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Abstract

We focus on improving the Gaudry-Schost algorithm, which solves multi-dimensional discrete
logarithm problem. We have proposed a modified algorithm that reduces the cost of each iteration

of Gaudry-Schost algorithm by a factor of
D−1
∆ + 1

l
+

CsD
Cf

D−1
∆ +1

where D is the dimension of the problem, l

a specially designed quantity, Cg is the cost of computing any function g, sD, f are functions and

(1
l
+

CsD

Cf
) < 1. The cost of our algorithm for subgroups modulo prime p, which arises in electronic

voting and cash schemes diminishes by a factor of
||p||
∆gs

l
log(||p||)

∆tt

where ∆’s are the iterations to reach a

certain type of points.
Our implementation of the algorithm confirms theoretical analysis. The reduction of cost per itera-
tion sums to be much advantegeous when complete number of iterations have to be done to find the
logarithms. Also, both theory and experiments confirm that the new algorithm reduces the dominant
multiplication cost along with other additional costs, and the gain would be more as we increase the
size of the group. We obtained about 12 times speed-up for groups of size 2076 bits.
Our algorithm will lead to a reduction of security of schemes based on multi-dimensional discrete log-
arithm problem or using multi-dimensional pseudo-random walk like electronic voting, cash schemes
point-counting, speeding-up elliptic-curve arithmetic, group-actions, CSIDH etc.
Keywords: Discrete logarithm problem (DLP), Multi-Dimensional discrete logarithm problem,
Gaudry-Schost algorithm, Electronic voting and cash schemes, Post-quantum cryptography, CSIDH
Mathematics Subject Classification (2020): 11T71 11Y16

1 Introduction

The hardness of discrete logarithm problem [17] is the basis of public-key cryptography. The discrete
logarithm problem (DLP) [23, 26, 24] is: Given a cyclic group G, its generator g of order N for some
N ∈ N and an arbitrary element h ∈ G, find the exponent a ∈ [0, N) such that h = ga. This problem

∗Another email: mukhopadhyaymadhurima@gmail.com
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is for a single generator and so we can think this to be for dimension one. This definition can also be
extended for higher dimensions as follows.

Definition 1. Multi-Dimensional DLP: Let G be an abelian group. Suppose g1, g2, . . . , gD, h ∈ G and
N1, N2, . . . , ND ∈ N for some positive integer D. The D-dimensional discrete logarithm problem is to
find integers (if they exist) a1, a2, . . . , aD ∈ N such that

h =

D
∏

i=1

gi
ai (1)

where ai ∈ [0, Ni) ∀ i = 1, 2, . . . ,D.
We assume that the integers Ni are odd ∀i, 1 ≤ i ≤ D and N = N1 ×N2 × . . .×ND.

This definition 1 does not assume any relation between N and integers Ni with order of the group
or the elements gi respectively for each i = 1, 2, . . . ,D.

1.1 Applications

The multi-dimensional discrete logarithm problem arises in several situations which include structures
as curves or a group modulo some integer. We note that computation of DLP in an interval is one of
the steps to count points on curves over finite fields [15, 16, 22, 32]. Gaudry and Schost [16] developed
their algorithm for the case of curves of genus 2. After using the Schoof-type algorithm, the remaining
problem reduces to a multi-dimensional DLP.
GLV method to speed up elliptic curve arithmetic [14], requires expressing n times addition of a point P
i.e., [n]P as [n1]P+[n2]ψ(P ) for some integers n1, n2 where ψ is an endomorphism. The bound on n1, n2
is that |n1|, |n2| ≈

√
n. This is an example of 2-dimensional DLP2. The same approach of expressing

multiple of a point to a multi-dimensional DLP [19] can happen in Koblitz curves [21] leading to a 2-
dimensional DLP. Similar things happen in curves of genus 2 over F2 resulting in a 4-dimensional DLP.
The multi-dimensional DLP also arises in the situation when constructing an electronic cash scheme [2]
and election scheme [7].

1.1.1 Recent post-quantum cryptography

Present public-key cryptography utilises hardness of integer-factorisation or discrete logarithm prob-
lem in finite field or elliptic curves that are not quantum-safe3, meaning the availability of quantum-
computing systems leads to insecurity. This has led to spiking interest in computational problems that
cannot be efficiently solved by quantum computers. This field of study is known as Post-Quantum
Cryptography, with a recent suggestion being isogeny-based cryptography. Group actions are used in

1There are equivalent formulation of the problem for additive abelian groups. Let G be an additive abelian group. The
problem would be to find a1, a2, . . . , aD ∈ Z such that

h =
D∑

i=1

[ai]gi (2)

where [ai]gi means gi (or −gi) added absolute value of ai times if ai is positive (or negative) and ai ∈ [−ni, ni]. The two
definitions are equivalent when assuming 2ni + 1 = Ni depending upon the case at hand.

2. For dimensions that exceed 2, other examples of such work are present in [11, 13]
3Shor’s algorithm, Grover’s algorithm can lead to such problems being tractable.
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CSIDH-schemes [4, 1, 8]. They have not been affected by the recent attacks [3, 30], which broke an-
other isogeny-based scheme called SIDH [18]. The security of CSIDH is based on the intractability
of the corresponding group-action inverse problem which can be related to the multi-dimensional dis-
crete logarithm computations [Section 3, [20]]. Studying the hardness of the multi-dimensional discrete
logarithm problem thus remains vital in post-quantum context.

1.2 Previous works

To solve the multi-dimensional discrete logarithm problem, Matsuo et al [22] adopted the baby-step
-giant -step algorithm [31]. The time and space complexity of this algorithm is O(

√
N). Gaudry and

Schost [16] proposed a low-memory algorithm by applying pseudo-random walks (with exponents of gi's
belonging to two types of sets called tame or wild sets). This algorithm can be modified for solving
2-dimensional DLP and can also be generalized for any multi-dimensional situation.

Gaudry and Schost used a deterministic pseudo-random walk where the elements of the walk are
powers of the bases gi. As they have presented such walks in a finite group, elements of the walk will
certainly collide. We can find the multi-dimensional discrete logarithms by tracking the exponents of
gi's. Several improvements to the Gaudry-Schost algorithm have been proposed assuming a specialized
structure of the group [12, 34, 6] or special choice of tame and wild sets [9, 33].
There are exactly two major ways to reduce the cost of the algorithm. The first is to lessen the number
of iterations required by the pseudo-random walk to get a collision, and the second is to cut down
the cost per iteration. The first strategy can be acheived by designing suitable tame and wild sets.
Galbraith and Holmes [10] showed that, using two types of sets like tame and wild, the minimal number
of iterations required is

√
πN . The recent choice of tame and wild sets in [33], has lowered the expected

averge case complexity to 1.0171D
√
πN , which is already very close to the predicted bound of

√
πN .

This implies that given the present state-of-the-art, to improve this algorithm we shoould focus on the
second possiblity.

1.3 Importance of our work

We resort to the second method of the above paragraph to reduce the cost of the algorithm. The major
work while performing each step of the walk in the Gaudry-Schost algorithm is to multiply two elements.
The other jobs are minor as they comprise finding some index and keeping track of the exponents. The
cost of multiplication becomes all the more pronounceable as the size of the underlying group increases.
Cheon et. al., [5] applied tag-tracing in pseudo-random walks of the Pollard Rho algorithm to reduce
the number of multiplications in the original group and perform necessary multiplications in smaller
subsets of the group. Multiplication in subsets was less costly than it’s counterpart in the larger group.
In this paper, we try to investigate whether tag-tracing can be used to improve the Gaudry-Schost
algorithm. The reason this is necessary is primarily due to the differences between the earlier application
scenario and the present one:

1. The previous application of tag-tracing was done for dimension one, whereas the Gaudry-Schost
algorithm is for dimensions that exceed one.

2. Unlike the Pollard Rho algorithm, the Gaudry-Schost algorithm initiates another fresh walk on
arriving at a special type of points called distinguished point.
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3. For Gaudry-Schost algorithm walks are of two types(tame and wild)4, while for Pollard Rho
algorithm walks are of a single type.

These differences are quite significant, and hence to declare that tag-tracing is an effective method to
reduce the cost, even when optimal iterations are reached, we need to study the behavior of Gaudry-
Schost algorithm with and without tag-tracing. No sort of experimentation of tag-tracing has been done
before for the pseudo-random walks of the Gaudry-Schost algorithm type. This also makes it necessary
for us to do a implementation of the Gaudry-Schost algorithm when combined with tag-tracing.
We have described the entire procedure to incorporate tag tracing into the Gaudry-Schost algorithm in
Section 3. We have derived the precise estimations of cost in both generalized versions and subgroups
modulo primes. We have applied our algorithm to compute multi-dimensional discrete logarithms that
arises in the set-up of electronic cash scheme [2] and election scheme [7]. We observe a significant
speed-up, and our experimental verifications agree with the theoretical estimates of costs that we have
derived.

