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Abstract

Despite significant advancements in neural text-to-audio generation, challenges
persist in controllability and evaluation. This paper addresses these issues through
the Sound Scene Synthesis challenge held as part of the Detection and Classification
of Acoustic Scenes and Events 2024. We present an evaluation protocol combining
objective metric, namely Fréchet Audio Distance, with perceptual assessments,
utilizing a structured prompt format to enable diverse captions and effective evalua-
tion. Our analysis reveals varying performance across sound categories and model
architectures, with larger models generally excelling but innovative lightweight ap-
proaches also showing promise. The strong correlation between objective metrics
and human ratings validates our evaluation approach. We discuss outcomes in terms
of audio quality, controllability, and architectural considerations for text-to-audio
synthesizers, providing direction for future research.

Figure 1: Performance of various Text-to-Audio models (circled markers: challenge submissions,
triangular markers: open-source models) on the evaluation set versus their number of parameters.
Color depicts the audio sample rate.

1 Introduction

Sound is of paramount importance in the creation of an immersive user experience in multimedia
content such as movies and games, not to mention real-time applications such as the metaverse. By
generating sound that aligns with a target sound description, audio generation systems would offer
creators a greater range of options and streamline the workflow, reducing time and cost.

Recent advances in audio generation models have demonstrated considerable potential for automating
and streamlining the process. However, the models face two significant challenges: a lack of audio
quality that meets professional standards and a limited control over shaping desired sound sources.

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 2: Examples that show limited controllability of a recent text-to-audio model (AudioLDM-M
[1]) while controlling sound sources.

To highlight such limitations and facilitate further research, we organized a challenge on sound
scene synthesis. The protocol we proposed and followed includes guidelines for dataset construction,
objective metrics, and a human evaluation scheme to answer these research questions: 1) How
can a model generate high-fidelity(quality) audio 2) How can we improve the diversity of the
generated sounds with diverse foreground and background sound sources 3) How can we enhance
the controllability of the model to generate audio given a corresponding text caption 4) How can we
evaluate the category appropriateness, perceptual quality, and diversity of model-generated sounds.

2 Problem and Task Definition

In multimedia sound production, sound artists and engineers typically adhere to a structured process
to create a final soundtrack. They first generate Foley sounds or collect samples from databases for
each sound source. These samples are then edited to meet specific expectations regarding timbre,
nuance, and temporal alignment. Finally, they mix all elements into a cohesive sound scene, often
with music. TTA systems are designed to automate this process, but they face a number of challenges.

2.1 Problem in Current Text-To-Audio Systems

First, the quality of the generated audio is usually inadequate to meet commercial standards. Many
TTA systems [1–4] generate audio waveforms at a 16 kHz sampling rate for training and inference
efficiency, which is significantly lower than the industry standard of 48 kHz or higher. Second, their
controllability through the text prompt is limited. Since controllability is crucial to achieve the desired
sound characteristics, this limitation is a significant concern. Figure 2 illustrates how the well-known
open-source TTA model (AudioLDM [1]) struggles with text-based controls. The generated sound
is rarely aligned with both the foreground and background sounds, i.e., their compositionality is
noticeably limited. This happens particularly when there is a strong positive or negative correlation
between the foreground and the background in the training set.

Evaluation is another significant challenge, particularly because captions are incomplete descriptions
of audio signals at varying levels of abstraction [5–7]. Fairly evaluating audio generation with a
satisfaction score from such varied captioning styles presents considerable difficulties because of the
seemingly endless possibilities of factors to consider. When evaluating a generated audio based on
a caption People in a small crowd are speaking and a dog barks (from AudioCaps), for example,
should the number of people speaking be considered? Does "and" imply the sounds to be sequential
or simultaneous? How should all these factors be weighted to compute the satisfaction score? Once
we answer these questions, how can we aggregate the score of this example with a score of a much
simpler prompt? Although it may not be practically possible to answer all these questions, a simplified
protocol should be defined to organize a public challenge in a fair manner.

