
HAL Id: hal-04794434
https://hal.science/hal-04794434v1

Submitted on 20 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tail Modulo Async/Await - Extended Abstract
Vivien Gachet, Ludovic Henrio, Gabriel Radanne

To cite this version:
Vivien Gachet, Ludovic Henrio, Gabriel Radanne. Tail Modulo Async/Await - Extended Abstract.
FPROPER, Sep 2024, Milan, Italy. �hal-04794434�

https://hal.science/hal-04794434v1
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Tail Modulo Async/Await - Extended Abstract
Vivien Gachet

EnsL, Inria, UCBL, CNRS, LIP
Lyon, France

Ludovic Henrio
CNRS, EnsL, Inria, UCBL, LIP

Lyon, France
ludovic.henrio@ens-lyon.fr

Gabriel Radanne
Inria, EnsL, UCBL, CNRS, LIP

Lyon, France
gabriel.radanne@inria.fr

1 Introduction
Tail-calls [9] are an essential feature of functional program-
ming languages: they allow to write iterations in a declara-
tive fashion, using simple recursive functions, unbothered
by implementation details such as stack space. They work
by giving special treatment to function calls in "terminal
position", i .e. the last thing a function would do. Indeed,
such calls never need to be returned from, meaning that
adding an entry in the stack is not necessary. Tail-recursion
exploits this characteristic further by transforming appro-
priate recursive functions into for-loops, ensuring they only
use 𝑂 (1) stack space. Tail-call and tail-recursion, since their
introduction in the 70s, have been mainstay in many pro-
gramming languages and are available in virtually all modern
production compilers (C, Rust, Scheme, Haskell, OCaml, . . . ).

Tail-modulo-cons is a classic extension, originally described
in Prolog, which aims to allow function calls "under a con-
structor". For instance, let us consider the code in Figure 1.
The last call on Line 9 is not normally in "tail-position", as a
𝑁𝑜𝑑𝑒 still have to be allocated. Tail-modulo-cons is a code
transformation that first allocates the 𝑁𝑜𝑑𝑒 , with an appro-
priately placed hole, then makes a tail-call to the function.
Tail-modulo-cons was recently added to OCaml [1] and ex-
panded to richer contexts [4].

Unfortunately, such a transformation doesn’t handle mul-
tiple recursive calls, such as the ones present in the map
function on trees, as shown in Figure 1. Indeed, what would
even be the semantics in a sequential context? Which calls
to𝑚𝑎𝑝 should run first?

This problem takes on a different meaning in a concurrent
context! Consider a concurrent map on binary trees imple-
mented in Figure 2 using the async/await paradigm. The
whole function is marked as async, meaning that it returns a
promise [5] representing the computation in progress. await
waits for a promise to be completed and returns its value.
Each recursive call, on Line 5 and 6, thus run concurrently.
Squinting a little bit, we can observe that both recursive calls
are, in spirit, tail-calls (modulo cons): the only thing that re-
mains to do after them is to allocate the Node. Unfortunately,
we have two recursive calls, both hidden under an await,
which is out of scope of existing transformations.

Our contribution is a code transformation, dubbed "Tail
modulo Async/Await" and inspired by Bour et al. [1], which

Conference’17, July 2017, Washington, DC, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 type tree =

2 | Leaf

3 | Node of int * tree * tree

4
5 let rec map f = function

6 | Leaf -> Leaf

7 | Node(v, tl, tr) ->

8 let tl ' = map f tl in

9 Node(f v, tl', map f tr)

Figure 1. A map on binary trees. The right recursive call
to map will be terminal with Tail-Modulo-Cons [1], but the
whole function is not.

1 let rec async map f = function

2 | Leaf -> Leaf

3 | Node(v, tl, tr) ->

4 Node(f v,

5 await (map f tl),

6 await (map f tr))

Figure 2. An asynchronous concurrent map on binary trees.
With our transformation, this function runs in 𝑂 (1) stack.

precisely transform such functions to run in constant stack
space. We now give some ideas how this transformation
proceeds on examples.

