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bLISN-CNRS, Université Paris-Saclay, Orsay, 91440, France,
cTAU-Team, INRIA Saclay, LISN, Université
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Abstract

This study presents a novel hybrid approach that combines Graph Neural
Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equa-
tions to enhance the accuracy of mean flow reconstruction across a range
of fluid dynamics applications. Traditional purely data-driven Neural Net-
works (NNs) models, often struggle maintaining physical consistency. More-
over, they typically require large datasets to achieve reliable performances.
The GNN framework, which naturally handles unstructured data such as
complex geometries in Computational Fluid Dynamics (CFD), is here inte-
grated with RANS equations as a physical baseline model. The methodology
leverages the adjoint method, enabling the use of RANS-derived gradients
as optimization terms in the GNN training process. This ensures that the
learned model adheres to the governing physics, maintaining physical con-
sistency while improving the prediction accuracy. We test our approach on
multiple CFD scenarios, including cases involving generalization with respect
to the Reynolds number, sparse measurements, denoising and inpainting of
missing portions of the mean flow. The results demonstrate significant im-
provements in the accuracy of the reconstructed mean flow compared to
purely data-driven models, using limited amounts of data in the training
dataset. The key strengths of this study are the integration of physical laws
into the training process of the GNN, and the ability to achieve high-accuracy
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predictions with a limited amount of data, making this approach particularly
valuable for applications in fluid dynamics where data is often scarce.

Keywords:

1. Introduction

In recent years the integration of Machine Learning (ML) algorithms into
Computational Fluid Dynamic (CFD) has seen a significant boost, driven by
the increasing efficiency of ML models in processing large dataset and their
impressive inference and predicting capabilities.
Literature is already disseminated with different effective ways to combine
ML algorithms into CFD, as can be found in the annual review Brunton et al.
(2020) and in Vinuesa and Brunton (2022). These various applications are
ranging from addressing the closure problem of Reynolds-averaged Navier-
Stokes (RANS) equations to optimization problems. A broader overview for
the first application can be found in Duraisamy et al. (2019) and Beck and
Kurz (2021). In Ling and Templeton (2015), authors used classification meth-
ods to identify regions of high uncertainty in RANS fluid flow predictions.
In Ströfer and Xiao (2021), authors combined NN with a Spalart-Allmaras
turbulence baseline model to enhance fluid flow RANS predictions. How-
ever, while ML has proven to be powerful, its unconstrained use in physical
models can lead to solutions that violate fundamental physical laws. There-
fore, integrating ML within physical models is crucial to ensure that the
learned solutions are physically plausible. This approach leads to more re-
liable results and interpretable models and helps maintain the integrity of
the simulations. This idea leads to the Physics-Informed Neural Networks
(PINNs) in which physical equations are part of the NN’s training process.
A broad overview of the use of PINNs can be found in Cai et al. (2021).
In this study we propose a novel approach by combining Graph Neural Net-
works (GNNs) as our ML framework with Reynolds-Averaged Navier-Stokes
(RANS) equations as our physical baseline model. GNNs are particularly
suited for CFD problems due to their ability to naturally handle the com-
plex, irregular geometries often encountered in fluid flow simulations. They
extend traditional neural networks by considering the relationships between
data points, making them ideal for capturing the particles interactions in a
fluid flow system.
Our primary goal is to develop an hybrid ML-CFD model to accurately recon-
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struct the mean flow of a fluid dynamics simulation across various application
cases. Specifically, we aim to integrate RANS equations into a GNN training
process, leveraging the RANS closure term as an optimization term through
the adjoint method. Adjoint method is a powerful mathematical tool used
in CFD to compute gradients efficiently, which are essential in a classical
optimization process. We use the adjoint method to ensure that the gradi-
ents used in the GNN training process are obtained through a deterministic
physical model. With this approach we can train our ML model integrating
physical consistency in it, leading to improved performance and accuracy.
We test our approach on different CFD scenarios showing remarkable im-
provements in mean flow reconstruction accuracy for different learning tasks
as compared to the non physics constrained counterpart.
The reminder of this article is structured as follows: the mathematical frame-
work is described in Sec. 2. Specifically, the physical baseline model for
the CFD simulations is detailed in Sec. 2.1 while the adjoint optimization
method in Sec. 2.2. Sec. 3 describes the ML framework, detailing the GNN
architecture (Sec. 3.1), the dataset preprocessing (Sec. 3.2) and the training
algorithm (Sec. 3.3). We continue, then, by presenting our innovative ap-
proach to combine these two frameworks in Sec. 4. Results, along with the
different application cases, are presented in Sec. 5.

2. Governing Equations

2.1. The physical model

This study focuses on two-dimensional (2D) incompressible fluid flows
around bluff bodies in unsteady regimes. The numerical CFD setup can be
found in Appendix A. The foundation of our analysis are the Navier-Stokes
(NS) equations for incompressible flows. Let x = (x, y) denote the spatial
Cartesian coordinates. The velocity field u(x, t) and pressure field p(x, t)
follow these dynamics:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (1a)

∇ · u = 0. (1b)

The equations above are rendered dimensionless using the characteristic
length scale D (e.g., cylinder diameter), the velocity U∞ of the free stream
incoming flow, and ρU2

