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Crack initiation at corners, V-notches and other situations such as interfaces breaking a free surface (delamination ini-
tiation) cannot be correctly predicted by the usual brittle fracture criteria (either Griffith or maximum stress). They give 
contradictory results and neither one nor the other agrees with the experiments. An additional characteristic length is 
required to define a satisfying criterion giving rise to the so-called ‘‘Finite fracture mechanics’’. The crack is supposed to 
jump this length which depends both on the material properties and the local geometry of the structure; it is not a mate-rial 
parameter. In most cases this crack increment is small. The size effect arises with the interaction between the crack 
increment and another length characterising a microstructure such as a pore diameter, a notch root radius or an interface 
layer thickness. The remote load at failure depends on the actual value of this microstructure parameter whereas it was not 
expected in all cases. Assuming that the two interacting lengths remain small compared to the size of the global structure, an 
asymptotic procedure allows bringing into evidence the change in the apparent resistance of the structure due to this 
phenomenon. Results are compared with experiments in various domains: polymers, ceramics and rocks.
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1. Introduction

Experiments carried out on specimens under uniaxial tensile or compressive load mainly show a depen-
dency of material performances on the various characteristic lengths involved at each scale of study in the
material, termed size effect. The load at failure, for instance, decreases with the size or volume of the specimen.
Weibull developed in 1939 [1] a theory, based on the weakest link concept, demonstrating the existence of a
so-called statistical size effect, which can be synthesized as follows: the larger the specimen, the higher the
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probability of presence of a big defect leading to a lower resistance. This result, built rather on a probabilistic
background than on a true mechanical formulation, can somehow explain some size effects observed in spec-
imens under traction, but appears to be far less relevant when the specimens are submitted to compressive
loads. Indeed, macroscopic crack propagation, in materials such as rocks, occurs in a quite stable way, and
the size effect observed then is too important to result only from a statistical size effect, which will therefore
not be addressed herein. This consideration has given birth to Bazant’s determinist theory [2–4], which pro-
poses a formulation characterizing a so-called fracture mechanics size effect. His model, using a non-linear
form of elastic fracture mechanics equations, was applied to and validated in a wide range of situations,
among which: fracture in compression [2], tensile fracture in concrete, rocks or metal [3]. According to this
theory, the size of the process zone in front of the crack tip (yielding in metals or microfracturing in rocks
or concrete) which is a material characteristic depending on the maximum aggregate size is an important

Nomenclature

a sediments bed thickness (m)
A,B,D scaling coefficients (MPa�1)
d characteristic length of the microstructure (m)
e specimens or structures thickness (plane elasticity) (m)
E,Ei,C,m,mi Young’s moduli, stiffness matrix (MPa) and Poisson’s ratios
Gc toughness (J m�2)
Gi,Gd incremental and differential energy release rates (J m�2)
Fi,Hi Gauge functions of the inner expansions
kI Mode I stress intensity factor (MPa m1/2)
kIc; k

app
Ic toughness and apparent toughness (MPa m1/2)

k generalized stress intensity factor, GSIF (MPa m1�k)
kc; k

app
c critical GSIF and apparent critical GSIF (MPa m1�k)

‘,‘0 crack increment length (generic and at initiation) (m)
n,N unit normal vectors
T uniform tension (MPa)
R ratio of the apparent critical GSIF to the critical GSIF
U generic elastic displacement field (m)
U‘,U‘,d actual elastic solutions (m)
U0 leading term of the outer expansion, far field (m)
uI,u,u

�,t angular shape functions associated with the exponents 1/2, k,�k and 1 (MPa�1)

