments The author would like to thank Lionel Mathelin (CNRS-LISN) for
sharing ideas on numerous data-driven subjects and providing comments on the chap-
ter; Miguel A. Mendez (VKI-ULB) and Alessandro Parente (ULB) for suggestions on the
final version of this manuscript; Rémy Hosseinkhan-Boucher, Amine Saibi, and past col-
laborators Michele Alessandro Bucci (Safran-Tech) and Nicoló Fabbiane (Onera) for their
stimulating viewpoints. Part of this research was funded under grants ANR-DGA Flow-
Con (project-ANR-17-ASTR-0022) and ANR-JCJC REASON (ANR-21-CE46-0008).

VKI - 29 -

References
Abergel, F. and Temam, R. (1990). On some control problems in fluid mechanics. Theo-
retical and Computational Fluid Dynamics, 1(6):303–325.

Arbabi, H., Korda, M., and Mezić, I. (2018). A data-driven koopman model predictive
control framework for nonlinear partial differential equations. In 2018 IEEE Conference
on Decision and Control (CDC), pages 6409–6414. IEEE.

Arora, R., da Silva, B. C., and Moss, E. (2022). Model-based reinforcement learning with
SINDy. arXiv preprint arXiv:2208.14501.

Åström, K. J. and Wittenmark, B. (2008). Adaptive control. Courier Corporation.

Bae, H. J. and Koumoutsakos, P. (2022). Scientific multi-agent reinforcement learning for
wall-models of turbulent flows. Nature Communications, 13(1):1443.

Bagheri, S., Henningson, D. S., Hoepffner, J., and Schmid, P. J. (2009). Input-output
analysis and control design applied to a linear model of spatially developing flows. App.
Mech. Rev, 62(2).

Bellman, R. (1957). A Markovian decision process. Journal of Mathematics and Mechan-
ics, pages 679–684.

Bellman, R. (1958). Dynamic programming and stochastic control processes. Inf. Control.,
1(3):228–239.

Bertsekas, D. (2011). Approximate policy iteration: a survey and some new methods. J.
Control Theory Appl.

Bertsekas, D. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena Scientific.

Bertsekas, D. P. (1995). Dynamic programming and optimal control. Athena scientific
Belmont, MA.

Bertsekas, D. P. (2019). Reinforcement learning and optimal control. Athena Scientific.

Bewley, T., Luchini, P., and Pralits, J. (2016). Methods for solution of large optimal
control problems that bypass open-loop model reduction. Meccanica, 51(12):2997–3014.

Bewley, T., Temam, R., and Ziane, M. (2000). A general framework for robust control in
fluid mechanics. Physica D: Nonlinear Phenomena, 138:360–392.

Bewley, T. R., Moin, P., and Temam, R. (2001). Dns-based predictive control of tur-
bulence: an optimal benchmark for feedback algorithms. Journal of Fluid Mechanics,
447:179–225.

Biferale, L., Bonaccorso, F., Buzzicotti, M., Clark Di Leoni, P., and Gustavsson, K.
(2019). Zermelo’s problem: Optimal point-to-point navigation in 2D turbulent flows
using reinforcement learning. Chaos, 29(10):103138.

VKI - 30 -

Borra, F., Biferale, L., Cencini, M., and Celani, A. (2022). Reinforcement learning for
pursuit and evasion of microswimmers at low reynolds number. Physical Review Fluids,
7(2):023103.

Brunton, S. L. and Kutz, J. N. (2022). Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press.

Brunton, S. L. and Noack, B. R. (2015). Closed-loop turbulence control: Progress and
challenges. Appl. Mech. Rev., 67(5):050801.

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid
mechanics. Annu. Rev. Fluid Mech., 52:477–508.

Bucci, M. A., Semeraro, O., Allauzen, A., Wisniewski, G., Cordier, L., and Mathelin, L.
(2019). Control of chaotic systems by deep reinforcement learning. Proc. R. Soc. A,
475(2231):20190351.