∞ as the reference pressure. The Reynolds number is
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defined as Re = U∞D/ν where ν represents the kinematic viscosity. This latter
represents the ratio between the inertial forces and the viscous forces in the
fluid flow and it’s used to characterize the flow regime, indicating whether
the flow is laminar (low Reynolds number) or turbulent (high Reynolds num-
ber), depending on the specific case at hand. Specifically, in this study, we
focus on transitional regime flows, which occur when the fluid behaviour is
unsteady although not yet turbulent.
The NS equations can be computationally intensive. Hence, various approx-
imate models are used based on the accuracy needed. In this study we
adopt the Reynolds-averaged Navier-Stokes (RANS) model, a time-averaged
formulation of the NS equations. To this end, we introduce the Reynolds
decomposition:

u(x, t) = u(x) + u′(x, t), (2)

where the velocity field u = (u, v)T is split into a time-averaged velocity field
u = (u, v)T and a fluctuating component u′ = (u′, v′)T around it. Formally,
this decomposition allows any unsteady flow to be expressed as a sum of a
steady mean flow and an unsteady fluctuating part. Plugging the Reynolds
decomposition (Eq. 2) into the NS equations (Eq. 1) and time averaging
results in:

u · ∇u+∇p− 1

Re
∇2u = f (3a)

∇ · u = 0, (3b)

where p is the mean pressure field. These equations are completed with a set
of boundary conditions, detailed in Appendix A. In this context, the term
f , which acts as a closure term for the underdetermined system of nonlinear
equations, is the Reynolds stress tensor. Ideally, f can be directly computed,
when data are available, as:

f = −∇ · (u′u′). (4)

In practice, mathematically computing f requires either Direct Numerical
Simulation (DNS) or time-resolved experimental measurements, as fluctu-
ations component u′ do not directly depend on the mean flow u. This is
known in CFD as the closure problem. Several approximations, like the
Boussinesq hypothesis (e.g. k − ϵ or k − ω models) (Wilcox et al., 1998) or
more complex models such as the explicit algebraic Reynolds stress model
(Wallin and Johansson, 2000) or differential Reynolds stress models (Cécora
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et al., 2015), can be introduced to address this problem. Nevertheless, in
this work, we do not assume any modeling of the forcing term f ; instead, we
derive it according to Eq. 4 from the ground truth dataset. This approach
ensures that our model remains as close as possible to the actual physical
phenomena without introducing additional assumptions or approximations.
As a relevant part of the data assimilation scheme presented in this study
(see Sec. 4) we train a GNN model to infer the Reynolds stress term f from
a given mean flow u as input. The output of the GNN, i.e. the Reynolds
stress term f , is assumed in this context as a control variable in an adjoint
optimization process and it represents the pivotal point we used to merge
the ML model with the physical one (see Sec. 4).

2.2. Adjoint methods

Adjoint methods are a powerful tool in the CFD field for optimization
problems and sensitivities analysis. These methods are particularly suited for
problems characterized by high-dimensional parameter spaces where direct
methods would be computationally prohibitive. Properly define an optimiza-
tion process requires a cost function to be maximized or minimized along with
a control variable to be adjusted. Our work is inspired by the paper of Foures
et al. (2014) where an optimization loop is designed to reconstruct the mean
flow u using the RANS equations as a baseline model and the forcing stress
term f as a control variable. The cost function to be minimized is the dif-
ference between the ground truth mean flow u and the reconstructed mean
flow û as it appears during the optimization process:

ε
(
û
)
=

1

2
||u− û||2 (5)

where || · ||2 is the L2-norm.
Since the control variable is the forcing stress term f , the cost function ε
does not explicitly depends on it. In order to relate the cost function ε to the
forcing stress tensor f we need to define an augmented Lagrangian functional:

L
(
f , û, p̂, û

†
, p̂
†
)
= ε

(
û
)
−⟨û†, û ·∇û+∇p̂− 1

Re
∇2û− f⟩− ⟨p̂†,∇· û⟩ (6)

where ⟨·, ·⟩ represents the spatial scalar product. The augmented Lagrangian
functional L allows to represent the constrained problem as an unconstrained
one, introducing two a-priori unknown variables, the Lagrangian multipliers
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û
†
and p̂

†
. In order to minimize the problem defined in Eq. 6, we have to

enforce to zero its partial derivatives with respect to all of the independent
variables of the problem. Following this approach, the partial derivatives of
Eq. 6 with respect to the direct variables û and p̂ yields to the adjoint NS
equations:

−û · ∇û
†
+ û

† · ∇û
T −∇p̂† − 1

Re
∇2û

†
=
∂ε

∂û
(7a)

∇ · û† = 0 (7b)

along with an appropriate set of boundary conditions, again detailed in
Appendix A. It is worth noting that the adjoint NS equations (Eq. 7) are
forced by the partial derivative of the error function ε with respect to the
reconstructed mean flow û that can be easily derived from Eq. 5 as:

∂ε

∂û
= û− u (8)

Finally, the partial derivative of Eq. 6 with respect to the forcing term f
yields:

∂ε

∂f
= û

†
(9)

The complete mathematical demonstration of this formulation is beyond the
scope of the present paper and we redirect an interested reader to the original
work of Foures et al. (2014).
Exploiting the gradients of the cost function ε with respect to the control
variable f (Eq. 9), we can employ a gradient descent algorithm in order to
optimize the control variable f and iteratively converge towards the opti-
mal solution that minimizes the cost function ε (Eq. 5). Specifically, the
iterative process refines the forcing term f to ensure that the RANS model
accurately captures the mean flow characteristics observed in high-fidelity
DNS data. To summarize the entire process in an algorithmic fashion, the
adjoint optimization process involves the following steps:

1. Initialization: In order to start the optimization loop, an initial guess
for the control variable f has to be chosen. We choose to start from
f = 0 to ensures the divergence free (∇ · f = 0) property and the no
slip conditions on the walls (Foures et al., 2014).