V i; bV
i
;W i terms of the inner expansions, near field (MPa�1)

x1,x2, r,h physical Cartesian and polar coordinates
y1; y2; y

0
1; y

0
2; q; h; q

0 stretched dimensionless coordinates
dS newly created crack surface (m2)
dWp,dWk change in potential and kinetic energy (J)
C1 artificial boundary in the inner domain
k singularity exponent
l,l0 stretched crack lengths (generic and at initiation)
r tension orthogonal to the failure direction (MPa)
rc tensile strength (MPa)
r stress tensor with components r11,r12,r22 or rrr,rrh,rhh (MPa)
~r stress tensor with components ~r11; ~r12; ~r22 in the stretched domain
r1,j remote load (MPa) and unitary GSIF (m1�k)
W path independent integral
x V-notch opening (�)
rS

x ;rS
y symmetric part of the gradient with respect to x (resp. to y)
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characteristic length of the structure. These materials are baptised quasi-brittle according to the existence of
such a damage process zone ahead of the crack tip. For small size specimens, in which the process zone is of
wide extent, a strength criterion must be used to predict failure. In contrast, for large size specimens, the size
of the process zone becomes negligible, and the energy criterion of linear fracture mechanics is well adapted to
failure prediction. For intermediate sizes, the size effect consists in a smooth transition between the strength
criterion for small sizes and energy criterion for large sizes.

Herein we proposed a different approach, coupling finite fracture mechanics [5–7] with a characteristic size
of the microstructure, to analyse crack nucleation in brittle materials at stress concentration points. One of the
authors showed, in a previous paper [8], that an additional characteristic length is required to define a satis-
fying initiation criterion. At onset the crack is supposed to jump this length which depends both on the mate-
rial properties and the local geometry around the stress concentration point, but not on the global size of the
structure. This increment is not a material parameter (the local geometry intervenes) and in most cases it is
small. The size effect arises with the interaction between the crack increment and another length characterising
a microstructure such as a pore diameter, a notch root radius or an interface layer thickness. The remote load
at failure depends on the actual value of this microstructure parameter whereas it was not expected in all cases.
Assuming that the two interacting lengths remain small compared to the size of the global structure, an
asymptotic procedure allows bringing into evidence the influence of this phenomenon on the apparent resis-
tance of the structure. Results are compared with experiments in various domains: polymers, ceramics and
rocks.

The reasoning has been applied successfully to blunt notches [9,10], the notch root radius playing the role of
the microstructure characteristic length; to cracks impinging on an interlayer, the microstructure length being
the interphase thickness. This last case applies to various mechanisms such as the step-over in bedded sedi-
ments [11]; the role of an adhesive layer between two steel plates [12]; the crack path in ceramic laminates
[13], the interface debonding ahead of a matrix crack [14,15].

The common feature of these situations is the existence at the macro scale (when the microstructure length
is neglected) of a singular point [16]. In this paper we extend the results to non-singular situations of stress
concentrations. Two problems are analyzed: the crack initiation at a hole in a plate of PMMA under tension,
and the crack initiation at a hole in a block of rock under compression. In both, the small parameter charac-
teristic of the microstructure is the diameter of the hole, allowing, as previously done, a matched asymptotics
procedure.

Failure of brittle materials under compressive conditions has been a common issue of fracture mechanics
for years. Among all the papers on the subject, Sammis and Ashby [17] have developed a theory of damage
mechanics for brittle porous materials under compressive stress states, He et al. [18] have carried out a numer-
ical study of the problem, and Wong et al. [19] have conducted an experimental and numerical study on split-
ting failure of brittle solids containing single pore under uniaxial compression. Comparisons with experiments
are performed herein using the work of Li and Zhang [20] for drilled plates of PMMA in traction and that of
Carter and Carter et al. [21,22] for holed plates of rocks in compression.

2. Brittle fracture criteria

Brittle fracture mechanics traditionally make use either of the Griffith criterion or of the maximum stress
criterion. They are briefly recalled below.

2.1. The energy criterion for fracture

The Griffith criterion is based on an energy balance between an elastic initial state prior to any crack onset
or growth and after the appearance of a crack extension of surface dS

dW p þ dW k þ GcdS ¼ 0 ð1Þ
where dWp is the change in potential energy, dWk the change in kinetic energy and GcdS the fracture energy
(Gc is the material toughness (J m�2)). The toughness can be also expressed in terms of the critical mode I

stress intensity factor kIc (MPa m1/2) using the Irwin relation
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Gc ¼
1� m2

E
k2Ic ð2Þ

where E and m are respectively the Young’s modulus and the Poisson’s ratio of the material. Depending on the
experimental data, one or the other parameter will be used in the following.