Cattafesta III, L. N. and Sheplak, M. (2011). Actuators for active flow control. Annu.
Rev. Fluid Mech., 43:247–272.

Chevalier, M., Hœpffner, J., Åkervik, E., and Henningson, D. (2007). Linear feedback
control and estimation applied to instabilities in spatially developing boundary layers.
J. Fluid Mech., 588:163–187.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, pages 4754–4765.

Cvitanović, P., Davidchack, R. L., and Siminos, E. (2010). On the state space geometry
of the Kuramoto–Sivashinsky flow in a periodic domain. SIAM Journal on Applied
Dynamical Systems, 9(1):1–33.

Duriez, T., Brunton, S. L., and Noack, B. R. (2016). Machine Learning Control: Taming
Nonlinear Dynamics and Turbulence. Springer.

Dussauge, T. P., Sung, W. J., Pinon Fischer, O. J., and Mavris, D. N. (2023). A reinforce-
ment learning approach to airfoil shape optimization. Scientific Reports, 13(1):9753.

Fabbiane, N., Semeraro, O., Bagheri, S., and Henningson, D. S. (2014). Adaptive and
model-based control theory applied to convectively unstable flows. App. Mech. Rev,
66(6):060801.

Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S., and Henningson, D. S.
(2015). On the role of adaptivity for robust laminar flow control. J. Fluid Mech., 767.

Fan, D., Yang, L., Wang, Z., Triantafyllou, M. S., and Karniadakis, G. E. (2020). Re-
inforcement learning for bluff body active flow control in experiments and simulations.
PNAS, 117(42):26091–26098.

Foucart, C., Charous, A., and Lermusiaux, P. F. (2023). Deep reinforcement learning for
adaptive mesh refinement. Journal of Computational Physics, 491:112381.

VKI - 31 -

Gad-el Hak, M. (2000). Flow Control: Passive, Active, and Reactive Flow Management.
Cambridge University Press.

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement
learning. J. Mach. Learn. Res., 16(1):1437–1480.

Glad, T. and Ljung, L. (2000). Control Theory. Taylor & Francis, London.

Goldin, N., King, R., Pätzold, A., Nitsche, W., Haller, D., and Woias, P. (2013). Laminar
flow control with distributed surface actuation: damping tollmien-schlichting waves
with active surface displacement. Experiments in fluids, 54:1–11.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning. MIT
press Cambridge.

Gorodetsky, A. A. (2017). Continuous low-rank tensor decompositions, with applications
to stochastic optimal control and data assimilation. PhD thesis, Massachusetts Institute
of Technology.

Guéniat, F., Mathelin, L., and Hussaini, M. Y. (2016). A statistical learning strategy for
closed-loop control of fluid flows. Theo. Comput. Fluid Dyn., 30:1–14.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu,
H., Gupta, A., Abbeel, P., et al. (2018). Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905.

Hervé, A., Sipp, D., Schmid, P. J., and Samuelides, M. (2012). A physics-based approach
to flow control using system identification . J. Fluid Mech., 702:26–58.

Hewer, G. (1971). An iterative technique for the computation of the steady state gains for
the discrete optimal regulator. IEEE Transactions on Automatic Control, 16(4):382–
384.

Högberg, M., Bewley, T. R., and Henningson, D. S. (2003). Linear feedback control and
estimation of transition in plane channel flow. Journal of Fluid Mechanics, 481:149–175.

Högberg, M. and Henningson, D. S. (2002). Linear optimal control applied to instabilities
in spatially developing boundary layers. Journal of Fluid Mechanics, 470:151–179.

Juillet, F., McKeon, B., and Schmid, P. J. (2014). Experimental control of natural per-
turbations in channel flow. J. Fluid Mech., 752:296–309.

Keramati, H., Hamdullahpur, F., and Barzegari, M. (2022). Deep reinforcement learn-
ing for heat exchanger shape optimization. International Journal of Heat and Mass
Transfer, 194:123112.

Kim, J. and Bewley, T. R. (2007). A linear systems approach to flow control. Annu. Rev.
Fluid Mech., 39:383–417.