2. Forward step: A forward step by solving the direct RANS equations
(Eq. 3) is performed. This step gives as output a reconstruction of the
mean flow û, based on the actual forcing term f .
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3. Cost function evaluation: The distance between the reconstructed
mean flow û and the ground truth mean flow u is assessed using the
cost function ε (Eq. 5).

4. Adjoint step: The adjoint equations (Eq. 7) are solved to find û
†
,

which expresses the variation of the cost function ε with respect to the
control variable f (Eq. 9).

5. Control Variable Update: Using this gradient information, the forc-
ing term f is adjusted as:

f (n+1) = f (n) +
∂ε(n)

∂f (n)
(10)

where the apex (n) indicates the n-th iteration of the optimization loop.

The entire forward-adjoint process is iteratively repeated until the cost
function ε (Eq. 5) falls below an acceptable threshold, based on the accuracy
required.

3. Graph Neural Network Overview

In this section, we present a streamlined overview of the core features of
GNNs. A comprehensive and detailed description of this NN architecture
can be found in Hamilton (2020). Here, we focus on the essential process
underlying GNNs: the diffusion of information through nodes and edges
across the network, known as the Message Passing (MP) algorithm. In this
study we relied on the PyTorch Geometric (Fey and Lenssen, 2019) python
library to handle the GNN structure. Sec. 3.1 delves into the MP process,
while Sec. 3.2 provides details on the input data structure. The training
process is outlined in Sec. 3.3.

3.1. Message Passing Process

In GNNs, nodes iteratively exchange information with their neighbours
to update their latent representations based on the graph structure. During
this process, GNNs take into account edges knowledge as relevant part of
the handled data. This process is known as MP and it enables GNNs to
capture complex dependencies and patterns within the data. Depending on
the extension of the graph, this iterative process is repeated an arbitrary
number of times, defined by a GNN’s hyperparameter denoted as k in this
context. Extensive details on the hyperparameters adopted can be found in
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Appendix B. MP in GNNs, to be thought as node centered, involves three
fundamental steps:

1. Message Creation: Each node i initiates an embedding state rep-
resented by an array hi. Initially set to zero, this vector accumulates
and handles information as the MP proceeds. The dimension dh of hi

is constant across all nodes and is a key model hyperparameter. This
value defines the GNN’s expressivity, or its ability to model complex
functions (Gühring et al., 2020). Note that the embedded state itself
does not have a direct physical interpretation.

2. Message Propagation: Information is then propagated between nodes.
To capture the convective and diffusive dynamics of the underlying
CFD system, messages are transmitted bidirectionally between con-
nected nodes. Given a generic pair of connected nodes i and j and a
directed connection between them aij from i to j, the abstract infor-
mation (or message) generated on them is defined as:

ϕ
(k)
i,j = ζ(k)(h

(k−1)
i , aij,h

(k−1)
j ), (11)

where h
(k−1)
i is the embedded state from the previous MP layer k − 1,

and ζ(k) is a differentiable operator, such as, in our case, a Multi-Layer
Perceptron (MLP) (Goodfellow et al., 2016). Note that swapping the
indices i and j in Eq. 11, gives the definition for the message that flows
from j to i. Depending on the number of j connected nodes in the
neighbouring set of i, namely Ni, for each node i the global outgoing
message is then computed as:

ϕi,→ =
⊕
j∈Ni

ϕi,j (12)

where
⊕

is an arbitrary differentiable, permutation invariant function,
e.g., sum, mean or max.

3. Message Aggregation: Each node i aggregates the collected infor-
mation to update its embedded state h

(k)
i :

h
(k)
i = h

(k−1)
i + αΨ(k)(h

(k−1)
i ,Gi,ϕ

(k)
i,→,ϕ

(k)
i,←,ϕ

(k)
i,⟳), (13)

where Gi = {u, Re} represents the external injected quantities, i.e. the
data input to the GNN. In our specific case it includes the mean flow u
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and Reynolds number Re, provided at each update k. The terms ϕ
(k)
i,→

and ϕ
(k)
i,← represent respectively the message sent to and received from

all the neighboring nodes. The term ϕ
(k)
i,⟳ is the self-message that the

node i send to itself in order to maintain the node’s own information
while aggregating messages from its neighbors. Their mathematical
definition, with the appropriate change in notation, is expressed in
Eq. 11. The term Ψ(k) is a differentiable operator, typically an MLP,
used to handle together the gathered information. The term α is a
hyperparameter relaxation coefficient controlling the update scale.

By the end of the message passing process, each node’s embedded state
has been k-times updated, incorporating data from other nodes in the graph.
The number of updates k should ideally cover the longest geodesic path on
the mesh (Donon et al., 2020). In practice, this hyperparameter is optimized
using genetic algorithms (see Appendix B).
At the end of the MP process, the latest k-updated embedded state on each
node i is projected back into a physical state as prediction of the required
target, in this specific case the forcing stress term f . A differentiable operator
such as an MLP, namely a decoder D, is tasked with this latter operation.

3.2. Data Structuring

Applying GNNs to unstructured data requires their graph representation.
In order to obtain the CFD-GNN interface we align each mesh node with a
GNN node. To this end we structure the CFD data into tensors that maintain
adjacency properties from the mesh. Specifically, for each case in the ground
truth dataset, we construct:

• A matrix A ∈ Rni×dh , where ni is the number of nodes in the mesh
and dh is the dimension of the embedded state defined on each node.
A, therefore, is a tensor stacking together all the embedded arrays hi
defined on all the nodes.