If the initial state is quasi-static, then there is production of kinetic energy and

dW k P 0 ) � dW p

dS
¼ Gi P Gc ðincrementalÞ ð3Þ

It is an unquestionable necessary condition for failure, Gi is the (incremental) energy release rate. The above
inequality involves the a priori unknown surface increment dS.

In case of a continuous crack growth, one can derive from the above inequality, by derivation (dS! 0), the
so-called Griffith criterion

� oW p

oS
¼ Gd P Gc ðdifferentialÞ ð4Þ

Here Gd is the (differential) energy release rate. This final criterion does not involve any length or crack incre-
ment. Nevertheless, the existence of the derivative is rarely considered while it deserves a discussion.

2.1.1. Maximum stress criterion

If no pre-existing crack exists the maximum stress criterion is often invoked. It is based on the maximum
tension that a material can bear. Failure occurs at a point if

rP rc ð5Þ
where r holds for the tension orthogonally to the failure direction and rc for the tensile strength of the
material.

2.1.2. Discussion

Nevertheless, the crack initiation at corners, V-notches and other situations such as interfaces breaking a
free surface (delamination onset) cannot be correctly predicted by these two usual brittle fracture criteria.
They give contradictory results and neither one nor the other agrees with the experiments [8,23]. An additional
characteristic length is required to define a satisfying criterion giving rise to an approach baptised ‘‘Finite frac-
ture mechanics’’. The crack is supposed to jump this length which depends both on the material properties and
the local geometry of the structure. It is not a material parameter since the local geometry intervenes; however,
it is close to the Irwin length.

The interaction between this increment and a characteristic length of the microstructure is responsible for
the phenomena we consider herein.

3. Singular terms

In this section, we focus our attention on the plane elastic field at the tip, first of a sharp V-notch, and next
of a blunt one. It is a generic case of stress concentration due to a singular point in the geometry of a structure.

In the vicinity of the tip (Fig. 1), in plane elasticity, the displacement field expands as [8,9,16]

Fig. 1. Three-point bending on a V-notch specimen.
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Uðx1; x2Þ ¼ Uð0; 0Þ þ krkuðhÞ þ � � � ð6Þ
x1, x2 and r,h hold respectively for the Cartesian and polar coordinates (Cartesian and polar frames are re-
ported in Fig. 2 and the followings). U(0,0) is the rigid translation of the origin located at the root of the
notch, it plays no role and is mentioned only for consistency reasons. In general, the singularity exponent k
lies between 1/2 and 1; it can be either real or complex, single or multiple. It is associated with an angular
function u(h); k and u(h) are solutions to an eigenvalue problem. A single mode is exhibited, in the present
case it is symmetric, the antisymmetric one (corresponding to a larger exponent) is not activated in a three-
point bending test. The parameter k is the so-called generalized stress intensity factor (GSIF); it is propor-
tional to the applied load r1

k ¼ jr1 ð7Þ
Note that if k < 1 then r is infinite at the notch tip and the inequality (5) holds true whatever the applied load.
The conclusion that can be drawn from the maximum stress criterion does not match with experiments on
V-notch specimens, crack initiation does occur but not for any infinitely small applied load.

As a particular case, for x = 0 (k = 1/2) the usual opening mode I is active

Uðx1; x2Þ ¼ Uð0; 0Þ þ kI
ffiffi
r

p
uIðhÞ þ � � � ð8Þ

The coefficient kI is the classical mode I stress intensity factor (the GSIF for k = 1/2) and uI the associated
opening mode.

For x = p (k = 1) there is no longer any corner non-stress concentration, the edge is straight, the elastic
solution involves the non-singular T-stress (i.e. the tension parallel to the edge)

Uðx1; x2Þ ¼ Uð0; 0Þ þ TrtðhÞ þ � � � ð9Þ
where the function rt(h) fulfils the relations r11 = 1,r12 = r22 = 0 (The edge is in direction 1) and where T

holds for the uniform tension (the GSIF for k = 1).