1.4 Our contributions

Designing the algorithm to use tag-tracing with Gaudry-Schost algorithm: We have pre-
sented the application of tag-tracing to the Gaudry-Schost algorithm in Algorithm 5 to compute multi-
dimensional discrete logarithms. Such an application is new and differs(Section 1.3) from it’s previous
applications .
Calculation of the decrease in cost: We have derived that, for any given group, while the cost of
Gaudry-Schost algorithm is (N +∆)(CD

∆ +Cf ), the corresponding cost of tag-tracing is
(

N +∆
)(

CD

∆ +
(Pr(s fails) + 1

l
)Cf + Cs

)

where N,∆ are iterations to reach collisions and distinguished points re-
spectively, while CD, Cf , Cs are the costs of D multiplications, single multiplication and computing s
respectively and l is a fixed parameter. In particular, we show that the cost of Gaudry-Schost algorithm
always decreases when we use tag-tracing, at the trade-off of a negligible increase in pre-computation

cost(Lemma 3). We have derived the exact ratio of this decrease as
D−1
∆

+1

D−1
∆

+ 1
l
+

CsD
Cf

which by design of

functions, increases with the increase of l,D.
Tag-tracing and cost estimates in subgroups modulo primes: We next concentrate on subgroups
modulo primes, p, which have applications in electronic voting and cash schemes. We derived that the

cost of tag-tracing here is

{

D−1
∆ Mul(||p|| +

(

1
l
+ 1

r̄

)

Mul(||p||)) + d Mul(||w||)
}

(1.0171D
√
πN + ∆),

for some appropriately chosen integers r̄, w, d. We have further simplified this cost in Lemma 10 and
Theorem 11. In Theorem 12, we prove the cost of Gaudry-Schost algorithm is greater than tag-tracing

for a fixed D by the ratio
||p||
∆gs

l
log(||p||)

∆tt

, where ∆gs,∆tt are the iterations to reach distinguished points for

Gaudry-Schost algorithm or the tag-tracing counterpart respectively.
Space-complexity: We have shown that the space required by tag-tracing is a polynomial function
of l,D and the bit-size of the group in general case. This size is the bits in the prime for subgroups
modulo primes.
Implementation confirming theory: We implemented the new algorithm in subgroups of Z∗

p, rele-
vant in the context of electronic voting and cash schemes. Our code is available at:

43 or 4 sets can also be used in other designs.
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https://github.com/Madhurima11/Multi-Dimensional-Discrete-Logarithm.

This experimentation ensured that our theoretical predictions of decrease in cost were valid(Section 7.3).
This implementation also certified that, tag-tracing reduces the dominant multiplication cost along with
other additional costs and the gain would be more as we increase the size of the group. We obtained
about 12 times speed-up with 2076 bit-sized groups.
Pointing out future research avenues: We have also noted some future research directions to gain
from increase of the dimension of the problem.

1.5 Paper organization

In Section 1, we define the multi-dimensional discrete logarithm problem and note some applications.
We describe the previous research works and point out the specific region where we would like to
improve upon. We next state our contributions in this paper. In Section 2, we describe the Gaudry-
Schost algorithm, which is used to compute multi-dimensional discrete logarithms. In Section 3, we
give a detailed account of the method of inclusion of tag tracing into the Gaudry-Schost algorithm.
Specifically, we describe the entire process in Algorithm 5. In Section 4, we theoretically derive the
costs of both scenarios of Gaudry-Schost algorithm, with and without tag-tracing. We next deduce
the theoretical estimate of the factor by which tag-tracing improves the algorithm. We concretely note
some cryptographically relevant schemes in Section 5, where our improvements are applicable. After
this part, we end the generalized view and fix our attention towards subgroups of Z∗

p. We describe
the associated functions and the values of the parameters required for tag tracing in subgroups of Z∗

p

in Section 6. We also derive the time and space complexities in this case. We present the results of
implementation of Gaudry-Schost algorithm with and without tag-tracing in Section 7 along with the
comparison with our predicted estimates. We point out some future research directions in Section 8.
Lastly, we summarize the conclusions that can be drawn from our study in Section 9.

2 Gaudry-Schost algorithm adapted to multi-dimensional discrete

logarithm computation

In this section, we explore the adaptation of the Gaudry-Schost [16] algorithm to multi-dimensional
discrete logarithm computation. The basic idea of the algorithm is to perform a deterministic, pseudo-
random walk with the help of two specially designed sets called tame and wild. 5

2.1 Offline phase

Gaudry and Schost [16] chose two positive integers ns(> log(max(N1, . . . , ND))) and Mgs to define a
selection function S : G → {0, 1, . . . , ns − 1} for partitioning the group into ns components, almost

5A point
∏D

i=1 gi
xi is called a tame point or a wild point depending upon whether the exponents (x1, x2, . . . , xD) lie

in tame or wild set respectively. Generally, a wild point is perceived to be of the form h
∏D

i=1 gi
yi where (a1 + y1, a2 +

y2, . . . , aD + yD) is a member of the wild set.
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uniformly.6

Next, they pre-computed ns elements in a table P as:

P := {wj =
D
∏

i=1

gi
ei,j | −Mgs < ei,j < Mgs, j = 0, 1, . . . , ns − 1} (3)

The exponent bound Mgs ≈ N
Γ log2(N) where the choice of Γ can be made so that all elements of P are

distinct7. For practical purposes, it is simply chosen as some suitable power of 10.
They defined the (k + 1)-th element of the deterministic pseudo-random walk as:

vk+1 = vk · wS(vk) (4)

where vk =
∏D

i=1 gi
xi,k is the k−th element and its exponents

(x1,k+1, x2,k+1, . . . , xD,k+1) = (x1,k + e1,S(vk), x2,k + e2,S(vk), . . . , xD,k + eD,S(vk)) (5)

The algorithm for the online phase is as below:

Algorithm 1: Precomputation in Gaudry-Schost algorithm.

Input: D, g1, g2, . . . , gD, ns,Mgs.
Output: Table P consisting of ns products of elements gi’s for i = 1, 2, . . . ,D.

1 Set P as an empty set
2 for i := 1 to ns do

3 Choose D integers e1, e2, . . . , eD randomly from (−Mgs,Mgs) //Choosing random
exponents.

4 Compute the product as prod←∏D
i=1 gi

ei //Computing product with chosen exponents.
5 Append the product prod to P

6 Return P

2.2 Collision detection

The most efficient method to detect a match between tame and wild walks is the method of distinguished
points [29]. A distinguished point is any element of the group G that satisfies certain conditions, with
probability pD.

8 About ρD(=
1
pD

) extra iterations are necesary to reach a distinguished point, the exact

estimate of ρD will depend on it’s trade-off with the cost to store distinguished points.9 The distinguished
point method can be parallelized [27] and leads to speed-ups that are linear in the number of processors.

6It may be a hash function with good statistical properties.
7An implicit assumption here is that the values of Ni are quite close to each other. If this is not the case in some

situations, then we can construct the bound for each ei so that it depends on the corresponding Ni in the same manner as
above. Our aim would be to ensure that when we perform the walk, the exponents of gi do not exceed the associated Ni.

8We can define these conditions so that they are easy to check. For example, given a fixed encoding of the group, we
can denote distinguished points as those elements of the group that have a certain number of most (or least) significant
bits equal to zero.

9To optimize the space overhead cost, the distinguished points are stored in an easily searchable structure such as a
hash table.
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2.2.1 Abandoning a walk

There is a possibility that we can encounter a walk that does not reach a distinguished point after
many iterations. Van Oorschot and Wiener [27] defined a bound on the number of steps after which
it can be abandoned as L = 20

ρD
. The proportion of walks that exceed this length is bounded by

(1− ρD)
20
ρD ≤ (exp(−ρD))

20
ρD = exp(−20). This means that any abandoned trail is 20 times longer than

the average length. Thus proportion of walks that are abandoned is about 20exp−20 < 5× 10−8, which
is negligible.

2.3 Obtaining the multi-dimensional discrete logarithm

Let z be a point that arises as a distinguished point both in tame and wild walks. Then for some
(x′1, x

′
2, . . . , x

′
D) ∈ TGS and (y′1, y

′
2, . . . , y

′
D) ∈ WGS , z is of the form z =

∏D
i=1 gi

x′
i = h

∏D
i=1 gi

y′i

Then, h =
∏D

i=1 gi
x′
i−y′i . We can obtain the multi-dimensional discrete logarithm as ai = x′i−y′i ∀ 1 ≤

i ≤ D.

2.4 Online phase

Algorithm 2 for the server will receive points both from tame and wild sides. The multi-dimensional
discrete logarithm problem will be solved if a common point is found between both sides. Otherwise,
it just appends the point to the table of distinguished points allotted for that side. Algorithm 3 is for
the tame and wild processors. It initiates the walk from a random tame (or wild) point and continues
until it hits a distinguished point.