2.2 Task Definition

In general, sound scene synthesis refers to the task of generating environmental sound scenes that can
accompany events in multimedia content to enhance the narrative experience, excluding speech and
music. This Sound Scene Synthesis task is built on last year’s Foley sound synthesis challenge [8, 9],
expanding the scope from Foley sounds to general sound scenes by generalizing the conditioning
from a single predefined sound category to a natural language prompt. The audio output requirement
is a 4-second, 32-bit, 32kHz, mono-channel audio waveform. Each submitted model is required to
generate 250 audio files within a 24-hour period using the computing environment of Colab Pro+.
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The evaluation prompts are limited to the following structure: ’(foreground sound source) with
(background sound source) in the background’, with action-based foreground sounds and ambient
background sounds specified within the parenthesis. This format was devised to enable quantified
evaluation of diverse text prompts.

3 Official Dataset and Baseline System

Dataset Creation Prompts following the structure described in section 2.2 were crafted manually by
the organizing team. We categorized foreground prompts into six categories: "animal," "vehicle,"
"human," "alarm," "tool," and "entrance." These foreground prompts are paired with five different
backgrounds: "crowd," "traffic," "water," "birds," and "no background," except that vehicles are not
paired with traffic. The "no background" permits evaluation of clean monophonic foreground audios.

The level of detail in prompts was adjusted depending on the nature of the sound source. For example,
the foreground prompt "a jackhammer is pounding" provides a clear and self-sufficient description.
Qualifiers such as "small" or "large" would contribute little to the perception of a jackhammer sound,
and the action associated with this source is restricted to "pounding." In contrast, other prompts, such
as "a dog barking," benefit from more detailed descriptions, where variations in size (e.g., "small dog"
vs. "large dog") or action (e.g., "barking" vs. "whining") could yield perceptually different audios.
To maintain consistency across the dataset, we empirically balanced the complexity of foreground
prompts, acknowledging that certain sounds carry more inherent information and, therefore, do not
necessitate additional qualifiers or actions.

A sound engineer from our team created 4-s audio files corresponding to each prompt based on
sounds sourced mainly from Freesound.org but also from private libraries. In total, our dataset
comprises 310 audio-captions, with approximately 50 in each foreground sound category and 60 per
background category. The development and evaluation set contain respectively 60 and 250 of these
audio-caption pairs. Two background categories, "no background" and "birds," are excluded from the
development set. Consequently, the evaluation set contains more samples with "no background" and
"birds" compared to the development set.

Baseline System We provided AudioLDM [1] as our baseline model. To ensure high quality and
controllability, 9k hours of audio from 4 different sources were used for training. In addition, the
model leveraged techniques such as the latent diffusion model and pretrained audio-text embedding
[10], which made the training efficient. As the baseline model generates 10-second audio, which
is longer than our configuration, we 1) chopped audio into 4-second segments with a hop size of 2
seconds and selected the largest energy segment, and 2) resampled it from 16kHz to 32kHz.

4 Evaluation

Following the previous challenge edition [8] , we conducted a two-stage evaluation scheme including
both objective and subjective evaluation.

Step 1: Objective metrics To measure audio quality objectively, we adopted Fréchet Audio Distance
(FAD) [11]. We chose FAD as it is a widely used metric in audio generation to measure set-wise
audio quality and semantics compared to the reference set. For the embedding used in FAD, we used
PANNs CNN14 Wavegram-Logmel [12] (denoted as FAD-P) since it showed the highest correlation
scores with perceptual rating [13, 14]. We provided an official evaluation software. 2

Step 2: Subjective metrics Subjective evaluation of audio fit ("how well the audio matches the sound
of the prompt") and perceptual quality ("clarity, absence of artifacts and distortion") was performed
for the four submitted systems, the provided baseline system, and the Sound-Designer Reference
evaluation set. Four prompts from each of the six foreground categories were selected, spanning
the five background categories. First, 148 randomly ordered trials were presented online (via the
toolkit Gorilla.sc) in six sections separated by foreground category. Category orders were varied
across raters. Each audio was given a separate rating for its match to the foreground and background
portion of the prompt on a scale from 0 (extremely poor) to 10 (extremely good). Subsequently, the
same 148 sounds were presented in random order, without a prompt, and were rated for perceptual