4. Matched asymptotic expansions

A good knowledge of the matched asymptotic expansions procedure on the generic case of the sharp
V-notch allows a better understanding of the forthcoming differences that will lead to exhibit a dependency
of the apparent resistance on the actual value of a parameter characterising a microstructure size, what we
call herein the size effect. Thus, in a first step the sharp V-notch problem is investigated. As seen in Fig. 2,
there is no characteristic length associated to the microstructure. The size effect will intervene in the second
step where a blunt V-notch with a finite root radius is considered (Fig. 3).

4.1. The sharp V-notch

Solving numerically an elasticity problem in a domain X‘ embedding a short crack of length ‘ at the root of
the V-notch (Fig. 2) presents some difficulties because of the small size of the perturbation which requires a

Fig. 2. The onset of a short crack at the sharp root of a V-notch.
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drastic finite element (FE) mesh refinement in its vicinity for instance. It is better trying to represent the solu-
tion U‘ in the form of an outer expansion or expansion of the far field

U ‘ðx1; x2Þ ¼ U 0ðx1; x2Þ þ small correction ð10Þ
where U0 is solution to the same elasticity problem, but now posed on the unperturbed domain X0 (Fig. 1) that
can be considered as the limit of X‘ as ‘! 0. In other words, the short crack is not visible. It is the classical
simplified frame often used to perform FE computations, since strong mesh refinements prevent to take into
account too small details.

It is clear that this solution U0 constitutes a satisfying approximation of U‘ as one moves away from the
perturbation, i.e., outside a neighbourhood of the perturbation, and thence its designation as the outer field
(or far field, or remote field).

Evidently, this information is incomplete, particularly when we are interested in the fracture mechanisms.
We therefore dilate the space variables by introducing the change of variables yi = xi/‘. In the limit when
‘! 0, we obtain an unbounded domain Xin (looking like the enlarge frame in Fig. 2) in which the length
of the crack is now equal to 1.

We then search for a different representation of the solution under the form of an expansion known as inte-
rior field or near field

U ‘ðx1; x2Þ ¼ U ‘ð‘y1; ‘y2Þ ¼ F 0ð‘ÞV 0ðy1; y2Þ þ F 1ð‘ÞV 1ðy1; y2Þ þ � � � ð11Þ
where F1(‘)/F0(‘)! 0 as ‘! 0. When we substitute this expression in the equations of the problems for the
determination of V0, V1, . . . we notice that there is a lack of the conditions at infinity to have correctly stated
problems. These missing conditions will be furnished by the matching conditions.

The interior and exterior expansions describe the solution U‘ in terms of the near field and the far field.
There must be an intermediate zone (close to the perturbation for the far field and far from it for the near
field) where both expansions are valid. In other words, the behaviour of the far field, when one moves closer
to the origin, must match with the behaviour of the near field, when one moves away from the perturbation.

The behaviour of the far field near the origin, which is the solution of a problem posed in X0, is described by
the expansion in powers of r as previously encountered in Eq. (6)

U 0ðx1; x2Þ ¼ U 0ð0; 0Þ þ krkuðhÞ þ � � � ð12Þ
The matching conditions can then be written as follows:

F 0ð‘ÞV 0ðy1; y2Þ � U 0ð0; 0Þ; F 1ð‘ÞV 1ðy1; y2Þ � k‘kqkuðhÞ ð13Þ

when q ¼ r=‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p
! 1 (the symbol � means here ‘‘behaves like’’), thus

F 0ð‘Þ ¼ 1; V 0ðy1; y2Þ ¼ U 0ð0; 0Þ; and F 1ð‘Þ ¼ k‘k; V 1ðy1; y2Þ � qkuðhÞ at infinity ð14Þ
Or, proceeding by superposition

V 1ðy1; y2Þ ¼ qkuðhÞ þ bV
1ðy1; y2Þ with bV

1ðy1; y2Þ ! 0 at infinity ð15Þ

Fig. 3. The onset of a short crack at the blunted root of a V-notch.
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Then, Eq. (11) rewrites finally

U ‘ðx1; x2Þ ¼ U ‘ð‘y1; ‘y2Þ ¼ U 0ð0; 0Þ þ k‘kV 1ðy1; y2Þ þ � � � ð16Þ
Note that the matching statement in (13) is nothing else than the classical so-called remote load at infinity (see
also (19)2).