2 Tail-Modulo-Async/Await in Action
We now showcase our code transformation on the map exam-
ple from Figure 2. The transformed code is shown in source
syntax in Figure 3. It has been modified in several meaning-
ful ways which we detail in the rest of this section. First,
map now relies on map_dps in Destiny passing style, using
an output-argument d. Then, map_dps itself uses a new op-
erator, refine, to build the result in-place. Finally, recursive
calls to map have been replaced by tail-calls under fork.

2.1 Destiny Passing Style
The core of a tail-modulo [4] transformation is moving the
necessary context from the function body to its parameter.
An example of this is the continuation-passing-style where
the whole function continuation is passed as an argument.
Another case is destination-passing-style, used by Bour et al.
[1], that exposes the memory location to-be-filled during

1

https://orcid.org/0000-0001-7137-3523
https://orcid.org/0000-0002-2107-7678
https://doi.org/10.1145/nnnnnnn.nnnnnnn


111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Vivien Gachet, Ludovic Henrio, and Gabriel Radanne

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

1 let map f l =

2 let d, promise = Destiny.fresh () in

3 map_dps d f l;

4 promise

5
6 let rec map_dps d f = function

7 | Leaf -> Destiny.refine d Leaf

8 | Node(v, tl, tr) ->

9 let ctx = Node(f v, Hole , Hole) in

10 let dl, dr = Destiny.refine d ctx

in

11 fork (map_dps dl f tl);

12 fork (map_dps dr f tr);

13 ()

Figure 3. Source version of the transformed code of the
concurrent map in Destiny Passing style.

computation. For Tail Modulo Async/Await, the context of
the computation is the destiny [3], i.e. where does the end-
result of the asynchronous computation should go. In prac-
tice, we rely on value with multiple holes, in the style of
Minamide [6].
With that in mind, we can take another look at map_dps

and explain the transformation. First, the top-levelmap func-
tion generates a destiny d and its associated promise with
Destiny.fresh. The destiny d points to a hole, and the
promise will contain the value when d is fully filled. map
then calls map_dps with the destiny d. map_dps never re-
turns any value, but will fill the holes in d. This allow us to
transform all its recursive calls to tail-calls under fork, on
Line 11 and 12. Looking back at the original code in Figure 2,
all we now need to deal with are the two constructors Leaf
and Node.

2.2 Constructors with refine

To implement constructors with mutliholes, and more gener-
ally "values with holes", we rely on Destiny.refine, whose
behavior is shown graphically on Figures 4 and 5.

In the simplest case, Destiny.refine takes as argument a
destiny d, a value v and fill d with v. This is illustrated in the
base case of map_dps, on Line 7, where d is filled (in place)
with Leaf. Naturally, v might itself contains holes! This is
the case in the Node case, as shown on Line 9-10. In this case,
Destiny.refine returns a set of destinies pointing to all the
new holes in the structure. For instance, Figure 4 illustrate
the situation where let d3, d4 = Destiny.refine d1 ctx.

Finally, at some point in the execution, the complete struc-
ture will become hole-free, as illustrated in Figure 5. At this
point, refine raises a flag to resolve the promise introduced
by Destiny.fresh.

Crucially, destinies are write-only, and only used linearly.
Indeed, since all calls are in tail position, the value inside a

ctxd2d1

→

ctx

d2

d3 d4

Figure 4. refine filling a destiny with a structure that has
holes. It allocates destinies to the holes of the structure, and
returns them.

d

ctx →

Figure 5. refine tracks internally the number of holes.
When it reaches zero, it sets a flag to True, and the promise
resolver can be called

destiny will not only be read once all computation is done,
through the promise. With that in mind, we can look at
Figure 4 and decompose what refine does here : it allocates
locations for each hole in the new context (𝑑3 and 𝑑4), it
replaces what 𝑑1 points to with 𝑐𝑡𝑥 , and updates the number
of holes inside the overall structure. If that count is 0, it sets
a flag to True, which means the promise can be resolved, as
seen in Figure 5

2.3 Chaining
Our DPS transformation turns asynchronous tail-modulo-
cons functions into asynchronous tail-recursive functions.
We can in fact handle more general cases, such as any ex-
pression await e in tail position. For instance, let’s go back
to Figure 2, but replacing f v with await (f v). f might
have a DPS version, which we could readily use. Otherwise,
we can still avoid having to await on f v by using chain.

