
HAL Id: hal-04794441
https://hal.science/hal-04794441v1

Submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Actors in OCaml
Wenke Du, Ludovic Henrio, Gabriel Radanne

To cite this version:
Wenke Du, Ludovic Henrio, Gabriel Radanne. Distributed Actors in OCaml. OCaml Workshop, Sep
2024, Milan, Italy. �hal-04794441�

https://hal.science/hal-04794441v1
https://hal.archives-ouvertes.fr

Distributed Actors in OCaml

Wenke Du, Ludovic Henrio, Gabriel Radanne
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.

Lyon, France

I. Introduction

The Actor Model [1] is a concurrency model where
each “actor” is an entity that executes in its own logical
thread. Actors each possess their own private state, which
can’t be accessed externally. And communicate with each
other via asynchronous messages, often implemented by
promises [2]. Thanks to these characteristics, Actors prevent
common concurrency issues such as low-level data races
and deadlocks, making them easy to use to develop large-
scale parallel or distributed applications [3]. Actors libraries
have been successfully developed in numerous languages,
notably Scala [4] and Erlang [5], among others [6], [7].

OCaml 5 introduced shared memory parallelism [8] and
algebraic effect handler [9]. This provides the opportunity
to investigate Actors as an easy-to-use concurrency pro-
gramming model for parallel and distributed applications
in OCaml. Indeed, Actors promise to be a good fit for
OCaml: they promote encapsulation of state and the use of
structured concurrency primitives such as promises, both of
which are already practiced by the OCaml community. Ac-
tors also combine well with functional objects, as present in
OCaml, to form “active objects”, where message passing be-
comes method calls.

M. Andrieux, L. Henrio, and G. Radanne [10] gave the
formal basis for Actors in OCaml using algebraic effect in
a concurrent (but not distributed) setting. In this extended
abstract, we showcase the actors-ocaml library for concur-
rent and parallel programming and its recent extension to
distributed applications.

II. Actor in OCaml

In this section, we demonstrate how to use our library to
easily develop and scale an application to its parallel and
distributed versions, while ensuring the absence of common
issues such as data races. We begin with a simple counter ex-
ample to introduce the syntax, then present a more evolved
example solving the N-queens problem.

A. Define actors by annotation

Listing 1 defines a counter actor with an OCaml object.
The counter is initialized to 0 and each call to the incr
method increments the counter by 𝑛. The only difference

between this code and standard OCaml objects is the %actor
annotation placed at the beginning. This extension trans-
forms the class into an actor class. The signature of the re-
sulting actor is displayed in Listing 2, and shows that each
method is now asynchronous: its result is wrapped inside a
Promise.t . Finally, Listing 3 shows some use of a counter: it
first creates it, on Line 1, then increment it by synchronous
call c#.incr on Line 2. We then use an asynchronous call
c#!get which return a promise. While this call resolves, we
can do some other computation (Line 4) before await ing
the promise and using the result.

1 class%actor counter = object
2 val mutable x = 0
3 method get = x
4 method incr n = x <- x + n
5 end

Listing 1: Definition of a Counter Actor

1 class counter : object
2 method get : int Promise.t
3 method incr : int -> unit Promise.t
4 end

Listing 2: Signature of a Counter Actor

1 let c = new counter in
2 c#.incr 2; (* A Synchronous call *)
3 let p = a#!get in (* An Async call *)
4 let a = f () (* Some code while p is resolved *)
5 Promise.await p + a (* Obtain the value of p *)

Listing 3: Spawn Counter Actor on a green thread

An actor is a fully-fledged concurrent object, but where
only one statement of the object’s methods is executed
simultaneously. Since the internal state is only available
through publicly exposed methods, this ensures the absence
of data-races. Only ‘await’ can interrupt the execution of a
method and start executing a new one. This ensure that,
from the programmer’s point of view, the inside of a method
that has no ‘await’ statement can be thought of as sequential
codes. Each actor is thus equipped with an internal cooper-
ative scheduler to orchestrate the execution of the various
methods. We also prevent various mistakes, such as leaking

internal state via closures. For more details on the semantics
and properties of our implementation of Actors, see [10].

B. A concurrent example

Let us now look at a more ambitious program, and how
to scale it: an (embarrassingly parallel) n-queen solver, im-
plemented in Listing 4. Our implementation uses a classical
brute-force algorithm with persistent arrays that recursively
place queens column by column to enumerate all solutions.
To parallelize it, an actor is created for the next column (Line
17), and the result is resolved asynchronously (Line 21).
Promises containing the solutions are collected at the end
(Line 32).

We then exploit a new capability of our Actors: when call-
ing new we can specify a location where the actor should
spawn. We can easily provide a precise location, to spawn on
a specific node in the distributed system, or use a Spawner
which tries to balance the workload, based on a distribution
strategy. For instance, Spawner.GreenThread would create a
new green thread for every actor, yielding a multi-threaded
version. Conversely, Spawner.GlobalGreenThread , used in
Listing 6 on Line 3, creates green threads in distant nodes,
yielding a distributed version. We could also provide a more
specific location to spawn on a specific node in the distrib-
uted system.