• A matrix C ∈ Rc×2, where c is the number of mesh edges, defining the
nodes connections. C, therefore, is a tensorial representation of the
adjacency scheme of the mesh.

• A matrix D ∈ Rc×2, containing the distances between connected nodes
in the x and y directions. D, therefore, express the properties, in the
meaning of nodes distances, of the adjacency scheme of the mesh.
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Ani,dh =


a1,1 a1,2 · · · a1,dh
a2,1 a2,2 · · · a2,dh
...

...
. . .

...
ani,1 ani,2 · · · ani,dh

 ,

Cc,2 =


i1 j1
i2 j2
...

...
ic jc

 , Dc,2 =


xi1 − xj1 yi1 − yj1
xi2 − xj2 yi2 − yj2

...
...

xic − xjc yic − yjc

 .
Each column of A serves as a feature vector for neurons in the MLPs used in
the GNN (ζ, Ψ, and the decoder D). The structure of these MLPs is instead
defined by the dimension dh of the embedded state, while the number of
nodes ni corresponds to the feature count per neuron. This setup allows
us to apply the same MLPs architectures across different CFD simulations,
regardless of the geometry or node count, as the number of nodes does not
affect the underlying structure of the MLP. This approach makes the GNNs
particularly well-suited for interacting with unstructured meshes, learning
from various geometries and configurations.

3.3. GNN Training Algorithm

The training framework for the GNN is illustrated in Fig. 1. The process
begins with A0, a matrix of zero-initialized embedded states. This matrix,
along with external inputsG (namely, the mean flow u and Reynolds number
Re), is provided to the first message passing algorithm MP1. The updated
embedded state matrix A1, then, passes through a decoder D1, an MLP
tasked with reconstructing the physical state f̂1.

The predicted forcing term f̂1 is compared with the DNS ground truth f
using a loss function:

ℓ1 =
1

ni

ni∑
i=1

(f1i − f̂i)
2 (14)

where ni is the number of nodes. This process is then repeated across the k
layers of the GNN. Following the intuition of Donon et al. (2020), all these
intermediate loss values from the different update layers are considered in a
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global loss function L, in order to robustify the learning process:

L =
k̄∑

k=1

γk̄−k · ℓk (15)

where, k̄ is the number of update layers, and γ is a hyperparameter con-
trolling the weight of each of them. As the MP process goes on, each node
collect more and more information. The exponential term γk̄−k ensures that
later updates, which are supposed to be richer in information, have greater
influence on the learning process.

Figure 1: The overall framework of our GNN training process. MP k are the message pass-
ing algorithms; Dk are the k decoders trainable MLPs; Ak are the k matrices containing
the embedded states from each node; G is the vector containing the input injected in the
GNN.

4. Methodology

This section describes the novel methodology we developed to combine
the mathematical framework (Sec. 2) with the training process of a GNN
(Sec. 3). The main focus of our approach rely on the use of gradients de-
rived analytically from the RANS equations through the adjoint method to
enhance the learning process of the GNN, ensuring physical consistency in
its predictions. The complete training process designed can be seen in Fig. 2.
In the following, Sec. 4.1 delves into the GNN training process from a tech-
nical and mathematical point of view. Sec. 4.2 gives some technical details
on the pretraining phase of the GNN model while Sec. 4.3 details the ap-
proach adopted to address the transition between the pretraining phase and
the effective training of the GNN.
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4.1. The training process

Figure 2: End-to-end training loop; u is the GNN’s input mean flow; f̂ is the GNN’s
predicted forcing stress term; θ are the GNN’s trainable parameters; J (û) is the cost
function to minimize.

With reference to Fig. 2, the global training process can be ideally di-
vided into two phases, the forward and the backward step. The forward step
begins with the input of the mean flow u (and Reynolds number Re) into a
pretrained (see 4.2) GNN, which predicts a forcing stress term f̂ . This pre-
dicted forcing term is plugged into the direct RANS equations (Eq. 3). By
using the Finite Element Method (FEM) approach, handled by the python
library FEniCS, we solve numerically the RANS inverse problem to obtain a
mean flow prediction û. This result is then compared with the mean flow
ground truth u obtained from the DNS to compute a loss function J that
needs to be minimized:

J =

∫
Ω

(u− û)2dΩ (16)

Eq. 16 is computed directly in the FEM environment as an integral over the
entire computational domain Ω of the squared difference between the pre-
dicted mean flow û and its ground truth u.
The second main phase, the backward step, starts with the requirement to
compute the derivative of the loss function J with respect to the θ param-
eters of the GNN. The gradient chain rule for this required term can be
mathematically expressed as:

∂J
∂θ

=
∂J
∂û

· ∂û
∂ f̂

· ∂ f̂
∂θ

=
∂J
∂ f̂

· ∂ f̂
∂θ
. (17)
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The first term ∂J
∂ f̂

of the right hand side is obtained from Eq. 9 after solving

the adjoint equations (Eq. 7). The second term ∂ f̂
∂θ

of the right hand side is
indeed the gradient of the GNN’s output with respect to the θ parameters of
the GNN, which is immediately available given the automatic differentiating
nature of the GNN. These two gradients, the analytical part from FEniCS

and the numerical one from PyTorch Geometric automatic differentiation
are then combined together to complete the chain rule.
Finally, these compounded gradients are used to train the GNN in our com-
bined approach.