2.5 Different choices of tame and wild sets

Gaudry and Schost [16] proposed their algorithm taking the tame and wild set as orthotopes in Z
d.

Later, Galbraith and Ruprai [9], proposed constant size of overlap, which lead to same expected running
time for best, average, and worst cases. Wu and Zhuang [33] constructed another pair of tame and wild
sets, with the second framework being asymptotically optimal.
We note that for the 1-dimensional case, the problem of finding 0 ≤ a < N such that h = ga where
g, h ∈ G and N ∈ N, can also be framed as finding x, 0 ≤ x < 1 such that h = gxN .
In the second variant, Wu and Zhuang [33] defined the tame and wild sets for dimension 1 as:

T =
[

0, N
]

, (6)

W =
[

xN − αN

2
, xN +

αN

2

]

(7)

such that 0 ≤ α ≤ 1.
For D > 1, the tame and wild sets were just the products as the dimensions are independent of each
other.

T =
[

0, N
]D

, (8)

W =
[

xN − αN

2
, xN +

αN

2

]D

(9)

where N is same as in Definition 1.
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Algorithm 2: The Gaudry-Schost algorithm: server side.

Input: g1, g2, . . . , gD, h ∈ G, N1, N2, . . . , ND ∈ N.
Output: Integers a1, a2, . . . , aD such that h =

∏D
i=1 gi

ai .
1 DT := [ ],DW := [ ]//Empty tables for storing distinguished points

2 while
(

no collision between tame and wild points has been found
)

do

3 Receive a point (z, b1, . . . , bD) from the tame or wild processor

4 if
(

z is received from a tame processor
)

then

5 if (z, y1, . . . , yD) ∈ DW for some y1, . . . , yD then

6 Send terminate signal to all client processors
7 return (b1 − y1, b2 − y2, . . . , bD − yD)
8 else

9 Append (z, b1, . . . , bD) to DT

10 else

11 if
(

(z, x1, . . . , xD) ∈ DT for some x1, . . . , xD

)

then

12 Send terminate signal to all client processors
13 return (x1 − b1, x2 − b2, . . . , xD − bD)
14 else

15 Append (z, b1, . . . , bD) to DW

The complexity analysis is based on a non-uniform birthday problem as the size of overlap was not
the same throughout.

Theorem 1. (Section 4.2, [33]) The expected average case complexity with the tame and wild set choice

as provided in equations 8 and 9 is 1.0171D
√
πN . The expected worst case complexity is 2

D
2

√
πN . The

values of N,D can be set from Definition 1.

The analysis of complexity was done considering: a pseudo-random walk can never behave as that
of a random walk, so some correctional factor has to be included.

3 Application of tag tracing in Gaudry-Schost algorithm

In Gaudry-Schost algorithm, the two main factors contributing to the cost are the number of iterations
and complexity of obtaining the next point at each iteration. Average number of iterations as in Theo-
rem 1, has already acheived a close approximation to

√
πN . Then, to reduce the complexity, we focus

on reducing cost of each iteration. We note that any point in the pseudo-random walk is required to
be known completely only if it is a distinguished point. Thus multiplication at each step of the walk
is unnecessary if we can somehow extract the information required to test the condition. The principle
of tag tracing [5], originally introduced in the context of the Pollard Rho algorithm [28], can traverse
through a random walk without fully computing each point. As there are notable differences (Sec-
tion 1.3) between the Gaudry-Schost walk and the Pollard Rho type of walk: we desire to investigate

8



Algorithm 3: The Gaudry-Schost algorithm: tame or wild processor.

Input: g1, g2, . . . , gD, h ∈ G, D,N1, N2, . . . , ND ∈ N, function walk, maximum length L of
consecutive non-distinguished points.

Output: A distinguished point z along with exponents of gi for it: (z, x1, . . . , xD) such that
z =

∏D
i=1 gi

xi if tame processor and z := h
∏D

i=1 gi
xi if wild processor .

1 while
(

no terminate signal received from server
)

do

2 Choose (x1, x2, . . . , xD) from the tame set T or wild set W depending upon the walk//
Selecting a random tame or wild point for initiating the walk

3 Set z :=
∏D

i=1 gi
xi if tame processor or z = h

∏D
i=1 gi

xi if wild processor
4 Set Length := 0

5 while
(

z is not a distinguished point and Length is less than L
)

do

6 j ← S(z)//Compute the index S(z) for the current point and store it
7 Find the entry wj of the pre-computed table P corresponding to the index of current

point//Finds a pre-computed random power of gi's along with the exponents
8 z ← z · wj//single multiplication for getting the next element of the walk with the help

of pre-computed elements
9 (x1, x2, . . . , xD) = (x1, x2, . . . , xD) + (e1,j , e2,j , . . . , eD,j) //Updating the current

exponents by adding it with exponents from line 7
10 Length← Length+ 1

11 Supply (z, x1, . . . , xD) to the server.

whether tag-tracing is effective in the Gaudry-Schost algorithm. We note that the tag-tracing concept
has not been used before for the multi-dimensional scenario.

3.1 Offline phase

The concept of tag tracing requires a larger pre-computed table. Initially, it computes a tableM where

M := {wj =
D
∏

i=1

gi
ei,j | −Mtt < ei,j < Mtt; j = 0, 1, . . . , r − 1} (10)

where r10,Mtt(≈ N
Γ log2(N))

11 are positive integers for size and bound on exponents. We setM(0) = {1G},
M(1) =M and for the next l(> 0) steps compute:

M(2) = {wj1wj2 |0 ≤ jk ≤ (r − 1) ∀ k = 1, 2}
...

M(l−1) = {wj1wj2 . . . wjl |0 ≤ jk ≤ (r − 1) ∀ k = 1, 2, . . . , l}

Remark 1. We can parallelize computation of eachM(k+1) by multiplying each element ofM to every
of M(k)

10A possible choice of r that we can take is ns.
11We have to define Γ suitably so that the table M contains all distinct elements.
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. We setMl =M(0)∪M(1)∪M(2)∪. . .∪M(l) = {wj1wj2 . . . wjk , 1G|0 ≤ jk ≤ (r−1)∀k = 1, 2, , . . . , l}.
We outline the entire procedure in Algorithm 4.

Lemma 2. The total number of elements inMl is
(

r+l
r

)

.

Proof. To constructMl, we are choosing the first r elements randomly. At the next phase, we choose
k elements at a time, for 2 ≤ k ≤ l. Each of these k elements is either the identity of the group or some
element that we chose randomly at the first step. We have used Lex ordering of indices in Algorithm 4
to avoid the same element from appearing more than once.
Also, once we choose the first r elements randomly, the multi-dimensionality of the problem will play no
role. This is equivalent to choosing any l elements from a set of r elements or a special element(which is
the identity here), where the combinations can have repetitions. The number of such elements is then
(

r+l
r

)

. �

3.1.1 Storing the table Ml:

We store each entry
∏k

t=1 wjt =
∏D

i=1 gi
∑k

t=1 ei,jt of tableMl as

[(j1, j2, . . . , jk),
∏k

t=1 wjt, (
∑k

t=1 e1,jt ,
∑k

t=1 e2,jt , . . . ,
∑k

t=1 eD,jt)]. We sort according to multiplier com-
bination information, or a hash table technique.

Lemma 3. The number of group operations to construct Ml is a polynomial of D,
(

r+l
r

)

.

Proof. We are constructing the first r elements by multiplying the D elements. After we initially choose
r elements, the dimension will not arise, and we need to multiply a single element at each step. This
makes the number of group operations a polynomial function of the dimension and the size of the
table. �

3.2 The pseudo-random walk and the functions required

We define an auxiliary index function s : G×Ml → {0, 1, . . . , ns − 1} with the help of s as:

s(y,m) = s(ym) ∀y ∈ G,m ∈ Ml (11)

By the above equation, when we already know the auxiliary index of some point gi of the walk, we can
compute the next l auxiliary indices without any multiplication.























gi+1 = gims(gi) =⇒ s(gi+1) = s(gi,ms(gi))

gi+2 = gi+1ms(gi+1) = gims(gi)ms(gi+1) =⇒ s(gi+2) = s(gi,ms(gi)ms(gi+1))
...

gi+l = gi+l−1ms(gi+l−1) = gims(gi)ms(gi+1) . . . ms(gi+l−1) =⇒ s(gi+l) = s(gi,ms(gi)ms(gi+1) . . . ms(gi+l−1))

(12)
where ms(g) denotes the element ofMl corresponding to the element g of the group.
We can access the product

∏

j ms(gi+j) from Ml. We design s so that we can compute s(y,m) easier
than y ·m.

10



Algorithm 4: Offline phase when tag tracing is applied to Gaudry-Schost algorithm.

Input: r,Mtt and l ∈ N.
Output: Multiplier tableMl consisting of

(

r+l
r

)

entries with products of elements gi’s for
i = 1, 2, . . . ,D where each entry consists of a set of indices I, the product, and the
exponent information.