2https://github.com/DCASE2024-Task7-Sound-Scene-Synthesis/fadtk
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(a) FAD-P on Evaluation set
vs Development set

(b) FAD-P on Evaluation set
vs Challenge Ranking

(c) FAD scores from different embed-
dings vs Final Rating

(d) FAD-P on Evaluation set
vs Foreground Fit

(e) FAD-P on Evaluation set
vs Background Fit

(f) FAD-P on Evaluation set
vs Audio Quality

Figure 3: Correlation between FAD scores on evaluation set and other indicators, computed on the 4
submitted systems and the baseline system.

Figure 4: Subjective evaluation results on Foreground Fit. The error bar indicates the standard error.

quality (0-10) regardless of content. Rating one sound per trial was better suited to this purpose than
comparing multiple sounds because each sound was unique [15].

Fourteen raters, four from each top team and ten from system-blinded organizers and their lab
members, rated sounds from all systems. To avoid bias, for each contestant and each prompt, each
self-rating was replaced with a contestant’s average responses to that prompt for all other systems;
replacement ensured that simple removal of self-ratings would not uniquely raise or lower a system’s
average. The Final Rating of each system is a weighted sum of its Foreground Fit, Background Fit,
and Audio Quality in a 2:1:1 ratio.

5 Results

A total of four systems were received for submission [16–19]. In Figure 3a, the FAD scores of 4
systems and the baseline system are plotted. The (x, y) position represents the FAD score computed
on the development set (FAD-P Dev) and the evaluation set (FAD-P Eval), respectively. First, the
majority of systems exhibit a tendency to achieve lower FAD-P scores on the evaluation set when they
are lower on the development set, with the exception [16, 18]. This is anticipated, as the training is
based, at least in part, on the development set. Second, it turns out that FAD-P Dev is a noisy measure
to predict FAD-P Eval. The exception may be attributed to the presence of new sound sources in the
evaluation set to prevent overfitting, which may result in performance discrepancies between the two
sets.
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Figure 3b shows the final rankings of the 4 systems and the baseline system, as determined by the
weighted summed score from the listening test, in conjunction with the FAD-P Eval and FAD-P
Dev. The FAD-P Eval scores align well with the final rankings, while FAD-P Dev does not. The
Spearman’s correlation coefficient ρ of the ranking by FAD-P Eval and the final ranking is ’0.900’
(p = 0.037), while by FAD-P Dev it is ’0.500’ (p = 0.391). This discrepancy may be due to systems
being overfitted to the development set or to the relatively small size of the development set since
FAD is a biased metric [14, 20].

To validate the use of PANNs embedding in FAD calculation, we examined the correlation between
FAD scores calculated from different embeddings and weighted summed scores, as illustrated in
Figure 3c. The PANNs model demonstrated the highest Spearman’s correlation coefficient of -0.94,
in comparison to CLAP [10] and VGGish [21]. It is noteworthy that only the result of PANNs was
statistically significant (i.e., p < 0.05). This result corroborates the previous study’s findings [13].

Figure 3d to 3f illustrate the correlation between FAD-P and human subjective ratings. FAD-P
shows a strong relationship with both foreground and background fit but a weak correlation with
overall audio quality. This suggests that FAD-P primarily measures the audio-text correspondence,
while it may be less sensitive to factors affecting overall quality, such as noise or generated artifacts.

To apply our dataset for evaluation, we additionally measured the FAD-P on the evaluation set with
generated results from other open-source models [2–4, 22–27] (see Figure 1). Our findings revealed
a consistent trend whereby scaling up resulted in enhanced performance, which aligns with the
prevalent notion in the field of generative models. The number of model parameters was a more
dominant factor than the model types (transformers or diffusion models) in general. However, there
is one notable exception: Chung_KT [17] demonstrated promising performance in a lightweight
GAN-based architecture. Secondly, it was observed that a model generating audio at a higher sample
rate did not always achieve a better score in the evaluation set at 32 kHz. Currently, it is relatively
under-optimized to train a model with a higher and more production-ready sampling rate.