4.2. On the pretraining step

A crucial step in our approach is the GNNmodel’s pretraining phase. This
step is necessary to ensure that the GNN’s prediction is plausible enough to
be plugged into the RANS equations. The GNN model’s weights and biases
are indeed initialized using a default initialization (He et al. (2015)) and
therefore early GNN’s predictions are basically non meaningful values, based
on the initialization used. Such that, they can’t be reliably used in the
RANS forward step to obtain a prediction for the mean flow (see Sec. 4.1).
The solution to the RANS inverse problem might, indeed, not even exists if
the forcing term prediction f̂ is too far from a physically plausible one. The
pretraining step helps in stabilizing the GNN’s output and overcome this
problem, making the forcing stress term f̂ prediction suitable for subsequent
integration into the RANS equations. The pretrained model is obtained via
a pure supervised learning of the mapping between the mean flow u (and
Reynolds number Re) used as input and the forcing stress term f as target,
both coming from DNS. The loss function used in this phase is a Mean
Squared Error (MSE) loss, namely M, that reads as:

M =
1

ni

ni∑
i=1

(fi − f̂i)
2 (18)

where n is the number of nodes of the GNN. The number of epochs needed
to reach the required stability depends on the specific case at hand and it
will be specified for each of the training cases shown in the result section
(Sec. 5).

4.3. On the loss function

During the pretraining step (Sec. 4.2), the GNN is guided by a loss func-
tion designed to align the model’s predictions with the available data. This
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phase, as already stated, set the stage for a more refined learning in the
subsequent main training (Sec. 4.1). However, when the pretraining ends
and the main training begins, the loss function changes (namely, from Eq. 18
to Eq. 16) to focus more directly on accurately reconstructing the mean
flow. This abrupt change in the solution space can potentially destabilize
the training process. The optimization landscape, defined by the pretraining
loss function, can be significantly different from that defined by the main
training loss function. If the transition between these two landscapes is too
drastic, it could prevent the model from reaching the desired minimum in
the main training loss function, compromising the model’s performance. To
mitigate this risk, we opted to retain both loss functions during the main
training phase, combining them into a composite loss function where each
component is weighted by a coefficient. This approach allows for a gradual
transition between the two optimization landscapes by adjusting the relative
importance of the pretraining and main training loss functions. The global
composite loss function is, therefore, expressed as:

L = (1−β)M+βJ = (1−β)

(
1

ni

ni∑
i=1

(fi − f̂i)
2

)
+β

(∫
Ω

(u− û)2dΩ

)
(19)

In this formulation, the first term on the right hand side, which is the same
loss function used during pretraining, continues to enforce a data-driven
alignment, ensuring continuity in the optimization process. The second term,
introduced during the main training phase, focuses on minimizing the mean
flow reconstruction error, directly improving the GNN’s capability to model
this latter term. By minimizing this composite loss function, the GNN ef-
fectively learns to predict a forcing term f that is not only aligned with the
ground truth but is also refined through the adjoint method. At the same
time it also learns an effective model to reconstruct the mean flow u for
the problem at hand. As shown in the results, this approach enhances the
accuracy of the mean flow reconstruction in different CFD scenarios.

5. Results

In this section, we present the improvements obtained using the proposed
adjoint method for the reconstruction of the mean flow field u on different
learning tasks. In particular, we compare our model to a traditional pure su-
pervised learning method, evaluating the performance in terms of mean flow
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u reconstruction accuracy (Eq. 20). In the pure supervised learning strat-
egy the GNN is trained purely to learn the forcing stress f from data. This
learned term is then used as input to RANS equations (Eq. 3) to obtain the
reconstructed mean flow field u. This method relies purely on data-driven
optimization, where the GNN’s objective is to minimize the discrepancy be-
tween the predicted and the ground truth forcing stress (Eq. 15).
In contrast, our approach introduces a significant enhancement by incorpo-
rating physical constraints directly into the training process of the GNN.
While the GNN still learns the forcing stress tensor f , the gradients are com-
puted using an adjoint-based approach (Sec. 4). To compare the two models,
we evaluate their training curves after the pretraining phase (Sec. 4.2) by
identifying the minimum loss values reached by each model in the training
process. The percentage improvement is then computed as follows:

I(%) =
min(JSupervised)−min(JPhysics informed)

min(JSupervised)
· 102 (20)

where min(JSupervised) and min(JPhysics informed) represent the minimum val-
ues of the loss function on the mean flow reconstruction (Eq. 16) for the
baseline (pure supervised learning) and the adjoint based methods, respec-
tively. This chapter is organized such that each section shows a different
learning task along with the corresponding technical details for the training
process and dataset and the improvements achieved.

5.1. Proof of Concept

As a proof of concept we present a learning task in which the input to
the GNN is the complete mean flow u (and Reynolds number Re) defined
on the entire computational domain Ω. We apply our approach on two cases
of increasing complexity. The first case involves a flow around a 2D cylinder
at Reynolds number of Re = 150. This case is well documented in literature
(Giannetti and Luchini, 2007) and its time-averaged mean flow can be seen
in Fig. 3a. The training dataset is structured such that it contains this only
case mean flow u as input and its corresponding forcing term f as GNN tar-
get. The training curves in Fig. 3b, reveal that starting from the pretraining
phase, the implementation of the approach described in this paper leads to
a substantial improvement in the mean flow reconstruction. Specifically, the
improvement as described in Eq. 20, attains the value of 58.5907% for this
particular learning case.
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Figure 3: (a) The training mean flow input from the ground truth. The training dataset
is composed by 1 meanflow-forcing pair at Reynolds number Re = 150; (b) the loss curves
for the pure supervised approach (orange line) and the proposed approach (blue line)
are shown. The two horizontal dotted lines indicate the minimum values of both curves,
while the dotted vertical line indicates the end of the pretraining phase (Sec. 4.2); (c)
the reconstructed mean flow from the pure supervised approach; (d) the reconstructed
mean flow from the present approach. 1D line plots are overimposed on figures (c) and
(d), comparing the predicted flow values (red line) with the ground truth (black line) at
various sections along the flow field.