1 SetM← [[(0), 1, (0, 0, . . . , 0)]]
2 for j := 0 to (r − 1) do
3 Choose D integers e1,j , e2,j , . . . , eD,j randomly from (−Mtt,Mtt)

4 Compute the product as wj ←
∏D

i=1 gi
ei,j

5 Append [(j + 1), wj , (e1,j , e2,j , . . . , eD,j)] toM
6 SetMl =M// Next it will compute all possible l many products
7 for k := 2 to l do
8 I := [0, 0, . . . , 0] // Set of k indices all 0’s
9 e := [0, 0, . . . , 0]// To be used for getting the exponents

10 while
(

{I 6= [(r − 1), (r − 1), . . . , (r − 1)]}
)

do

11 E ← Entry ofMl corresponding to (I[1], I[2], . . . , I[k − 1]) as first component//Finds
and stores the entry

12 tmp← E[2]//The product wI[1]wI[2] . . . wI[(k−1)] corresponding to the chosen I that
occurs as a second component of the entry

13 exp← E[3]//The exponents occur as the third component
14 prod := tmp×wI[k] //Single multiplication provides the product of k elements from the

initially chosen r random elements where wI[k] is obtained fromM.

15 e← [e[1], e[2], . . . , e[k]] + [exp[1], exp[2], . . . , exp[k]]//Getting the exponents
16 Append the term [(I[1], I[2], . . . , I[k]), prod, e] as the next entry ofMl

17 Increase I according to Lex ordering

18 ReturnMl

11



We define additional functions: Tag function τ : G → T , Auxiliary tag function τ : G ×Ml → T ,
Projection function σ : T → S, Auxiliary projection function σ : T → S ∪ {Fail}, where T (⊃
{0, 1, . . . , ns − 1}), so that indexing functions s, s are easily computable, surjective, pre-image uni-
form and τ, τ on most occasions, can produce output τ(

∏

jms(gi+j)) or τ (
∏

jms(gi+j)), with just the
knowledge of divisors ms(gi+j), without computing the product. When this fails, we have to compute
∏

j ms(gi+j). We define s = σ ◦ τ : G → S and s = σ ◦ τ : G ×Ml → S ∪ {fail} so that equation 11
holds. We define a point zi, i ≥ (δ − 1) (where δ ≥ 1) as distinguished if the index of itself and each of
it’s δ − 1 ancestors are zero:

zi is distinguished if s(zi−δ+1) = . . . = s(zi−1) = s(zi) = 0 (13)

The theorem below, summarizes the additional iterations required, by taking into consideration that,
the probability of the image of a point under s to be zero is 1

r
.

Theorem 4. [Theorem 1, [5]]If distinguished points are defined by a condition of δ consecutive points
satisfying a condition with probability 1

r
, then for a random iteration function, the expected number of

iterations to arrive at a distinguished point is ∆ = r
r−1(r

δ − 1)

Equations 11 and 13 imply a point zi is a distinguished point if

s(zi−δ+1, wi−δ+1) = s(zi−δ+2, wi−δ+2) = . . . = s(zi−1, wi−1) = 0 (14)

Apparently, this definition seems questionable at points that occur within δ iterations. But, we can
neglect this ambiguity as δ is of logarithmic order in ∆, which means O(∆) extra iterations will be
required after the point of collision.

3.3 Online phase

Algorithm 5 is the online phase of Gaudry-Schost algorithm, modified with tag-tracing. The initial
steps of choosing random points in tame(wild) sets remain the same. In the next iterative steps, instead
of performing complete multiplication, we get the multiplier w from Ml, and can check whether the
product of z and w is a distinguished point. We use our definition of distinguished point using auxiliary
functions which performs it roughly after l steps, instead of every step.

Choosing l: We have the advantage of doing lesser full product computations by selecting l large
enough. But increasing l will also lead to a larger table Ml. We should consider this trade-off along
with the approximation in l.Mtt ≈ N

Γ log2(N) when we fix l.

4 Cost comparison for original Gaudry-Schost algorithm and modi-

fication using tag-tracing

4.1 Offline phase

Theorem 5. The time required for offline phase is negligible whether tag-tracing is applied or not.

Proof. Follows from considerations on size of ns, Lemma 2 and Remark 1. �
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Algorithm 5: Tag tracing applied to Gaudry-Schost algorithm: tame or wild processor.

Input: g1, g2, . . . , gD, h ∈ G, d,N1, N2, . . . , ND ∈ N, function walk, maximum length L of
consecutive non-distinguished points.

Output: A distinguished point z along with exponents of gi for it: (z, x1, . . . , xD) such that
z =

∏D
i=1 gi

xi if tame processor and z := h
∏D

i=1 gi
xi if wild processor .

1 while
(

no terminate signal received from server
)

do

2 Choose (x1, x2, . . . , xD) from the tame set T or wild set W depending upon the
walk//Set-up a random tame or wild walk

3 Set z :=
∏D

i=1 gi
xi if tame processor or z = h

∏D
i=1 gi

xi if wild processor
4 Set Length = 0

5 while
(

z is not a distinguished point and Length is less than L
)

do

6 w ← 1G.
7 k ← 0.
8 (e1,k, e2,k, . . . , eD,k) = (0, 0, . . . , 0)
9 tmps ← s(z, w)

10 if tmps is not fail then
11 jk ← tmps

12 while
(

(k < l) and (s does not fail) and (z.w is not a distinguished point)
)

do

13 E ← Entry ofMl corresponding to (j0, j1, . . . , jk)//This finds the entry with first
component (j0, j1, . . . , jk)

14 w← E[2]//The second component is the pre-computed product wj0wj1 . . . wjk

15 k = k + 1
16 tmps ← s(z, w)
17 if tmps is not fail then
18 jk ← tmps

19 z ← z · w//single multiplication in G that does a full product computation and is
generally needed after skipping all multiplications for the previous l steps

20 Length← Length+ l
21 Update the exponent information (e1,k, e2,k, . . . , eD,k) corresponding to

(j0, j1, . . . , jk)//The third component of each entry inMl contains exponent
information.

22 (x1, x2, . . . , xD) = (x1, x2, . . . , xD) + (e1,k, e2,k, . . . , eD,k) //Updating the exponent
information of z using exponent information of w

23 Send (z, x1, x2, . . . , xD) to the server

13



4.2 Online phase

Theorem 6. Let CD, Cf , Cs denote the costs for computing a random point with the help of g1, g2, . . . , gD,
the cost of fully computing products of elements in G, and the cost computing s respectively. Also let
N,∆ denote the number of iterations required for finding collisions and distinguished points respectively.
The costs of both the algorithms are as follows:12

The total complexity of online phase of original Gaudry-Schost algorithm(Algorithm 3) is

(N +∆)(
CD

∆
+Cf ) (15)

The corresponding complexity of the online phase of the modifcation with tag-tracing(Algorithm 5) is

(

N +∆
)(CD

∆
+ (Pr(s fails) +

1

l
)Cf + Cs

)

(16)

Proof. Both Algorithm 3 and Algorithm 5 search for collision among distinguished points of G. Hence,
total iterations is the sum (N + ∆

)

. Also, for both the algorithms, the dominant cost is the cost of
multiplication among group elements.
Algorithm 3 requires multiplication of D elements only(line 3) when it reaches a distinguished point
after ∆ iterations, and initiates a new walk. All (N + ∆

)

cases will need multiplication between two
elements of G. This explains the expression in equation 15.
In Algorithm 5, the number of multiplications of D elements is unchanged from Algorithm 3. s compu-
tations are required in all(Lines 9 and 16) (N +∆

)

cases, and they are sufficient except when they fail
or the walk completes a set of l iterations from a random point. These (N +∆

)

(Pr(s fails) + 1
l
) cases

need fully computing the product (line 19). This proves equation 16. �

Theorem 7. On designing s such that it can be computed easily with high probability on almost every
point of the G, the online phase of modified version of Gaudry-Schost algorithm with tag-tracing, has
lesser cost than online phase of original Gaudry-Schost algorithm.
Considering Pr(s fails) → 0, and the cost of initially performing multiplications between D elements
can be expressed in terms of a single multiplication, the advantage of applying tag-tracing increases with
the increase of l.

Proof. The conditions mean that Cs << Cf and Pr(s fails) is negligible.
More formally, let us assume,

Cs <
(

1− (Pr(s fails) +
1

l
)
)

Cf (17)

Above implies,

(

Cs + (Pr(s fails +
1

l
)Cf

)

< Cf

=⇒
(

N +∆)(
CD

∆
+ (Pr(s fails) +

1

l
)Cf + Cs

)

< (N +∆)(
CD

∆
+ Cf )

This proves that the online phase of tag-tracing has lesser cost.

12We do not take into consideration the length L for abandoning the walk, as for nearly all instances the length of the
pseudo-random walk, when it reaches a distinguished point would be much less than L.