C. Additional Features

On top of a solid concurrent programming style using Ac-
tors-based on algebraic effects as described in [10], actors-
ocaml proposes a convenient library for concurrent, paral-
lel, or distributed applications that allows programmers to
reason about their domain logic sequentially and then auto-
matically generates the corresponding actor code. Our im-
plementation supports several key functionalities over the
network for distributed operation:

• Node Synchronization: Ensuring nodes within the
cluster are aware of each other.

• Actor Communication: Allowing the sending of mes-
sages to actors on remote nodes, including sending
promises and even actors between nodes.

• Actor programming: Providing a unified API handling
actors on local or remote nodes identically.

III. Discussion and Talk

Naturally, a lot is still needed to reach a production library.
1. We would like to integrate with existing OCaml li-

braries for concurrency. Indeed, the current prolifer-
ation of promise libraries makes interoperability del-
icate, as highlighted by the Picos project. In particu-
lar Riot provides runtime primitives that are comple-
mentary to the programming model we propose.

1 module PArray = CCPersistentArray
2 type row = Free | Occupied of int
3

4 class%actor qsolver spawner board = object
5 (self)
6 val board : row array = board
7

8 method is_valid_position i j =
9 (*Check if a queen can be placed at (i, j)*)

10

11 method with_queen i j =
12 let location = spawner () in
13 let new_board =
14 PArray.set board i (Occupied j)
15 in
16 let new_actor =
17 new qsolver location new_board
18 in
19 Promise.fmap
20 (fun sub -> List.map (fun l -> i::l) sub)
21 (new_actor#!solve (j + 1))
22

23 method solve j =
24 let n = PArray.length states in
25 if n = j then [[]] else
26 let solutions = ref [] in
27 for i = 0 to n - 1 do
28 if self#.is_valid_position i j then
29 let new_sols = self#.with_queen i j in
30 solutions := new_sols :: !solutions
31 done;
32 List.concat_map Promise.get !solutions
33 end

Listing 4: Parallel n-queen Actor implementation

1 class queen_solver :
2 location -> row PArray.t -> object
3 method solve : int -> int list promise
4 end

Listing 5: Parallel n-queen Actor signature

1 let spawner = Spawner.GlobalGreenThread.spawn
2 let initial_board = PArray.init 8 Free
3 let a = new qsolver spawner initial_board
4 let solutions = Promise.await @@ a#!solve 0

Listing 6: Distributed n-queen Actor implementation

2. So far, we have leveraged OCaml’s support for ob-
jects to implement Actor’s encapsulation. Another
construct provides excellent encapsulation in OCaml:
modules and abstract types. We are currently experi-
menting with a different API based on this idea, hop-
ing that it provides a more idiomatic OCaml API.

In the presentation, we will present additional examples
of concurrent and distributed programming using actors-
ocaml , some of the implementation challenges to provide
safe communication between distributed actors, and discuss
these various future extensions.

https://github.com/ocaml-multicore/picos
https://github.com/riot-ml/riot

References

[1] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR
formalism for artificial intelligence,” in Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence, in IJCAI'73. Stanford,
USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.

[2] F. D. Boer et al., “A Survey of Active Object Languages,” ACM Comput-
ing Surveys, vol. 50, no. 5, pp. 1–39, Sep. 2018, doi: 10.1145/3122848.

[3] J. De Koster, T. Van Cutsem, and W. De Meuter, “43 years of actors:
a taxonomy of actor models and their key properties,” in Proceedings
of the 6th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, Amsterdam Netherlands: ACM,
Oct. 2016, pp. 31–40. doi: 10.1145/3001886.3001890.

[4] P. Haller and M. Odersky, “Actors That Unify Threads and Events,” in
Coordination Models and Languages, A. L. Murphy and J. Vitek, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 171–190.

[5] R. Virding, C. Wikström, and M. Williams, Concurrent programming
in ERLANG. Prentice Hall International (UK) Ltd., 1996.

[6] S. Srinivasan and A. Mycroft, “Kilim: Isolation-Typed Actors for Java:
(A Million Actors, Safe Zero-Copy Communication),” in ECOOP
2008–Object-Oriented Programming: 22nd European Conference Pa-
phos, Cyprus, July 7-11, 2008 Proceedings 22, 2008, pp. 104–128.

[7] D. Caromel, L. Henrio, and B. P. Serpette, “Asynchronous and deter-
ministic objects,” in Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2004, pp. 123–
134.

[8] K. C. Sivaramakrishnan et al., “Retrofitting Parallelism onto OCaml,”
Proceedings of the ACM on Programming Languages, vol. 4, no. ICFP,
pp. 1–30, Aug. 2020, doi: 10.1145/3408995.

[9] K. Sivaramakrishnan, S. Dolan, L. White, T. Kelly, S. Jaffer, and
A. Madhavapeddy, “Retrofitting effect handlers onto OCaml,” in Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, 2021, pp. 206–221.

[10] M. Andrieux, L. Henrio, and G. Radanne, “Active Objects Based on
Algebraic Effects,” Active Object Languages: Current Research Trends,
vol. 14360. Springer Nature Switzerland, Cham, pp. 3–36, 2024. doi:
10.1007/978-3-031-51060-1_1.

https://doi.org/10.1145/3122848
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/3408995
https://doi.org/10.1007/978-3-031-51060-1_1

	Introduction
	Actor in OCaml
	Define actors by annotation
	A concurrent example
	Additional Features

	Discussion and Talk
	References