Kühnen, J., Song, B., Scarselli, D., Budanur, N. B., Riedl, M., Willis, A. P., Avila, M.,
and Hof, N. (2018). Destabilizing turbulence in pipe flow. Nat. Phys., 14(4):386–390.

VKI - 32 -

Leclercq, C., Demourant, F., Poussot-Vassal, C., and Sipp, D. (2019). Linear iterative
method for closed-loop control of quasiperiodic flows. Journal of Fluid Mechanics,
868:26–65.

Lewis, F. L., Vrabie, D., and Syrmos, V. L. (2012). Optimal control. John Wiley & Sons.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., andWier-
stra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Ljung, L. (1999). System identification. Wiley Online Library.

Losse, N. R., King, R., Zengl, M., Rist, U., and Noack, B. R. (2011). Control of tollmien–
schlichting instabilities by finite distributed wall actuation. Theoretical and Computa-
tional Fluid Dynamics, 25:167–178.

Luchini, P. and Bottaro, A. (2014). Adjoint equations in stability analysis. Ann. Rev.
Fluid, 46:493–517.

Ma, Z., Ahuja, S., and Rowley, C. W. (2011). Reduced-order models for control of fluids
using the eigensystem realization algorithm. Theor. Comp. Fluid Dyn., 25(1-4):233–247.

Marra, L., Meilán-Vila, A., and Discetti, S. (2024). Self-tuning model predictive control
for wake flows. arXiv preprint arXiv:2401.10826.

Noack, B. R., Morzynski, M., and Tadmor, G. (2011). Reduced-order modelling for flow
control, volume 528. Springer Science & Business Media.

Novati, G., de Laroussilhe, H. L., and Koumoutsakos, P. (2021). Automating turbulence
modelling by multi-agent reinforcement learning. Nature Machine Intelligence, 3(1):87–
96.

Novati, G., Mahadevan, L., and Koumoutsakos, P. (2019). Controlled gliding and perching
through deep-reinforcement-learning. Physical Review Fluids, 4(9):093902.

Paehler, L., Callaham, J., Ahnert, S., Adams, N., and Brunton, S. (2023). Hydrogym: A
reinforcement learning control framework for fluid dynamics. Bulletin of the American
Physical Society.

Pino, F., Schena, L., Rabault, J., and Mendez, M. A. (2023). Comparative analysis of
machine learning methods for active flow control. Journal of Fluid Mechanics, 958:A39.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Rabault, J., Kuchta, M., Jensen, A., Réglade, U., and Cerardi, N. (2019). Artificial
neural networks trained through deep reinforcement learning discover control strategies
for active flow control. J. Fluid Mech., 865:281–302.

Rabault, J., Ren, F., Zhang, W., Tang, H., and Xu, H. (2020). Deep reinforcement
learning in fluid mechanics: A promising method for both active flow control and shape
optimization. J Hydrodynam B ., 32:234–246.

VKI - 33 -

Recht, B. (2019). A tour of reinforcement learning: The view from continuous control.
Annu. Rev. Control Robot. Auton. Syst., 2:253–279.

Reddy, G., Wong-Ng, J., Celani, A., Sejnowski, T. J., and Vergassola, M. (2018). Glider
soaring via reinforcement learning in the field. Nature, 562(7726):236–239.

Rowley, C. W. (2005). Model reduction for fluids, using balanced proper orthogonal
decomposition. Int. J. Bifurcation Chaos, 15(03):997–1013.

Rowley, C. W. and Dawson, S. T. (2017). Model reduction for flow analysis and control.
Annual Review of Fluid Mechanics, 49:387–417.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Semeraro, O., Bagheri, S., Brandt, L., and Henningson, D. S. (2013a). Transition delay
in a boundary layer flow using active control. J. Fluid Mech., 731(9):288–311.

Semeraro, O., Pralits, J. O., Rowley, C., and Henningson, D. S. (2013b). Riccati-less ap-
proach for optimal control and estimation: an application to two-dimensional boundary
layers. J. Fluid Mech., 731:394–417.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic Policy Gradient Algorithms. In International Conference on Machine
Learning, pages –.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without
human knowledge. Nature, 550(7676):354–359.