14



For the next part, we note that

Cost of Gaudry-Schost Algorithm

Cost of modification with tag-tracing
=

(CD

∆ + Cf )

(CD

∆ + 1
l
Cf + Cs

) (Assuming Pr(s fails)→ 0)

=
D−1
∆ Cf + Cf

D−1
∆ Cf + 1

l
Cf + Cs

(Using CD = (D − 1)Cf )

=
D−1
∆ + 1

D−1
∆ + 1

l
+ Cs

Cf

(18)

Clearly, as l increases, the value of above expression increases. �

Remark 2. It follows from the proof of the above theorem that a condition on the failure probability of
s is Pr(s fails) <

(

1− 1
l

)

Remark 3. Tag-tracing is more advantegeous as Pr(s fails)→ 0.

The above theorems prove that the concept of tag tracing is effective when used with the Gaudry-
Schost algorithm to compute multi-dimensional discrete logarithms. It reduces the work per iteration,
by reducing the number of multiplications with a larger pre-computed table and some easily computable
functions, to detect distinguished points. To increase the potency of tag-tracing in multi-dimensional
scenario, the associated functions must be designed obeying certain conditions.

Theorem 8. The effectiveness of tag-tracing increases with dimension of the multi-dimensional discrete
logarithm problem, if the function s is designed so that it depends on the dimension, has high success

probability and the cost of computing it satisfies
CsD2
Cf

<
CsD1
Cf
− (D2−D1)

∆ whenever D2 > D1, where

D2,D1 are the dimensions of the multi-dimensional discrete logarithm problem, and ∆ is the number of
iterations to reach a distinguished point.

Proof. Let us denote the ratio of costs from equation 18 by RD. It is enough to then show that under the

given condition, RD =
D−1
∆

+1
D−1
∆

+ 1
l
+

Cs
Cf

will increase with the value of D. Let D2 > D1 and the probabilites

of failure of the functions sD1 and sD2 for dimensions D1 and D2 be negligible.

Now,
CsD2

Cf
<
CsD1

Cf
− (D2 −D1)

∆

=⇒ D2

∆
+
CsD2

Cf

<
CsD1

Cf

+
D1

∆

Adding (
1

l
− 1

∆
) to both sides,

D2 − 1

∆
+

1

l
+
CsD2

Cf
<
D1 − 1

∆
+

1

l
+
CsD1

Cf

=⇒ 1

D2−1
∆ + 1

l
+

CsD2
Cf

>
1

D1−1
∆ + 1

l
+

CsD1
Cf

(19)
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∴ RD2 =
D2−1
∆ + 1

D2−1
∆ + 1

l
+

CsD2
Cf

>
D1−1
∆ + 1

D2−1
∆ + 1

l
+

CsD2
Cf

[As D2 > D1]

>
D1−1
∆ + 1

D1−1
∆ + 1

l
+

CsD1
Cf

[By inequality 19] = RD1

�

4.3 Other additional costs

In the unmodified Gaudry-Schost algorithm, exponents have to be updated everytime (Line 9 of Al-
gorithm 3), whereas in tag-tracing they can be updated after l iterations generally (unless s fails or
distinguished point arises) (Line 22 of Algorithm 5). Thus, tag-tracing leads to D additions after a cer-
tain number of steps, whereas the original algorithm needs it after each step. This leads to additional
communication cost as well.

4.4 Improvement in groups of prime order

Let G be a prime-ordered subgroup of some group containing (p− 1) elements for a prime p. When we
apply tag-tracing to the Gaudry-Schost algorithm to compute multi-dimensional discrete logarithms in
such groups, we can incorporate Montgomery multiplication into tag-tracing, as in[25] to further reduce
costs.

5 Cryptographically relevant groups

Electronic cash and election schemes: An interesting case of application of our proposal is in
the electronic cash scheme [2] and election scheme [7]. The group G(= Gq for the sake of notation)
considered in these schemes, is a prime order subgroup of Z

∗
p, the unit group of the set of integers

modulo p. Gq has (known) order q, where p, q are large primes such that q|(p − 1). For practical
purposes, we can take the bit-size of p, q to be at least 2048, 256 respectively, and the dimension d
as 2, 3. Higher values of d also work. We shall discuss the adoption of tag tracing in such groups in
Section 6.

Other applications Our proposal can also be used in other applications[Section 1.1]. For example,
Kim mentions in [20] that the security of CSIDH schemes can be reduced to 68 bits instead of 128.
Employing our modification should lead to a further decrease in this security.

6 Designing suitable functions and resulting complexity for subgroups

of Z∗p

We can adapt the functions defined by Cheon, et. al., [5], for appliying tag-tracing to Pollard Rho
algorithm for prime ordered subgroups of Z∗

p, in our context of multi-dimensional discrete logarithms.
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Tag-function: This is used to detect distinguished points, which are easily defined in terms of some
most or least significant bits. Analogously here we use some suitable powers of two, and obtain the terms
by division. Let r, w be some suitable powers of two along with the terms u =

√
w, d = ⌈logu(p− 1)⌉ ,

t = 2⌈log2 du⌉, t = w
t
, r = t

r
, w̄ = ⌈ p

w
⌉. Let τ : G→ T = {0, 1, . . . , (t− 1)} τ(z) = ⌊z mod p

tw
⌋.

Index function: Let σ : T → S = {0, 1, . . . , (r − 1)} such that σ(z) = ⌊z
r
⌋. We can define the index

function as s = σ ◦ τ . This function is roughly pre-image uniform[Proposition 1, [5]].

Auxiliary tag function: We can represent each element z ∈ Z
∗
p in base u as z = z0 + z1u + . . . +

zd−1u
(d−1). For every m ∈ Ml, let m̂i = ⌊(uim mod p)/w⌋. We can pre-compute these values as a part

of the offline work and store them inMl itself. Based on this, the auxiliary tag function is:

τ : G×Ml → T τ(y,m) =









(

∑d−1
i=0 yim̂i

)

mod w

t







 (20)

This satisfies[Lemma 4, [5]] τ(zm) = τ(z,m) or τ(zm) = τ(z,m) mod t.

Auxiliary projection function:

σ =
{ fail if x ≡ −1 mod r,
⌊x/r⌋ otherwise.

(21)

This almost equalises the values of tag functions to get equation 11. Whenever s(= σ ◦ τ) does not fail,
it is equal to s(= σ ◦ τ)[Proposition 2, [5]]. We can define distinguished points as in equation 14, by
choosing δ suitably so that so that distinguished point probability is sufficient.

The cost computing these functions is less than that of a full product computation (size(p)2 using
Schoolbook multiplication or size(p)1.5 for Karatsuba method where size(p) the bit-size of p). As
r is small(generally 4, 8 for up to 3072-bit primes), in computing s the main time we spend is in
computing τ which is multiplication between w bit and u bit integers, where size(w) << size(p) and
size(u) << size(p). Also if we choose w, u as powers of two appropriately, then we can easily do the
operations that tag-tracing requires.
We can further accelerate the process by combining the method that we have mentioned in Section 4.4
along with tag tracing.
Let us now focus on the cost of applying tag-tracing to the Gaudry-Schost algorithm for subgroups
modulo p. The essential difference between our problem and the considerations on the analyses done
previously are in the D-dimensionality of the problem, different kinds of walks and abortion on reaching
distinguished point.
Let us perceive the elements of the group Gq to be integers upper bounded by p. Further, letMul(k) and
||n|| denote the cost of multiplication of a k-bit quantity and the bit-length of an integer n respectively.
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6.1 Time complexity

Theorem 9. The total time complexity when online phase of Gaudry-Schost algorithm is modified with
tag-tracing for subgroups modulo p is

{

D − 1

∆
Mul(||p|| +

(1

l
+

1

r̄

)

Mul(||p||)) + d Mul(||w||)
}

(1.0171D
√
πN +∆) (22)

where ∆ is the number of extra iterations to reach distinguished points.

Proof. We approximate the costs of functions used for tag-tracing.
Using definitions of σ(equation 21), τ(equation 20) and s̄(= σ ◦ τ), cost of computing s̄ is: d multipli-
cations modulo w, (d − 1) additions modulo w, and integer divisions. The dominant cost can then be
approximnated as d Mul(||w||).
As τ does not fail, s̄ fails fails only due to failure of σ, and the probability of this from equation 21 is
Pr(s fails) = 1

r̄
.

When s̄ fails or when l iterations are completed we do a single multiplication. The cost here is
(

1
l
+ 1

r̄

)

Mul(||p||).
We do (D − 1) multiplications when we reach a distinguished point, having cost D−1

∆ Mul(||p||).
The expression in equation 22 follows from expression 16 on substituting the number of iterations from
Theorem 1

�

We can further modify the first term in the above expression. The multiplication that actually
happens in this case is a multiplication between a ||w|| bit integer and a ||u|| bit integer where u << w.
A specialisation in this case is, if we take w as a power of two, then we do not need to compute the
significant bits of the product. When we compare this to multiplications modulo p, the gain is evident.