The second case involves two side-by-side cylinders (also known in litera-
ture as the ’flip flop’ case) at Reynolds number Re = 90. Its RANS resulting
mean flow is shown in Fig. 4a. The training curves for this case in Fig. 4b
demonstrate an even more pronounced improvement, with an 82.9022% re-
duction (Eq. 20) in the loss curve. The results indicate not only the broad
adaptability of the proposed approach but also how, in more complex models,
the underlying physics and governing equations play a crucial role in further
increasing the accuracy of the GNN model’s prediction.

5.2. Generalization

The goal of the generalization learning task is to proof the effectiveness
of our approach on the generalization capabilities of the learned model. The
training dataset consists of three cases of 2D cylinder at Reynolds numbers
of Re = [90, 110, 130]. The validation dataset, on the other hand, is suited to
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Figure 4: (a) The training mean flow input from the ground truth. The training dataset
is composed by 1 meanflow-forcing pair at Reynolds number Re = 90; (b) the loss curves
for the pure supervised approach (orange line) and the proposed approach (blue line)
are shown. The two horizontal dotted lines indicate the minimum values of both curves,
while the dotted vertical line indicates the end of the pretraining phase (Sec. 4.2); (c)
the reconstructed mean flow from the pure supervised approach; (d) the reconstructed
mean flow from the present approach. 1D line plots are overimposed on figures (c) and
(d), comparing the predicted flow values (red line) with the ground truth (black line) at
various sections along the flow field.

test the generalization capabilities of the GNN with respect to the Reynolds
number. It includes a flow around a 2D cylinder at Reynolds number Re =
120 (interpolation test), and Re = 150 (extrapolation test) both not included
in the training dataset. In Fig. 5a, the mean flow u ground truth at Re = 120
case is shown. Based on the validation cases, we observe an improvement
in the mean flow reconstruction by an average (over the entire validation
dataset) of 73.2741%, based on Eq. 20. Specifically, we obtained a 78.9615%
improvement for the interpolation case (Re = 120) and 13.9599% for the
extrapolation case (Re = 150). The improvement obtained on the training
cases is assessed, on average over the entire training dataset, to 40.1583%.
Our goal, here, is to show that our approach enhance the generalization
capabilities of the GNN, regardless of the exact numerical results that might,
for example, be affected by the size of the training dataset itself. Note that
we opted to separate this generalization test from the others to focus on
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Figure 5: (a) The training mean flow input (at Re = 120) from the ground truth.
The training dataset is composed by 3 meanflow-forcing pair at Reynolds number Re =
[90, 110, 130] while the validation dataset contains cylinder cases at Re = [120, 150]; (b)
the loss curves for the pure supervised approach (orange line) and the proposed approach
(blue line) are shown. The two horizontal dotted lines indicate the minimum values of both
curves, while the dotted vertical line indicates the end of the pretraining phase (Sec. 4.2);
(c) the reconstructed mean flow (at Re = 120) from the pure supervised approach; (d)
the reconstructed mean flow (at Re = 120) from the present approach. 1D line plots are
overimposed on figures (c) and (d), comparing the predicted flow values (red line) with
the ground truth (black line) at various sections along the flow field.

improving the GNN model’s learning performance on the training dataset,
while addressing generalization to unseen cases in a dedicated test.

5.3. Sparse Measurement

The learning task presented here involves the reconstruction of the mean
flow on the entire computational domain using as input for the GNNmeasure-
ments from randomly distributed probes. The training dataset is composed
by two instances of the cylinder bluff body case for each Reynolds number in
the range Re = [90, 110, 130], resulting in six cases. For each case, 450 probes
are placed in the mean flow stream, uniformly distributed across the entire
computational domain Ω. Subsequently, 200 of these probes were randomly
removed, leaving a sparse set of 250 probes. This sparse set of measurement
on the mean flow u is used as input to the GNN while its output predic-
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Figure 6: (a) An example of the probes positioning on the mean flow. The training
dataset is composed by 6 mean flow-forcing pairs at Reynolds number in the range Re =
[90, 110, 130] (two instances for each case) with 250 randomly distributed probes; (b) the
loss curves for the pure supervised approach (orange line) and the proposed approach (blue
line) are shown. The two horizontal dotted lines indicate the minimum values of both
curves, while the dotted vertical line indicates the end of the pretraining phase (Sec. 4.2);
(c) the reconstructed mean flow (at Re = 110) from the pure supervised approach; (d)
the reconstructed mean flow (at Re = 110) from the present approach. 1D line plots are
overimposed on figures (c) and (d), comparing the predicted flow values (red line) with
the ground truth (black line) at various sections along the flow field.

tion is compared with the corresponding forcing stress tensor from the DNS
ground truth. Fig. 6a shows the random probes positioning on the mean
flow while Fig. 6b the average training curves on the training dataset. In this
case, we demonstrate an improvement in the mean flow reconstruction across
all the training cases by an average of 55.0851%. This result highlights the
robustness of the proposed approach in scenarios with sparse and randomly
distributed measurements.