We now have at our disposition two descriptions of the solution U‘ and in particular we can remark that,
because of the derivation rule o./oxi = 1/‘ o./oyi, the stress field associated with U‘, in the neighbourhood of
the perturbation, is given as a function of ‘ by

rðU ‘ðx1; x2ÞÞ ¼ k‘k�1
~rðV 1ðy1; y2ÞÞ þ � � � ð17Þ

where the elastic constitutive law reads either

rðU ‘Þ ¼ C : rS
xU

‘ or ~rðV 1Þ ¼ C : rS
yV

1 ð18Þ
rS

x and rS
y designate the symmetric part of the gradient operators with respect to x and y respectively, and C

the elastic stiffness matrix. The term ~rðV 1Þ is independent of the global geometry of the structure as well as of
the loading intensity.

The function V1(y1,y2) is computed once for all by finite elements [8,9,16] in an artificially bounded (at a
large distance of the perturbation) domain with either a Neumann or a Dirichlet condition prescribed along
the new fictitious boundary C1 (with unit outer normal n)

V 1ðy1; y2Þ ¼
ffiffiffi
q

p
uIðhÞ ðDirichletÞ or ~rðV 1Þ � n ¼ ~rð ffiffiffi

q
p

uIðhÞÞ � n ðNeumannÞ ð19Þ

The change in potential energy due to the crack onset can be expressed by mean of a path independent integral
W [16,23]

�dW p ¼ WðU ‘;U 0Þ ð20Þ
with

WðU ‘;U 0Þ ¼ 1

2

Z

C

rðU ‘Þ � N � U 0 � rðU 0Þ � N � U ‘
h i

ds ð21Þ

where C is any closed contour surrounding the corner and the crack extension starting and finishing on the two
stress free faces of the wedge and N a unit normal to the line C pointing toward the root of the corner. It is
computed in Xin with the appropriate change of variables.

Then replacing the above expansions, once for ‘ = 0 and once for ‘5 0, into (20) leads to

�dW p ¼ k2‘2kAeþ � � � ð22Þ
In (22), e holds for the specimen thickness (plane elasticity) and A is a geometrical coefficient depending only
on the V-notch opening x. It is extracted from V1 using the path independent integral W

A ¼ WðV 1ðy1; y2Þ; qkuðhÞÞ ð23Þ
The energy condition resulting from (22) writes

Gi ¼ � dW p

dS
¼ � dW p

‘e
¼ k2‘2k�1

AP Gc ð24Þ

It is clear that if k > 1/2 then Gd = lim‘!0Gi = 0 (see Eqs. (3) and (4)) and the above inequality can never be
fulfilled. As already reported, the Griffith criterion addresses only the continuous growth of pre-existing cracks
(k = 1/2).

It can be noted that the knowledge of kIc instead of Gc avoids the use of the elastic constants (see Eq. (2)),
thus the computation of V1 can be carried out once for all for E = 1.

Following [8], the stress condition must hold true all along the putative crack path of length ‘:

rhhð‘ÞP rc ð25Þ
where rhh(‘) is the hoop stress measured at the distance ‘ from the notch root along the bisector (the crack
direction because of the symmetry) prior to any crack initiation. It is a decreasing function of ‘. According
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to the various expansions and an appropriate normalization of the eigenvector u(h) [8,9], at the leading order,
the inequality (25) writes

k‘k�1
P rc ð26Þ

since in that case (i.e. prior to crack initiation) bV
1 ¼ 0 (see Eq. (15)).

The crack initiation length ‘0 must fulfil the two inequalities (24) and (26) and thus depends only on the
V-notch opening

‘0 ¼
Gc

Ar2
c

ð27Þ

The resulting Irwin-like failure initiation criterion reads [8]

k P kc ¼
Gc

A

� �1�k

r2k�1
c ð28Þ

The critical value kc depends only on the failure parameters of the material and on the V-notch opening. It
coincides with the Griffith’s criterion (in the Irwin’s form) for a crack (k = 1/2) and with the stress criterion
for a straight edge (k = 1). Moreover, according to (7), the above criterion (28) rewrites

r1 P
1

j

Gc

A

� �1�k

r2k�1
c ð29Þ

The applied load at failure does not depend on any representative length of a microstructure; there is no size
effect in this step.