The mean subjective ratings of Foreground fit, Background fit, and Audio Quality were appropriately
low for the baseline system (3.3, 2.8, 3.8), appropriately high for the Reference Set (9.8, 8.8, 9.0),
and moderately high for the top-ranked submitted system (5.8, 5.8, 6.0) 3. Figure 4 shows the
mean Foreground Fit ratings (and their standard errors, calculated over the distribution of 14 ratings,
showing high interrater agreement, Cronbach’s α = 0.959) for each submission within each foreground
category. The Background Fit (not shown) correlates highly (r=0.79) with the Foreground Fit, and
Audio Quality correlates highly with both Foreground Fit (r=0.85) and Background Fit (r=0.87).
Although system rankings vary across categories, and different rankings do not always reflect a large
mean difference, the overall winner (submission 1) has the highest rating in most of the foreground
categories. The Entrance Category proved the most challenging for generative systems, with no
submissions rated a higher fit than the baseline system, while all submissions fared better than the
baseline system in the Animal Category.

6 Conclusion

The Sound Scene Synthesis challenge has yielded important insights into text-to-audio generation
for environmental sounds. Our evaluation protocol, combining FAD-P metrics and human ratings,
revealed both progress and areas for improvement in audio quality, diversity, and controllability. The
structured prompt format facilitated diverse captions while enabling effective evaluation. While larger
models generally excelled, innovative lightweight approaches also showed promise. Performance
varied across sound categories, with some showing substantial improvement over the baseline. The
strong correlation between FAD-P and human ratings, particularly for sound source fit, validates its
use as a reliable objective metric for future research.

Future work should focus on enhancing the nuance, temporal aspects, and spatial capabilities of
generated sounds. Refining evaluation metrics to capture subtle qualitative differences will be crucial.
As this task serves as a valuable benchmark for assessing generative audio models, future iterations
could incorporate more sophisticated prompts and criteria. Success in this domain could pave the way
for more complex audio generation tasks such as video-to-audio synthesis, potentially revolutionizing
AI-driven audio production for multimedia content.

3https://dcase.community/challenge2024/task-sound-scene-synthesis-results
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A Challenge Task Overview

Figure 5: Overview of Sound Scene Synthesis task. A sound synthesis system (i.e., Text-to-Audio
model) receives a text prompt as an input, and outputs an audio corresponding to the prompt.

Figure 6: Heatmap of the co-occurrence of foreground-background combinations in AudioCaps[5]
trainset. The data imbalance may potentially limit the model’s controllability.

B Challenge Results

Figure 7: Evaluation score for each system averaged across all sounds: Far left panel, Final Rating,
combines subjective ratings of Foreground: Background: Quality with 2:1:1 weighting. Far right
panel, Objective evaluation score (FAD-P Eval). The error bar indicates the standard error. The
official ranking is as follows: 1st Sun_Samsung[16], 2nd Chung_KT[17], 3rd Yi_Surrey[18], 4th
Verma_IITM[19].

Figure 8: Subjective evaluation results on Background Fit. The error bar indicates the standard error.

These additional figures are provided to display the challenge results on subjective evaluation. The
x-axis indicates the official ranking, where "base" refers to the baseline system and "eval" denotes the
reference evaluation set created by a sound designer. Figure 7 depicts the Final Rating (i.e., weighted
sum as outlined in Section 4), in conjunction with other averaged scores and FAD-P. Note that unlike
other metrics, a lower FAD-P score means better performance and the FAD-P for "eval" is zero.
Figure 8 illustrates the mean Background Fit within each background category. Figure 9 shows the
mean Audio Quality within each foreground category. The resulting inter-rater agreement, among 14
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Figure 9: Subjective evaluation results on Audio Quality. The error bar indicates the standard error.

raters over 144 prompts, was high (Cronbach’s α = 0.959). Please refer to our challenge homepage
for further detailed results and numerical data. 4

C Subjective Evaluation

Figure 10: Screenshots of subjective evaluation toolkit

Figure 10 shows the screenshot of the platform used for subjective evaluation. See Section 4 for more
details.

4https://dcase.community/challenge2024/task-sound-scene-synthesis-results
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