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Abstract
How to identify ecological systems at risk of failure is a central question of modern biology and
agriculture. Due to human impacts and global change, there is a growing need for early warning signals
that identify when an ecological system is at risk of a state change before those changes become
irreversible or extremely complex and costly to remediate. Honeybees (Apis mellifera) are an urgent case
because our food crops heavily rely on them for pollination and annual bee colony losses reported by
beekeepers across the globe are unsustainable. Given enough warning, beekeepers can rescue dying
colonies, but early warning signals of death for individual bee colonies are lacking. Here we used early
warning signals to investigate whether �uctuations and dynamical patterns in internal hive temperature
can be used as an early indicator of impending colony failure. Across three distinct datasets we found
that temperature regulation of failing colonies was different enough to distinguish them from healthy
colonies weeks before they died. This signal comes early enough to intervene and assist colonies with
standard beekeeping practices. Our study shows that early warning theory can help to identify practical
signals of risk of state change even in systems that change state relatively rapidly, such as a dying bee
colony, early enough to intervene and prevent losses.

Main
Global change is exposing ecological systems to new stressors and new magnitudes of stress.  These
stressors include landscape degradation, the spread of introduced pests and climate change. In response
to chronic stress, ecological systems can often manifest what appears to be a “tipping point” response:
ecological systems are resilient to stress up to a point, beyond which they show rapid and dramatic
changes of state. These dramatic changes could be population collapses of whale populations1, bee
colonies2, eutrophication of lakes3, tree diebacks during droughts4, tree deaths in forests5 and transitions
from forests to savanna6. What we need are practical methods to detect ecological systems at risk of
passing a tipping point while we still have time to employ protective management to avoid such risk.

Early warning theory predicts that changes of states may often be detectable before a system passes a
tipping point that leads to a new state7. As a system approaches a tipping point, external perturbations of
the system should result in variability and higher correlation in the system dynamics (Figure 1)3,8. Early
warning signals are receiving increasing attention in ecological and agricultural systems but practical
examples outside of the labs are still scarce7,9. The few examples of early warning signals applied to �eld
environmental or biological systems are based on multi-year studies and strongly rely on modelling,
which has perhaps slowed down practical applications in ecology. Non-experimental examples include
the transition between savannah and forests10, the eutrophication of lakes3, and the death of trees11. But
if the theoretical framework behind early warning signals is correct, indicators of vulnerability to state
change should be common and detailed knowledge of a system should not be needed to detect them.

Here we examined whether we could identify a practical and measurable early indicator of a Western
honeybee (Apis mellifera) colony at risk failure. Honeybee colony losses are an urgent case where early
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warning signals may help effective intervention. The death of bee colonies happens on a much shorter
time-scale2 than the transition of trophic states in lakes, the death of trees or plant community changes
at the landscape levels. Bee colony failure is a relatively rapid process: an apparently healthy and well-
functioning bee colony can decline in weeks, which has caused several authors to label it as a “collapse”.
Globally, honey bee colony failure rates have increased in industrialised nations in the last decade12. At
the same time, many industrialised nations have increased their reliance on honey bees for pollination
service for food crops13.  Hence there is concern that high honey bee colony failure rates could pose a
risk to food chain security14. Traditionally, an assessment of colony condition requires opening the hive
every few weeks for a manual inspection of the frames. This has become too labour intensive to be
sustainable at the scale at which colony failure now occurs. At the same time, electronic sensors
speci�cally designed for hive monitoring are increasingly available. If there were a practical early
indicator of a colony at risk of failure, in time, colony failures could be reduced or managed using the
wide range of already existing beekeeping techniques. 

Temperature regulation is considered an indicator of bee colony health in ecotoxicology15,16 because it
directly re�ects the capacity of the colony to maintain optimal brood development conditions. In warmer
months, honeybee colonies keep the temperature of the brood between 33°C and 36°C. In Winter, the
amount of brood is reduced17 and colonies maintain the temperature of the hive at a lower average, with
higher �uctuations. The presence of equilibria in this easily measurable and actively controlled variable
of the honeybee colony makes temperature an ideal candidate to explore early warning signals of colony
failure (Figure 2). When bee colonies become stressed, we expect their ability to regulate the temperature
to decrease, leading to higher temperature �uctuations and higher minimum and maximum (Figure 1).
We also expect the average temperature to decrease in stressed colonies which may have less brood and
thus require less heat or may be unable to warm up the hive.