6.1.1 Asymptotic complexity for fixed group size and large prime modulo

We note that the multiplications in the group take place modulo p both for the original Gaudry-Schost
algorithm and the new modified version with tag-tracing. Let us discuss the asymptotic complexity of
the algorithms for a fixed group size q, when p is increased.

Lemma 10. If the parameters of tag-tracing are chosen such that

1. l ≈ r̄.

2. d = O(r̄)

3. 1.0171D
√
πN

∆ = O(1)

then the time-complexity of tag-tracing to solve multi-dimensional DLP on subgroups of the group modulo
p is O(d)Mul(||w||)(1.0171D

√
πN ) +DO(1)Mul(||p||).

Proof. Let us refer to Equation 22 for the cost of tag-tracing. We observe that under the condition
1.0171D

√
πN

∆ = O(1), we can simplify the terms as:
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1. D−1
∆ Mul(||p||)(1.0171D

√
πN +∆) = (D − 1)O(1)Mul(||p||).

2. (1.0171D
√
πN +∆) ≤ 2(1.0171D

√
πN).

Then, Equation 22 can be bounded as
{

d Mul(||w||) +
(1

l
+

1

r̄

)

Mul(||p||) + D − 1

∆
Mul(||p||)

}

(1.0171D
√
πN +∆)

≤ 2

{

d Mul(||w||) +
(1

l
+

1

r̄

)

Mul(||p||)
}

(1.0171D
√
πN) + (D − 1)O(1)Mul(||p||)

≤ 2

{

d Mul(||w||) + O(1)

r̄
Mul(||p||)

}

(1.0171D
√
πN) + (D − 1)O(1)Mul(||p||) [By using l ≈ r̄]. (23)

We can further simplify the above by using the definition of d and condition 2. We focus on the
second term O(1)

r̄
Mul(||p||). Multiplication can be at most quadratic in it’s input length. Also here we

perform multiplication between w and u bit integers where ||u|| < ||w||. Then,

||p|| = ||p||||w|| ||w|| ≤
||p||
||u|| ||w|| ≈ d||w|| [By using d = ⌈logu(p − 1)⌉].

By the above inequality,
Mul(||p||)

r̄
≤ Mul(d||w||)

r̄
≤ d2

r̄
Mul(||w||) = dMul(||w||) [As d = O(r̄)]

Then, O(1)
r̄

Mul(||p||) = O(d)Mul(||w||). Using this in inequality 23, the requisite cost is obtained. �

Let us now derive the costs for various methods of multiplication used in tag-tracing.

Theorem 11. The parameters for tag-tracing can be chosen abiding certain conditions so that the
complexity of full multi-dimensional discrete logarithm computation on subgroups modulo p when the
classical method of multiplication is employed, is

O(||p|| log ||p||)(1.0171D
√
πN) +DO(1)Mul(||p||)

The improved cost of using the FFT method is

O(||p|| log log ||p||)(1.0171D
√
πN) +DO(1)Mul(||p||)

The dominating complexity is O(||p|| log ||p||)(1.0171D
√
πN) or O(||p|| log log ||p||)(1.0171D

√
πN) ac-

cording to the method of multiplication, classical or FFT.

Proof. Let us consider the statement of Lemma 10. It is enough to prove that O(d)Mul(||w||) =
O(||p|| log ||p||) (classical) or O(||p|| log log ||p||)(FFT).
By our choice of d,w(Section 6), u =

√
w and d = ⌈logu(p− 1)⌉, the approximations below will hold.

d ≈ ||p||||u|| and Mul(||w||) = O(Mul(||u||)) =⇒ dMul(||w||) = ||p||||u||O(Mul(||u||))
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We note that the elements of the group(modulo p) are written in u-ary notation(Section 6). This relates
||u|| to log ||p||. Also, for any k bit integer,

Mul(k) ≈
{

k2 if classical multiplication is adopted.
k log k FFT method.

Then by the above approximations:

O(d)Mul(||w||) =
{

O(||p||.||u||) = O(|p|| log ||p||) if classical multiplication is adopted.
O(||p||. log ||u||) = O(|p|| log log ||p||) FFT method.

. This proves the first part.

To prove the second part, we note that the term (D−1)O(1)Mul(||p||) arises from the consideration
of distinguished points. Number of such points will be much smaller than the total number of iterations.
This implies, it can be neglected when we consider dominant complexity. �

In general, certain assumptions about parameters may not always hold (For e.g., l and r may not be
close enough or iterations to reach distinguished points may vary, when distinguished points are defined
in a different way for both algorithms). The theorem below compares the two algorithms, in terms of
cost per iterations, when we use classical multiplication and walk over large number of points.

Theorem 12. Considering a fixed l, s which always successfully produces an output and small value of
D, a rough approximation of ratio of time per iteration, by the dominant costs required by the original

and tag-tracing modified version of the Gaudry-Schost algorithm is
||p||
∆gs

l
log(||p||)

∆tt

where ∆gs and ∆tt are the

number of iterations to get a distinguished point for the definitions of distinguished point adopted for
both the methods.

Proof. The aim here is to just use the dominant costs of multiplication and ignore the rest.13 When
the number of iterations to reach distinguished points are different for both algorithms, the probability
of obtaining a distinguished point is thus different.
The main difference between the two algorithm is that full multiplication may be required only once
after l iterations in tag-tracing. This makes the cost

Cf

l
.P rgs where Prgs is the probability to reach a

distinguished point for the original Gaudry-Schost algorithm. The cost of computing full multiplication
is replaced by Cs, which has to be multiplied by Prtt where Prtt denotes the probability to reach a
distinguished point for tag-tracing.
We approximate these probabilities by the inverse of the number of iterations. By Theorem 11, the
costs Cf and Cs can be substituted by ||p||2 and ||p||log(||p||) respectively. The required cost is then

||p||2
l
Prgs

||p|| log(||p||)Prtt
=

||p||
∆gs

l log(||p||)∆tt

�

13In Appendix A.1, we note that multiplications are indeed the dominant costs. Also for subgroups modulo p and large

l, p << pl =⇒ ||p||
l

<< log p =⇒ ||p||2

l
<< ||p|| log p.
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Remark 4. It may seem that the previous theorem implies that increasing l will result tag-tracing to be
less favourable. But, this is not true as the above theorem only considers dominant costs and the leading
cost is Cs as on increasing l, the other cost 1

l
Cf decreases. We must note that for very large D, the

domimant costs will change as CD can play a subtantial role.

6.2 Space complexity

Theorem 13. The storage requirement is
(

r+l
r

)

×O(D||p||).

Proof. Each component of the table consists of three entries [Section 3.1.1]. The second entry will
require ||p|| bits as it is an element in the group modulo p. For each m ∈ Ml, m̂i = ⌊(uim mod p)/w⌋
for i = 0, 1, . . . , (d− 1).
By our choice of parameters ww̄ = p. So storage for each of these entries is d||w|| bits.
The cost for storing the second and the fourth component m̂i’s is then (||p||+ d||w||).
The first component of the table consists of at most l indices, each of size at most r, which is a fixed
integer. We thus ignore the space required here. The third components are D exponents, and the size
cannot exceed the bound O(||p||). The total storage is

Total number of entries × Space required by each entry =

(

r + l

r

)

× (||p||+ d||w|| +D||p||)

The results follows by approximating (||p|| + d||w|| + D||p||) = O(D||p||), since, d ≈ ||p||
||u|| and ||w|| =

O(||u||) �

Corollary 14. The storage in Theorem 13 can be approximated as lrO(D||p||).

Proof.

(

r + l

r

)

=

∏r−1
i=0 (r + l − i)

r!
=

r
∏

i=1

(1 +
l

i
) (24)

�

Corollary 15. In terms of p, r, the storage is O(D||p||r+1)

Proof. This follows from the remark just above as l = O(||p||). �

Remark 5. Following the same line of proof, we can show that for the general case, the storage required
by tag-tracing for the multi-dimensional discrete logarithm computation using Gaudry-Schost algorithm,
is a polynomial in l,D and the bit-size of the group G.