Chains, introduced by Fernandez-Reyes et al. [2], allow to
delegate some asynchronous computation to another func-
tion. In our context, a chain is equivalent to adding a callback
indicating that, when f v is done, it should fill a given destiny
d. A naive implementation might cause long chains of indi-
rections. Following Fernandez-Reyes et al. [2], we implement
an optimized version adapted to our setup.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Tail Modulo Async/Await - Extended Abstract Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

3 Content of the Talk
In the talk, we will present the formalization of the opera-
tions and transformation, along with a partial proof of bisim-
ulation. We will showcase transformations on more com-
plex examples, and a work-in-progress implementation in
OCaml which leverages OCaml 5’s new concurrency capa-
bilities [7, 8].

References
[1] Frédéric Bour, Basile Clément, and Gabriel Scherer. 2021. Tail Modulo

Cons. CoRR abs/2102.09823 (2021). arXiv:2102.09823 https://arxiv.org/
abs/2102.09823

[2] Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc
Vo. 2018. Forward to a Promising Future. In Coordination Models and
Languages - 20th IFIP WG 6.1 International Conference, COORDINATION
2018, Held as Part of the 13th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June
18-21, 2018. Proceedings (Lecture Notes in Computer Science, Vol. 10852),
Giovanna Di Marzo Serugendo and Michele Loreti (Eds.). Springer,
162–180. https://doi.org/10.1007/978-3-319-92408-3_7

[3] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and
Martin Steffen. 2010. ABS: A Core Language for Abstract Behavioral
Specification. In Formal Methods for Components and Objects - 9th Inter-
national Symposium, FMCO 2010, Graz, Austria, November 29 - December
1, 2010. Revised Papers (Lecture Notes in Computer Science, Vol. 6957),
Bernhard K. Aichernig, Frank S. de Boer, and Marcello M. Bonsangue

(Eds.). Springer, 142–164. https://doi.org/10.1007/978-3-642-25271-6_8
[4] Daan Leijen and Anton Lorenzen. 2023. Tail Recursion Modulo Context:

An Equational Approach. Proc. ACM Program. Lang. 7, POPL (2023),
1152–1181. https://doi.org/10.1145/3571233

[5] Barbara Liskov and Liuba Shrira. 1988. Promises: Linguistic Support
for Efficient Asynchronous Procedure Calls in Distributed Systems.
In Proceedings of the ACM SIGPLAN’88 Conference on Programming
Language Design and Implementation (PLDI), Atlanta, Georgia, USA,
June 22-24, 1988, Richard L. Wexelblat (Ed.). ACM, 260–267. https:
//doi.org/10.1145/53990.54016

[6] Yasuhiko Minamide. 1998. A Functional Representation of Data Struc-
tures with a Hole. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Diego,
CA, USA, January 19-21, 1998, David B. MacQueen and Luca Cardelli
(Eds.). ACM, 75–84. https://doi.org/10.1145/268946.268953

[7] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom
Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Mad-
havapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM
Program. Lang. 4, ICFP (2020), 113:1–113:30. https://doi.org/10.1145/
3408995

[8] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq
Jaffer, and Anil Madhavapeddy. 2021. Retrofitting effect handlers onto
OCaml. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 206–
221. https://doi.org/10.1145/3453483.3454039

[9] Wikipedia contributors. 2024. Tail call — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Tail_call&oldid=
1221167354. [Online; accessed 28-May-2024].

3

https://arxiv.org/abs/2102.09823
https://arxiv.org/abs/2102.09823
https://arxiv.org/abs/2102.09823
https://doi.org/10.1007/978-3-319-92408-3_7
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1145/3571233
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/268946.268953
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://en.wikipedia.org/w/index.php?title=Tail_call&oldid=1221167354
https://en.wikipedia.org/w/index.php?title=Tail_call&oldid=1221167354

	1 Introduction
	2 Tail-Modulo-Async/Await in Action
	2.1 Destiny Passing Style
	2.2 Constructors with refine
	2.3 Chaining

	3 Content of the Talk
	References