Here, we use three independent datasets containing temperature time-series, brood population estimates
and census data for a total of 97 bee colonies to determine how dying, weak, and healthy bee colonies
controlled temperature. We compare the performance of simple summary statistics used as early warning
signals as classi�ers of the survival and health status of colonies. Next, we simpli�ed our approach by
setting a classi�cation threshold relevant to real-world beekeeping practices, to test the practicality of our
method. Our results con�rm that early warning signals based on hive temperature are useful predictors of
hive collapse.

Results And Discussion
We measured the two most used early warning signals8,11, changes in the autocorrelation and standard
deviation, along records of daily beehive temperature. Standard deviation and autocorrelation are
expected to increase when the system is close to a tipping point due to an increase in the sensitivity of
the system to stochastic �uctuations or to a lower capacity of the system to follow rapid environmental
changes8,11. We also calculated minimum and maximum temperature within hives, which show the
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colonies’ ability to control temperature during the coldest times of night and the hottest times of the day.
We also used average temperature as a proxy for the overall capacity of colonies to maintain a warm,
stable temperature. Temperature values were calculated over a full daily biological cycle, from midnight
to midnight, to simplify analyses and help with interpretation (Figure 2a).

To compare the utility of temperature measures at detecting failure, we used three datasets (“California
2016”, “Sydney 2018”, “Sydney 2020”) where the survival outcome and brood population were known for
each colony. In our analyses, we �rst ignored this knowledge to simulate a real-time scenario similar to
what beekeepers would experience. We then checked our results against the known outcomes.

Simple thresholds could not be used to predict the death of colonies as these parameters are expected to
vary in all bee colonies due to changes as colonies approach winter and transition to a natural
overwintering state18 and as a result of extreme weather changes. This is visible on Figure 2a, where all
colonies, regardless of their survival outcome, experience a drop in average temperature from Autumn to
Spring. Instead, we compared the daily values of temperature parameters (daily autocorrelation, daily
standard deviation, daily minimum, daily maximum and daily average) for each single colony compared
to all other colonies from the same experiment and regardless of their survival outcome to obtain an
individual z-score for each individual hive on each speci�c day. The z-score represents the difference
between a single colony and the mean value of all other colonies in the same environmental conditions,
for any given variable.

This early warning method requires selecting a Z-score threshold above which colonies are considered at
risk of dying. To show how different Z-score thresholds changed the rates of false positives and true
positives, we varied a threshold from 0 to the maximum Z-score obtained. We used the rates of true and
false positive hive death predictions to build a Receiver Operating Characteristic (ROC, Figure 2b) and
calculate the associated Area Under the Curve (AUC) which quanti�es the performance of our early
warning signals at different Z score thresholds. For our largest dataset, the California 2016 dataset, the
AUC was the highest for the daily average (0.65), followed by the daily minimum (0.64), the daily
maximum (0.61), the daily autocorrelation (0.59) and the daily standard deviation (0.58). Similar results
were obtained for the Sydney 2018 and Sydney 2020 datasets (Supplementary material 1). Although
these numbers may seem rather low, they correspond to the false assumption that a hive recorded dead
or with low brood at the end of the experiment was always in this state, from the beginning of the
experiment. Given that the nature of the colonies at the beginning of the experiment could not be
differentiated by the beekeeper or the observer (only colonies visually assessed to be of similar “strength”
were used), the information of when colonies started to fail cannot independently inform our ROC. This
lowers the AUC for all variables measured.