7 Results of implementation in subgroups of Z∗p

Set-up: We present the results of original Gaudry-Schost algorithm and tag-tracing modified version
in 2−dimensional discrete logarithm problem in prime order subgroupsGq (of order q) of Z

∗
p, with bitsize

q from 256 to 2076 bits, and p about 1024 bits. We used classical multiplication for both algorithsms14.In

14We did not adopt the Montgomery multiplication as the purpose was to observe how much improvement sole tag
tracing can lead to for the Gaudry-Schost algorithm.
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Appendix A, we jot down the exact choice of primes, the definition of distinguished points, and the
average time it took to walk past each point.
We used l = 20, r = 4, w = 232 along with u =

√
w, d = ⌈logu p− 1⌉, t̄ = 2⌈logu p−1⌉, t = w

t̄
, r̄ = t

r
, w̄ =

⌈ p
w
⌉ 15. For the Gaudry-Schost algorithm, we use the definition that zi is distinguished if 2δ |zi, after

choosing δ1 optimally. For tag tracing, we chose a positive integer δ2 and checked whether Equation 14 is
satisfied or not for the corresponding multipliers. The corresponding theoretical estimates, which would
form a significant role in determining the number of iterations to reach a distinguished point are 2δ1 for
Algorithm 3 and r+ r

r−1(r
δ2−1) ( where r arises due to cases when s fails) for Algorithm 5 respectively.

It is difficult to quantify all the associated variables to such values so that these two iterations are
numerically equal. For both types of experiments that we did, we chose δ1, δ2 such that the number of
iterations required for getting a distinguished point was less in the case of the original Gaudry-Schost
algorithm than when tag-tracing was applied 16. As we wanted to compare the run-times to collect a
fixed number of distinguished points17, we computed the ratio of average time per iteration of the walk
function.
To compute the next element of the walk for Algorithm 3, we obtained the index of the multiplier by
doing a modulo operation with the pre-computed table size. Here we took the pre-calculated table size
as a multiple of two for the Gaudry-Schost algorithm so that the modulo operation becomes easier. This
is another advantage that the implementation of Gaudry-Schost algorithm enjoyed due to our choice.
We calculated the child point for Algorithm 5 with the help of s that we defined previously.
Two kinds of experiments: We did pseudo-random walk to collect fixed number of distinguished
points( Section 7.1), full discrete logarithm computation(Section 7.2). Any such comparison was not
done using tag-tracing previously.
Codes: They can be accessed from: GitHub link.
Computational resource: We used Intel Xeon E7-8890 @ 2.50 GHz, Magma version V2.22-3.
Ignoring offline time We focus on online time requirement as pre-computation time is theoretically
and practically negligible considering total time necessity.
Correctness: Both methods provide valid multi-dimensional discrete logarithms. For e.g., for the full
2-dimensional discrete logarithm computation on input g1, g2, h

18, we tested that the output (a1, a2) of
the algorithms were valid: a1 and a2 were within the interval [0, N1) and [0, N2) respectively, h satisfied
h = g1

a1g2
a2 .

7.1 Observations for pseudo-random walk over a large number of points

Scheme: We report the observations, when we walk over a large number of points ranging from 2 lakhs
to more than 4 million, to collect a designated number of distinguished points.
Various parameters: In Table 4, we have noted the exact values of the 256, 512, 1024, 207619 bit
primes q with p = 2q + 1. For each group, we randomly fixed five targets and generators. We used
(δ1, δ2) as (12, 6) (for q with bit-size 256, 2076) and (10, 5) (for q with bit-size 512, 1024).
Average time to travel each point: In Table 1, we have noted the time along with the total number

15As in Section 6.
16It has nothing to do with the tag-tracing algorithm and we can change it as we desire.
17This should be independent of the fact how we choose distinguished points, as otherwise results would also be biased

towards the process which can gather these points easily.
18Conventions are from definition 1.
19The value 2076 seems to be odd at first glance. We chose it intending to assure the astute part of ourselves that the

choice of powers of two for the size of the group has no effect on experimental results.
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of points of each group through which we walk for both types of walk and both algorithms. Columns 5
and 8 are for average time to travel each point. We approximated this ratio by choosing to walk over
a large number of points of the pseudo-random walk. It is obvious that in the case of both algorithms,
the major time that we had to spend was to do the multiplications whether complete or partial. To
satisfy ourselves with the fact that the values in columns 5, and 8 of Table 1 are quite accurate and can
be used for contrasting the two algorithms, we have compared two experimentally observed values (of
time to travel a single point) for the same algorithm and same walk type (tame or wild) such that in
one case size of q is roughly twice the other. We measured the experimentally observed ratio in time
with the theoretical estimate obtained from the cost of multiplication. From the numerical values that
we have noted in Table 6 for the Gaudry-Schost algorithm and Table 7 when we apply the tag-tracing
algorithm, we see that the experimental observations and theoretical estimates are close enough. We
can also observe from Table 1 that for each algorithm separately, the time per point traversal is almost
the same for tame and wild for every group.
Multiplication leads to dominant cost: From the arguments in Section A.1 of the Appendix, we
see that the average times noted in columns 5 and 8 of Table 1 are valid for use when comparing the
relative run-times. We also note that for both algorithms, the major time exhausted was on performing
multiplications. This is in tune with our previous assumption. In the last column of Table 1, we compare
the ratio of these two averages (i.e., Average time taken to traverse a single point using Algorithm 3/
Average time taken to traverse a single point when Algorithm 5 is applied).

Table 1: Comparison of the average time requirement to walk past each point using Algorithm 3 and
Algorithm 5.
(Bits
in q,
Number
of distin-
guished
points)

Walks Gaudry-Schost Tag tracing

Ratio

Time Points
tra-
versed in
pseudo-
random
walk

Average
time taken
to travel
single
point

Time Points
tra-
versed in
pseudo-
random
walk

Average
time to
travel
single
point

Ratio of
time to
traverse
single point

(256, 1000
Tame 551267 3912583 0.140 233983 5620981 0.041 3.414
Wild 589798 4151376 0.142 231168 5580770 0.041 3.463

(512, 500)
Tame 766317 1367179 0.560 254391 2507186 0.101 5.544
Wild 627970 1145379 0.548 240485 2274981 0.105 5.219

(1024, 100)
Tame 227953 102899 2.215 35121 150748 0.232 9.547
Wild 210711 97425 2.162 36523 148622 0.245 8.824

(2076, 50)
Tame 1630114 193740 8.413 259295 382000 0.678 12.408
Wild 1872828 221984 8.436 279945 410358 0.682 12.369

23



7.2 Complete multi-dimensional discrete logarithm computation

Parameters: We performed complete multi-dimensional discrete logarithm computation in the group
Gq using both algorithms for 1024 sized p and 20 bit q. The exact values are:

p:=898846567431157953864652595394512366808988489471153286367150405788663379027
5048156635423866120376801056005693993569667882939488440720831124642371531973706
2188883946712432742638151109800623047059726541476042502884419075341171231440736
956555270413618581675255342293149119973622969239858152417678164812132075497;

q:=1094833

Scheme: We did these experiments for 10 random targets and generators. The choice of more iter-
ations for distinguished points reflected experimentally, with more variation due to pseudo-randomness
instead of perfectly random walk. The first four columns of Table 2 contain the time and iterations that
we required for all the random targets using both algorithms. As we had intentionally set the number of
iterations to reach distinguished points more in the tag-tracing algorithm, we can appropriately compare
the time free of this bias only if we consider the time to walk over a single point for both algorithms. The

right-most column of Table 2 computes the ratio:
Time per iteration using Gaudry-Schost algorithm (Algorithm

Time per iteration with the version modified with tag-tracing (Algorithm

Table 2: Complete 2−dimensional discrete logarithm computation using the original Gaudry-Schost
algorithm (Algorithm 3) and the modification with tag-tracing (Algorithm 5) for 1024 bit sized p and
random targets.

Gaudry-Schost algorithm Modification with tag-tracing Ratio of time per itera-
tion

Iterations(igs) Time(tgs) Iterations(itt) Time(ttt) ((
tgs
igs

)/( ttt
itt
))

917721 2185556.670 2190849 601790.870 8.6726

7.3 Observations and comparision with theoretical estimates

Observations tallying and indicating improvement: The last columns of Table 1 and 2 indicate
tag-tracing leads to speed-up. The acceleration in time for tag-tracing increases with the increase in
p, q.
The rightmost column of Table 2 reveals to 8 to 9 times improvement which are almost equal to the
values in the rightmost column for 1024 bit row in Table 1. This proximity indicates the experimental
accuracy of our method.
Experimental and theoretical estimates close enough: In the last column of Table 3, we have
computed the numerical estimate of improvement of tag-tracing per iteration that we proposed in
Theorem 12. We see that this numerical estimate match closely, for all the experimental cases, as
we have noted in last columns of Table 1 and 2. As in Section 4.3, actual values that we observe
experimentally are even greater due to the cost of communication and, the cost of updating exponents
and elements in the unmodified version of the Gaudry-Schost algorithm.
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Table 3: Calculation of the theoretical estimate of acceleration in time from Theorem 12 when tag-
tracing is used.

p ∆gs ∆tt

||p||
∆gs

l
log(||p||)

∆tt

115792089237316195423570985008687907853269984665640564039457
4096 6484 2.54

584007913216334807

134078079299425970995740249982058461274793658205923933777235
1024 1876 5.22614437217640300735469768018742981669034276900318581864860508