5.4. Denoising

In this test case, the input mean flow field is perturbed with a Gaussian
noise. The probability density function used for the Gaussian distribution
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Figure 7: (a) Gaussian perturbed mean flow (at Re = 110). The training dataset is
composed by 3 mean flow-forcing pairs at Reynolds number Re = [90, 110, 130] perturbed
with a Gaussian noise having µ = 0 and σ = [0.6, 0.4, 0.2], respectively; (b) the loss curves
for the pure supervised approach (orange line) and the proposed approach (blue line)
are shown. The two horizontal dotted lines indicate the minimum values of both curves,
while the dotted vertical line indicates the end of the pretraining phase (Sec. 4.2); (c)
the reconstructed mean flow (at Re = 110) from the pure supervised approach; (d) the
reconstructed mean flow (at Re = 110) from the present approach. 1D line plots are
overimposed on figures (c) and (d), comparing the predicted flow values (red line) with
the ground truth (black line) at various sections along the flow field.

used to generate the noise is represented as:

ψ (z) =
1

σ
√
2π
e

−(z−µ)2

2σ2 (21)

where z is the random variable, µ is the mean value of the normal distribution
and σ represents its standard deviation. In this case we assumed µ = 0,
namely a standard normal distribution. The training dataset consists of three
flows around a cylinder at Reynolds number Re = [90, 110, 130], perturbed
with a Gaussian noise having σ = [0.6, 0.4, 0.2], respectively. Fig. 7a shows
the effect of σ = 0.4 Gaussian noise on the mean flow (at Re = 110) while
Fig. 7b presents the accuracy in the mean flow reconstruction. The goal
here is to remove the Gaussian noise and accurately reconstruct the denoised
mean flow field. Our approach demonstrates an improvement on the training
dataset by a factor of 45.6699% as an average over the training cases.
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Figure 8: (a) Patch mask applied on the mean flow (at Re = 110). The training dataset
is composed of 3 mean flow-forcing pairs at Reynolds number Re = [90, 110, 130] with
randomly located patching mask; (b) the loss curves for the pure supervised approach
(orange line) and the proposed approach (blue line) are shown. The two horizontal dotted
lines indicate the minimum values of both curves, while the dotted vertical line indicates
the end of the pretraining phase (Sec. 4.2); (c) the reconstructed mean flow (at Re = 110)
from the pure supervised approach; (d) the reconstructed mean flow (at Re = 110) from
the present approach. 1D line plots are overimposed on figures (c) and (d), comparing
the predicted flow values (red line) with the ground truth (black line) at various sections
along the flow field.

5.5. Inpainting

In this scenario, certain masking patches are randomly applied to the
input mean flow field. The training dataset consists of three cases of cylinder
obstacle at Reynolds number Re = [90, 110, 130], each with different patch
locations (Fig. 8a). The goal is to reconstruct the mean flow field by filling
in the missing patches. Our approach demonstrates improvements on the
training cases by an average of 41.7302%, successfully restoring the missing
portions of the field and enhancing the overall reconstruction accuracy.

5.6. Discussion

The proposed hybrid GNN-FEM approach significantly improves the learn-
ing process of a GNN model for the mean flow reconstructing task across
various fluid dynamic scenarios. By integrating RANS equations into the
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GNN’s training through an adjoint optimization method, our model achieves
higher accuracy in reconstructing mean flows, outperforming purely data-
driven models. However, our approach comes with increased computational
demands. The primary bottleneck lies in the FEM solver employed for the
RANS (either direct or adjoint) calculation. The performance of the entire
system, therefore, highly depends on the available computational resources
and the efficiency of the FEM tools used. Potential optimizations could in-
volve parallelizing the code or replacing the current FEM solver with a more
efficient alternative to alleviate these computational constraints. Future re-
search should explore the application of this hybrid GNN-RANS approach
to more complex 3D cases, turbulent flows, and higher Reynolds numbers.
These scenarios would extend the model’s generalizability and robustness,
providing valuable insights into its applicability in real-world fluid dynamics
problems at larger scales.

6. Conclusion

In this section, we introduced a hybrid data-assimilation for the recon-
struction of the mean flow, starting from corrupted or incomplete data. By
integrating RANS equations into the GNN training process through an ad-
joint optimization framework, our model demonstrates superior accuracy in
reconstructing mean flows, outperforming purely data-driven models. The
proposed method takes mean flow inputs under varying conditions, such as
noisy, sparse measurements or patch—masked flows, and predicts the closure
term of the RANS equations. This predicted term is then used to solve the
RANS equations and reconstruct a complete, uncorrupted mean flow. The
use of adjoint methods for computing the gradients of the loss function al-
lows the GNN to incorporate physical knowledge into its training process
and enhances results’ accuracy when compared to the supervised learning
strategy.

The study offers numerous possibilities for future research. First of all, the
introduction of a numerical solver represents also a bottleneck, as the solution
of the direct and adjoint RANS equations is required. The performance of the
entire method highly depends on the available computational resources and
the efficiency of the numerical solver used. Improvements can be achieved
by efficient, parallel FEM code. This would enable to test the application of
the current data assimilation scheme to more complex 3D cases, including
turbulent flows at higher Reynolds numbers. Test cases of higher complexity
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would provide valuable insights into the applicability to realistic cases at
larger scales.