While we think that determining a z-score threshold should be a choice left to end-users to optimise their
own costs and bene�ts in using our method, we have determined, for each dataset, a z-score to threshold
simply to illustrate our �ndings. We measured, from our ROC curves, the threshold that corresponded to
the �rst decrease in the growth rate of the true positive to false positive ratios. We ran a piecewise
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regression on the ROCs of the daily average and determined the Z-score threshold corresponding to the
main breakpoint for each dataset. To limit the effects of unusual weather events or beekeepers opening
hives, we considered that a colony should exceed the Z-score threshold for three consecutive days to be
considered at risk of dying, regardless of future measurements. Using these values on the largest of our
datasets (the California 2016 dataset), where colonies were cared for by a commercial beekeeper, we
were able to detect 5/6 colonies that died later (true positives), 10/14 low brood colonies (true positives),
and got 9/40 false positives (false positives; note that in this dataset, these might have initially been
failing colonies that were rescued by a beekeeper) (Figure 2c). Among the �ve dead colonies, the colonies
were on average �rst detected at risk of dying 98 days before death was con�rmed (29, 35, 61, 155 and
210 days). Colonies in the California 2016 dataset were checked monthly outside of November and
December, with most of them dying in late Autumn or Spring when they were subject to regular
inspections (Figure 2a). Such warnings would give beekeepers a practical time period in which to act to
rescue their colonies. When expressed as the percentage of days with warnings for each group, we found
that warnings occurred in 35.4% of the days for the dead colonies group, 20.3% of the days for the low
brood group, and that 1.0% of the days had false positive warnings in the healthy colonies group.

Similar results were obtained in Sydney in 2018 and 2020 (Supplementary Material 1). In the Sydney
2018 dataset, we detected 8/9 colonies that died later, some of the low brood colonies (2/4), but false
positives occurred in the healthy colonies group (5/8). The probability that most colonies would have at
least one false-detection increases with time, and it is not surprising that this dataset, the longest of all,
has the largest number of false-positives. These false positives were however short-lived. False positives
in the healthy colonies group represented only 2.0% of all days overall, while warnings occurred for 25.1%
of days in the dead colony group and 6.3% of days in the low brood group. The eight colonies that failed
were detected on average 56 days before they died (9, 9, 30, 33, 59, 59, 119 and 133 days before they
were observed dead or were considered too small to recover and were removed to prevent the spread of
disease or pests).

Bee colonies in the Sydney 2020 dataset experienced higher than expected mortality, likely due to
massive forest �res, which exposed our colonies to signi�cant amounts of smoke. Even though deaths
occurred during the summer, which was comparatively unusual, and with a smaller sample size, our
method was able to detect 3/3 that later died. We detected one low brood colony (1/2), and a few false
positives occurred in the healthy colonies group (3/10). Among the three dead colonies detected as
failing, hives were detected on average 20 days before death was con�rmed (8, 21 and 31 days).
Estimating the overall percentage of daily warnings for each group, we found that dead colonies were
detected as dying 58.6% of the days, low brood colonies 20% of the days, and false positives represented
3.8% of the total number of days in the healthy group. The e�cacy of temperature as an early warning
signal during summer was surprising, given the expectation that honeybees would not struggle to warm
their hives during warmer months. However, in Sydney it is rare that ambient temperature reaches 35°C at
night, so bee colonies that were failing to warm their hives still had different temperature pro�les from
other, presumably healthy, bee colonies. 
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The cause underlying the lack of temperature regulation in failing bee colonies is unclear. Here, we
purposefully ignored known failure mechanisms and additional information about beekeeping practices
(hive migration) and environmental stress (food stress and pesticide exposure) as we were interested in
developing an early warning indicator that functioned irrespective of the speci�c stressor(s). Typically, the
development of early warning systems has relied on understanding the existence and mechanisms
behind tipping points to model the system. Obtaining and integrating such knowledge in early warning
systems likely improves their accuracy and is an inviting scienti�c prospect but is not practical for most
of the pressing environmental issues we face. A requirement to include extensive information about
stressors and their impacts would most likely hamper the development of real-world applications, where
extensive data collection is often unfeasible. Instead, we showed that useful early warning signals can be
obtained for practical applications even without re�ning their interpretation with the knowledge needed to
build mechanistic models, qualify tipping points and demonstrate critical transitions.

Here, we determined a threshold based on the change in the ratio of true to false positive simply to
illustrate our �ndings. We do not wish to recommend a particular threshold, however, because it
in�uences the number of false-positives (leading to unnecessary efforts from beekeepers) or false-
negatives (decreasing the number of colonies rescued). This trade-off would be better solved by
stakeholders who are likely to have a variety of cost-bene�t ratios depending on place and time.