53753882811946569946433649012611839

179769313486231590772930519078902473361797697894230657273430

1024 1620 8.11

081157732675805500963132708477322407536021120113879871393357
658789768814416622492847430639474124377767893424865485276302
219601246094119453082952085005768838150682342462881473913110
540827237163350510684586298239947245938479716304835356329624
227998859

136974931083420025453067958003661046808348497807617722297183

4096 5524 12.71

685792073160569883865627704828870239029973056684124419376052
555690053382262359800245473693936631750667998048046179244363
831860529838904020010582141317074590601516390406759409789687
682319740835825865619765024282282049679136875302174861756178
796074779247084094016366584623580671114253583630341772457950
699030671519211810779554409953910496233478224095478256606763
209315665484048500218889153859663345221697060555905044047181
868164905261188760494018821779376768630966139207409246819563
484771785995221498911492659377904171808521981720806692862053
98643821974676362576394739

898846567431157953864652595394512366808988489471153286367150

4096 5716 7.15

405788663379027504815663542386612037680105600569399356966788
293948844072083112464237153197370621888839467124327426381511
098006230470597265414760425028844190753411712314407369565552
704136185816752553422931491199736229692398581524176781648121
32075497
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7.4 Summary of the observations:

Our experiments confirm that tag-tracing indeed accelerates the computation of multi-dimensional
logarithms when it is intertwined with the Gaudry-Schost algorithm. The theoretical estimatesof speed-
up and the experimental observations aligns, and the speed-up increases as the size of the underlying
prime grows. Besides cost of multiplication, other additional costs also lessen in tag-tracing.

8 Future works

We see that tag tracing leads to gain in time when applied to Gaudry-Schost algorithm. This gain can
be further optimized by utilising the multi-dimensionality D of the problem.
The function s can be designed with the help of D and abiding the condition mentioned in Theorem 8.
Distinguished points can also be defined using D. Both of these will increase the advantage of using
tag-tracing as D increases. The tame and wild sets can also be constructed keeping the dimension and
the tag-tracing criterias in mind.
A combination of the above aspects, and in general the design of other functons and parameters will
lead to continual advantage of tag-tracing.

9 Conclusion

We focussed on the Gaudry-Schost algorithm, which is the state-of-the-art algorithm to compute multi-
dimensional discrete logarithms. The two ways to improve this algorithm is either to find collisions faster
in the pseudo-random walk that it performs, or to lessen the cost for each step of this walk. When
using this algorithm with two special sets, called tame and wild, the lower bound [10] on the number of
iterations to get a collision is

√
πN , a close approximation of which has already been reached [33]. The

only way to get a pronounced development was to improve the cost per step. We applied the concept of
tag-tracing [5], which was previously designed in the context of Pollard Rho’s algorithm. The difference
between the previous scenario there and our situation is the greater dimension of the problem, abortion
on arriving at distinguished points and the fact that Pollard Rho algorithm was for walks using a single
type of set, instead of two in Gaudry-Schost algorithm.
We proposed an algorithm that incorporates tag-tracing into the Gaudry-Schost algorithm. We de-
rived the cost of this algorithm, which showed that tag-tracing always lessens the time requirement of

Gaudry-Schost algorithm at each iteration and this factor
D−1
∆

+1

D−1
∆

+ 1
l
+

CsD
Cf

20, can be increased on increas-

ing the dimension D and designing other quantities appropriately. An important context of application
was in subgroups modulo primes, which have applications in electronic voting and cash schemes. We

have deduced an approximate factor of
||p||
∆gs

l
log(||p||)

∆tt

21, by which the cost reduces. The reduction in each

iteration is obtained at some negligible one-time cost. The storage complexity is also polynomial in the
dimension and the bit-size of the group.
Our experiments in subgroups of Z∗

p, confirmed that the theoretical estimations are accurrate as they
matched with the practically observed values. It also showed that tag-tracing reduces the dominant
multiplication cost along with other additional costs and the gain would be more as we increase the size

20We have mentioned the notations in the Section 1.4
21The notations are mentioned in Section 1.4
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Table 4: Group orders of various sizes along with corresponding values of d, r.
Bits in q q d r

256
578960446186580977117854925043439539266349

92332820282019728792003956608167403
16 1024

512
6703903964971298549787012499102923063739682910296196688861780721860882
015036773488400937149083451713845015929093243025426876941405973284973

216824506305919
32 512

1024

8988465674311579538646525953945123668089884894711532863671504057886633
790275048156635423866120376801056005693993569667882939488440720831124
642371531973706218888394671243274263815110980062304705972654147604250
288441907534117123144073695655527041361858167525534229314911997362296

9239858152417678164812113999429

64 256

2076 (1846389521368) + (11600) 130 64

Table 5: Comparison of iteration determining factors ∆gs = 2δ1 (for Gaudry-Schost algorithm) and
∆tt = r + r

r−1(r
δ2 − 1) (for our modified algorithm).

Bits
in q

∆gs ∆tt

256 4096 6484

512 1024 1876

1024 1024 1620

2076 4096 5524

of the group. We obtained about 12 times speed-up with 2076 bit-sized groups.
We point out some future research directions based on the theories that we derived, which should lead to
further improvement. Multi-dimensional discrete logarithm computation is important both from com-
putational number theoretic and cryptographic perspectives. Employment of our modification should
lead to further lowering of the security of these schemes.

A Appendix

In this appendix, we list the numerical values of parameters we used in our experiments. In Table 4,
we list the group size which is a prime and d, r that we needed for Algorithm 5. In Table 5, we mention
the theoretical estimates of the number of extra iterations to obtain a distinguished point. We argue in
Section A.1 that the time required to walk past each point obtained by taking the average time to walk
through a large number of nodes of the pseudo-random walk is an appropriate quantity to compare the
relative runtimes.
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Table 6: Comparison (both theoretical and practical) of the average time required in Gaudry-Schost
algorithm for various bit-sizes.
b(q1), b(q2) Experimentally observed Theoretical

estimate
||p2||2
||p1||2

Tame Wild

512, 256 0.560
0.140 = 4 0.548

0.142 = 3.859 3.984

1024, 512 2.215
0.560 = 3.955 2.162

0.548 = 3.945 3.992

2076, 1024 8.413
2.215 = 3.798 8.436

2.162 = 3.901 4.106

A.1 Average time noted from experiments and their comparison with theoretical

estimates

We derived in Section 7.3, that the costs of the original and modified Gaudry-Schost algorithm are
O(||p||2)(1.0171D

√
πN) and O(||p|| log ||p||)(1.0171D

√
πN) respectively under some considerations. In

this section, we argue that the dominant cost of multiplication indeed plays a vital role in the total time
requirement.
We consider the bit-sizes of the group size of Gq(⊂ Z

∗
p) and the prime p. We mention the exact value of

p and q in Table 3 and Table 4 respectively. Here, the size ||q|| (hence ||p|| where p = 2q + 1) doubles
at each step.
Let us focus on cost analysis of Gaudry-Schost algorithm. As the asymptotic cost for a prime p is

O(||p||2)(1.0171D
√
πN), it is sufficient to compute the ratio ||p2||2

||p1||2 to compare the time-requirement

when we apply algorithms in subgroups modulo p2 and p1 respectively. If p2 is about 2p1, this estimate

is approximately 4. We see that the actual value of ||p2||2
||p1||2 for our specific choice of primes p1, p2 in

each case, match closely with observations of average time both for tame and wild walk in columns 2
and 3 of Table 6. We have computed the average time from the ratios that we noted in column 5 of
Table 1. This harmonization makes sure that the ratios in column 5 of Table 1 are good enough to use
for comparison purposes.
We now consider the tag-tracing counterpart. The asymptotic cost of O(||p|| log ||p||)(1.0171D

√
πN),

implies that the estimate of ||p2||Log(||p2||)
||p1||Log(||p1||) should play a pivotal role when we compare timings for primes

modulo p2 and p1 respectively. Columns 2 and 3 of Table 7 are the observations for tame and wild
walks while the last column is the actual values of ||p2||Log(||p2||)

||p1||Log(||p1||) . Clearly, these values are quite close.

Our tabulations validate the following:

1. Our experimental observations of the time required match with the theoretical estimates for both
the algorithms. This implies that these timings are appropriate to use when comparing the two
algorithms.

2. It also confirms our intuitive supposition, that while comparing the complexities of these two
algorithms, it is sufficient to look at the corresponding costs of multiplication.
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Table 7: Comparison (both theoretical and practical) of the average time for various sizes of the group
in case of the modified Gaudry-Schost algorithm
b(q1), b(q2) Experimentally observed Theoretical

estimate
||p2||Log(||p2||)
||p1||Log(||p1||)

Tame Wild

512, 256 0.101
0.041 = 2.463 0.105

0.041 = 2.560 2.245

1024, 512 0.232
0.101 = 2.297 0.245

0.105 = 2.333 2.220

2076, 1024 0.678
0.232 = 2.922 0.682

0.245 = 2.783 2.233
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