From the ML viewpoint, a multi-scale prediction process can be envi-
sioned where a series of GNNs is introduced at different resolutions aimed
at refining progressively the closure term predictions. For instance, one may
introduce an initial GNN model predicting the forcing stresses on a coarse
or sparse grid, followed by models refining the prediction at finer scales, as
done with super-resolution techniques.
Moreover, additional physics-informed elements could be added into the loss
function. Beyond the RANS equations, the model could include explicit
terms associated with boundary conditions, such as the inflow or outflow
profiles, ensuring that the predicted flows better represent physical expecta-
tions.

Appendix A. CFD Numerical Setup

Figure A.9: Sketch of the computational domain geometry. The diameter of the cir-
cumscribed circle of the bluff body, the height and length of the domain are given in
non-dimensional units.

The unsteady wake behind a bluff body is a well-established benchmark
in CFD. As a reference case, the cylinder bluff body case shows a stable
behavior up to a critical Reynolds number Rec ∼= 46.7 (Provansal et al.,
1987; Giannetti and Luchini, 2007). Beyond this threshold, irregular velocity
fluctuations begin to appear alongside periodic vortex formation (Anatol,
1958), and the unsteady flow evolves into a limit cycle known as the von
Karman street. This phenomenon is observable up to Re = 150 for 2D
cases (Anatol, 1958), after which the flow can be considered turbulent. Our
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study focuses on 2D scenarios exhibiting limit cycle behavior within the range
50 ≤ Re ≤ 150.
In our numerical setup, the characteristic dimension is the diameter D of
the circumscribed circle to the bluff body. Based on this dimension, the
computational domain extends Lx = 27 units in the stream-wise direction
and Ly = 10 units in the transverse direction. The system’s origin O(0, 0) is
positioned ∆x = 9 units downstream from the inlet and ∆y = 5 units from
the symmetry boundaries. A pictorial sketch of the geometric configuration
of the computational domain is reported in Fig. A.9. The flow evolves from
left to right with a dimensionless uniform velocity u = (1, 0)T , normalized
by the reference velocity U∞ of the undisturbed flow. Boundary conditions
follow the setup described by Foures et al. (2014). For the direct NS equations
(Eq. 1) they reads as:

u = 1, v = 0 at the inlet,

u = 0, v = 0 on the cylinder surface,

∂yu = 0, v = 0 on symmetry boundaries,
1

Re
∂xu− p = 0, ∂xv = 0 at the outlet.

(A.1)

For the adjoint NS equations (Eq. 7), instead, they results in:
u† = 1, v† = 0 at the inlet,

u† = 0, v† = 0 on the cylinder surface,

∂yu
† = 0, v† = 0 on symmetry boundaries,

1

Re
∂xu

† + p† = −uu†, 1

Re
∂xv

† = −uv† at the outlet.

(A.2)

Simulations start with null flow fields at t = 0. Required statistics, such
as mean flow u and forcing stress term f , are computed on-the-fly. The
final simulation time T is determined by a convergence criterion, specifically
when the L2-norm difference between consecutive mean flows falls below
10−8. Spatial discretization is achieved using a FEM approach via the FEniCS
Python library (Alnæs et al., 2015), with time integration handled by a
second-order Backward Differentiation Formula (BDF). Meshes are refined
near the obstacle and in the wake region to capture flow dynamics accurately.
Depending on the specific case, they typically count on average around 13500
nodes. Fig. A.10a depicts the stream-wise component of the mean flow u
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along with the vorticity isolines ω = ∇ × u, while Fig. A.10b shows the
stream-wise component of the closure term f for the cylinder bluff body
reference case at Re = 150

Figure A.10: (a) Stream-wise component of the meanflow u and vorticity isolines ω = ∇×u
for the flow past a cylinder at Re = 150. (b) For the same case, the stream-wise component
of the closure term f is shown. In both cases, only a portion of the domain is shown.

a) b)

Appendix B. Hyperparameters

A neural network architecture is governed by numerous hyperparameters.
As they define the structure and the training process of the neural network
itself, they cannot be dynamically learned during the training process. For
this reason, hyperparameters must be defined a-priori. Hyperparameters
can be broadly fit into two categories: model hyperparameters and process
hyperparameters.

• Model hyperparameters dictate the network’s expressivity, which refers
to the model’s capability to represent a wide spectrum of complex func-
tions.

• Process hyperparameters control the training phase. Adjusting these
hyperparameters can significantly impact the duration of training, the
computational resources required, and the model’s weights updated
throughout the learning process.

To achieve an optimal balance between model capacity and computational
efficiency, these hyperparameters need to be carefully optimized. Standard
gradient-based optimization methods are unsuitable for this task, particularly
when dealing with discrete variables such as the number of neurons or layers.
Instead, gradient-free optimization algorithms are more appropriate. These
algorithms can efficiently explore the hyperparameter space and prune less
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promising configurations. In this study, we used the Optuna library (Akiba
et al., 2019), an open-source tool that combines advanced search strategies
with pruning techniques to streamline the hyperparameter tuning process.
By systematically exploring the complex hyperparameter landscape, Optuna
identifies a set of hyperparameter combinations that maximize the perfor-
mance of the GNN, as determined by validation metrics. The optimal set of
hyperparameters identified through this tool reads as:

1. Embedded dimension: 35

2. Number of GNN layers: k = 50

3. Update relaxation weight: α = 0.6

4. Loss function weight: γ = 0.1

5. Learning rate: Initial value LR = 3 · 10−3

This optimized configuration strikes an effective balance between model per-
formance and computational efficiency, ensuring that the GNN can be both
powerful and feasible for practical applications.
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