Sipp, D. and Schmid, P. J. (2016). Linear closed-loop control of fluid instabilities and
noise-induced perturbations: A review of approaches and tools. Appl. Mech. Rev.,
68(2):020801.

Sturzebecher, D. and Nitsche, W. (2003). Active cancellation of Tollmien–Schlichting
instabilities on a wing using multi-channel sensor actuator systems. Intl J. Heat and
Fluid Flow, 24:572–583.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Sutton, R. S., Barto, A. G., and Williams, R. J. (1992). Reinforcement learning is direct
adaptive optimal control. IEEE Control Systems Magazine, 12(2):19–22.

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program, achieves master-
level play. Neural computation, 6(2):215–219.

Van Overschee, P. and De Moor, B. (2012). Subspace Identification for Linear Systems:
Theory – Implementation – Applications. Springer Science & Business Media.

VKI - 34 -

Vergassola, M., Villermaux, E., and Shraiman, B. I. (2007). Infotaxis as a strategy for
searching without gradients. Nature, 445(7126):406–409.

Verma, S., Novati, G., and Koumoutsakos, P. (2018). Efficient collective swimming by
harnessing vortices through deep reinforcement learning. PNAS, 115(23):5849–5854.

Vignon, C., Rabault, J., and Vinuesa, R. (2023). Recent advances in applying deep
reinforcement learning for flow control: Perspectives and future directions. Physics of
Fluids, 35(3).

Viquerat, J., Rabault, J., Kuhnle, A., Ghraieb, H., Larcher, A., and Hachem, E. (2021).
Direct shape optimization through deep reinforcement learning. Journal of Computa-
tional Physics, 428:110080.

Wang, Q., Yan, L., Hu, G., Li, C., Xiao, Y., Xiong, H., Rabault, J., and Noack, B. R.
(2022). Drlinfluids: An open-source python platform of coupling deep reinforcement
learning and openfoam. Physics of Fluids, 34(8).

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256.

Xiao, D. and Papadakis, G. (2019). Nonlinear optimal control of transition due to a pair of
vortical perturbations using a receding horizon approach. Journal of Fluid Mechanics,
861:524–555.

Yang, J., Dzanic, T., Petersen, B., Kudo, J., Mittal, K., Tomov, V., Camier, J.-S.,
Zhao, T., Zha, H., Kolev, T., et al. (2023). Reinforcement learning for adaptive mesh
refinement. In International Conference on Artificial Intelligence and Statistics, pages
5997–6014. PMLR.

Zhou, K., Doyle, J. C., and Glover, K. (2002). Robust and Optimal Control. Prentice
Hall, New Jersey.

Zolman, N., Fasel, U., Kutz, N., and Brunton, S. (2023). Sindy-rl: Interpretable and
efficient reinforcement learning for fluid flow control. Bulletin of the American Physical
Society.

VKI - 35 -

	Flow control and reinforcement learning
	Standard approaches in flow control: a brief overview
	Reinforcement learning in flow control
	Organization of the chapter

	From nonlinear control to reinforcement learning
	Nomenclature and state space representation
	Optimal control in linear system: the Riccati equation
	The Hamilton-Jacobi-Bellman equation
	From the HJB equation to the Riccati equation in linear plants
	A quick observation on the Hamiltonian function

	Discrete systems
	The linear quadratic regulator (LQR) in discrete systems

	Bellman's principle of optimality
	LQR using Bellman equation backward in time

	Approximating the Bellman equation: iterative methods
	Policy iteration (PI)
	Value iteration (VI)
	Generalized policy iteration

	Reinforcement learning (RL)
	Markov decision processes (MDP)

	Elements of reinforcement learning in practice
	A short glossary
	Identifying the policy
	Temporal difference (TD)
	Q-learning and SARSA
	Actor-critic algorithms

	Numerical approximations

	Essential bibliography and final remarks