Early warning signals can guide the development of markers of biological systems at risk of failing or
transitioning to sub-optimal states. Our application of this method to detect failing bee colonies is the
�rst example of the use of early warning signals in a biological or agricultural system where it can
realistically be used to minimise losses. We hope this will encourage the development of similar methods
in related �elds. We suggest that the development of early warning tools for critical transitions in
biological and eco-systems should focus on measuring and analysing processes that are highly dynamic,
self-regulated by the system and very variable. In our changing world, there are an abundance of
biological systems similar to the bee colony, where stable equilibriums occur, and failures have costly
consequences to society. The insights from this early warning study demonstrate that early warning
signals can be applied to rapid processes in a meaningful way to solve urgent environmental and
agricultural issues, such as the unsustainable losses of bee colonies worldwide.

Methods
Sites

We used temperature measurements from the centre of 97 bee colonies from three experiments at two
locations. Full details on the methodologies used to collect these data are available in the original
publications for the California dataset (2016-2017 experiment)19 and the Sydney 2018 dataset20. 

Two of these experiments were located in Sydney, Australia, and received an experimental treatment
(pesticide or control, food stores removal or control) to reproduce environmental stress, while in the third
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experiment hives were located in California, USA and not subject to any treatments but were dispatched
in different crops and were managed independently by a beekeeper19. 

In the �rst experimental dataset, in 2018, temperature was measured from 21 hives during a year20. 7
colonies were treated with a commercial formulation of tau-�uvalinate, 7 with a commercial formulation
of thymol and 7 were kept as control. One control hive was removed from the dataset following storm
damage. Of the remaining 20 hives, seven died including 2 in the tau-�uvalinate group, 3 in the thymol
group, and 2 in the control group. This study concluded there were no important effects of the treatments
at the colony-level20. 

In the second experimental dataset, in 2020, all the frames containing only food stores were removed
every fortnight from 8 hives, while these stores were left in another 8 colonies. One colony was removed
from the dataset because it absconded on a hot day when a nearby bush�re emitted a large amount of
smoke around the hives. Three colonies were considered dead including one in the food removal group
and two in the control group. This second experiment only lasted two months due to delay caused by
bush�res and abruptly ending the experiments because of a COVID-19 lockdown. In these two
experimental datasets, the distribution of colony mortality between treatment groups suggests no or
weak effects of the treatments on colony survival. 

In the California dataset, 60 hives were managed by a commercial beekeeper in California, USA over a
year, in a migratory pollination operation described in an associated publication19. Hives were assessed
once in October, January, February and March. We acknowledge this creates a long gap in our records
(November and December) but cold winter prevented regular access to the bee colonies. This study found
differences in weight gains in different crops and argued temperature monitoring provided useful
information to compare hives from different groups.

Measurements

Measurements were taken every 15 min using sensors with a 0.0625°C precision (iButton Thermochron
model DS1922), which corresponds to 96 data points per day for each hive. Every two months, ibuttons
were removed, data saved, and ibuttons were reinitialised and placed back into the hives as soon as
weather and practical considerations permitted. This occasionally created small gaps of about 48h in the
temperature records. When supplies permitted, a new set of ibuttons was installed in the hives after the
previous set was collected, reducing the gap in the temperature record. The �rst few records of each hive
button were removed to avoid capturing data corresponding to the colony warming up the hive
immediately after opening or to the sensor’s casing warming up.

Regular inspections were conducted during which brood frames were brushed free of bees, photographed
and capped brood numbers were measured using combcount21 and used as a proxy for the overall brood
amount in the hives. The honeybee’s immature stage typically requires a 21 days development window
including 9 days were larvae are uncapped and 12 were brood larvae are capped, during and after
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pupation22. Brood amount data from the last evaluations were used to classify colonies into “low brood
amounts” colonies and “healthy colonies”. This was done based on expert opinion separately for each
dataset based on a visual comparison of brood patches between hives of the same datasets and
corresponded to gaps in the distribution of colonies’ brood amounts, which were found to resemble a left-
skewed normal distribution (SM1). 

Colonies in the Sydney experiments were censused at least every two weeks in the Sydney 2018 dataset
during evaluations or by assessing �ight activity on Sunday days during winter, and weekly in the Sydney
2020 dataset during food store manipulations. Colonies were considered dead and removed when they
contained less than 300 workers to prevent the spread of pests and diseases between hives in Sydney.
Hives in the California 2016 dataset were checked at least once a month in August, October, January,
February and March. In November and December19 temperatures were too cold to census colonies.

Analyses

All analyses were conducting in R v4.2.3, data handling was done using ‘tidyverse’ v2.0.0 and ‘lubridate’
v1.9.2, �gure panels were built using ‘cowplot’ v1.1.1, breakpoints for the ROC curves were obtained using
‘segmented’ v1.6.4.

Average, min, max, standard deviation and autocorrelation were calculated for each colony and day using
base R function (‘mean’, ‘min’, ‘max’, ‘sd’ and ‘autocor’ with ‘lag=1’). For each colony and each day within
each of the three datasets, a daily Z-score was calculated by calculating the average value and standard
deviation of the focal variable for all colonies on the day at the exception of the focal one on this day.
The z-score was calculated daily as the absolute difference between the average of the variable of one
focal hive and that of all the other hives, divided by the standard deviation of the variable for all the other
hives on a speci�c day. The z-score is a standard score which corresponds to the difference between x,
the observed value and µ, the mean of the sample divided by the σ, the standard deviation of the sample:

We included all colonies in the calculation of the z-score, regardless of their outcome in terms of survival
or brood population, to place ourselves in a real situation where a beekeeper does not know the health
status of bee colonies, as it is the end measurement they are trying to obtain.

Since the z-score in itself is an absolute value, a z-score threshold is needed to classify observations in
groups. To quantify the effect of a threshold on the ratio of true positive to that of false negative rate we
used a receiver operating characteristic (ROC) curve23. Receiver operating characteristic curves are used
to show the performances of a classi�er at every possible classi�cation value. For each focal variable, we
calculated the true positive rate (number of true positives divided by the sum of the number of true
positives and false negatives) and the false negative rate (number of false positive divided by the sum of
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the number of true negatives and false positives) for each threshold by varying thresholds from 0 to the
maximum z-score measured for the focal variable, with a step of 0.1.

The shapes of our curves usually showed a clear breakpoint for low values of true positive rates and
false positive rates after which curve growth slowed down. Typically, this breakpoint is used as a
threshold because it corresponds to the point after which the true positive rate grows slower than the
false positive rate. While we preferred to avoid providing one such threshold as a recommended threshold
value, we chose to provide one example with a breakpoint-based example to calculate an example of the
number of days that bee colonies were detected as dying before they died. Using this breakpoint is
imperfect, and in our case the false positive rate is in�ated because we have no knowledge of when
colonies that died during experiments stopped being “healthy”, but it allows us to provide a neutrally
selected threshold value. The ROC breakpoint was calculated for the daily average measurements of
each dataset (the value with the highest overall AUC in all three datasets) using the ‘segmented’ function
of the ‘segmented’ library and we retained the threshold value the closest to this breakpoint.

We then applied this threshold to the z-scores of the average daily temperature. Colonies with Z-scores
above the thresholds were considered at risk of death. This led to �ickering warnings during hot and cold
weeks in all colonies, so we removed warnings that occurred for less than three days in a row. We then
calculated the number of days from the �rst warning to the observed death of the colony or when it was
considered too weak to survive and had to be terminated to prevent the spread of pests.
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Figure 1

See image above for �gure legend.
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Figure 2

a. Daily hive temperature parameters for the California dataset. Bee colonies were either considered alive,
dead, or had abnormally low brood levels at the end of the experiment (SM1). Daily autocorrelations, daily
standard deviations, daily averages, daily minimums and daily maximums suggest differences between
alive, dead and low brood bee colonies that increase during winter. Black lines show the daily data, blue
lines generalised additive models (default parameters from geom_smoothin R v4.0.0). b. Receiver
operating characteristic (ROC) curves showing the relationship between the true positive rate and the
false positive rate for the �ve variables measured. Although the Area under the curve is higher for the
autocorrelation, the positive rate is mainly high when the false positive rate is also high. The other
measurements perform similarly. c. Detection of failing hives with a threshold of 1.7 and >3 consecutive
warnings (false-positive conservative) as an example of potential software application. Top panel shows
the Z-Scores for the daily average temperature, with colonies shown in red when they cross the threshold
(thin black line) for over three consecutive days, or green otherwise. Bottom panel shows the same
classi�cation applied to the daily temperature average curves.
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