Remark: The contour integral W can be used also to compute the GSIF k

k ¼ WðU 0; r�ku�ðhÞÞ
WðrkuðhÞ; r�ku�ðhÞÞ ð30Þ

where r�ku�(h) is the dual function to the singular mode rku(h) [16,23].

4.1.1. The blunted V-notch

In a second step, we still consider a short crack of length ‘ but the V-notch is now blunted and there is a
small notch root radius d (Fig. 3), the crack length ‘ is assumed to be smaller or of the same order of mag-
nitude than d.

If d is small, it is clear that the far field or outer expansion remains unchanged at the leading order (Eqs. (6)
and (10)), details are still not visible. But there is now a choice to do for the dilation that can be performed
either with respect to ‘ or to d. Both cases must lead to identical results but it is easier to use d for practical
reasons (FE meshes). Then the stretched domain exhibits a notch root radius equal to 1 and a crack of dimen-
sionless length l = ‘/d.

The inner expansion now writes

U ‘;dðx1; x2Þ ¼ U ‘;dðdy 01; dy02Þ ¼ H 0ðdÞW 0ðy01; y 02; lÞ þ H 1ðdÞW 1ðy 01; y02; lÞ þ � � � ð31Þ

where y0i ¼ xi=d and H1(d)/H0(d)! 0 as d ! 0. The dependence of the different terms W0, W1 on the stretched
crack length l is highlighted. The matching conditions lead to

H 0ðdÞ ¼ 1;W 0ðy01; y02; lÞ ¼ U 0ð0; 0Þ; and H 1ðdÞ ¼ kdk;W 1ðy01; y 02; lÞ � q0kuðhÞ at infinity ð32Þ

with q0 ¼ r=d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y021 þ y022

p
. The change in potential energy and the resulting energy condition now write

� dW p ¼ k2d2kðBðlÞ � Bð0ÞÞe ¼ k2‘2k
BðlÞ � Bð0Þ

l2k
e ð33Þ

Gi ¼ � dW p

‘e
¼ k2d2k�1 BðlÞ � Bð0Þ

l
¼ k2‘2k�1 BðlÞ � Bð0Þ

l2k
P Gc ð34Þ
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The function B(l) is extracted from W 1ðy01; y 02; lÞ computed by finite elements for each l using the W integral
(see Eqs. (21) and (23) above), it is independent of the global geometry and the applied load

BðlÞ ¼ WðV 1ðy 01; y02; lÞ; qkuðhÞÞ ð35Þ

Now the energy condition depends not only on the V-notch opening x and the crack length ‘, as in inequality
(24), but also on the local geometry through the dimensionless parameter l.

The stress condition stated prior to any crack initiation (i.e. using Eq. (14) for W1 with l = 0), writes

kdk�1
~rhhðW 1ðy 01; y02; 0ÞÞ ffiffiffiffiffiffiffiffiffiffi

y02
1
þy02

2

p
¼l

�� P rc ð36Þ

where the hoop stress ~rhh is computed at the distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y021 þ y022

p
¼ l in the dilated domain. Once again, the

two inequalities (34) and (36) can be solved, implicitly here (see the example in Section 6), to provide the crack
initiation length ‘0 = l0d. It fulfils the non-linear equation

1

~rhhðW 1ðy 01; y02; 0ÞÞ ffiffiffiffiffiffiffiffiffiffi
y02
1
þy02

2

p
¼l0

��
� �2

Bðl0Þ � Bð0Þ
l0

¼ 1

d

Gc

r2
c

ð37Þ

The initiation criterion (34), with ‘ = ‘0, involves the GSIF k extracted from the far field which does not de-
pend on any micro structure size, while the critical value kappc does through l0

k P kappc ¼ Gc

Dðl0Þ

� �1�k
rc

~rhhðW 1ðy01; y 02; 0ÞÞ ffiffiffiffiffiffiffiffiffiffi
y02
1
þy02

2

p
¼l0

��

0

@

1

A
2k�1

with Dðl0Þ ¼
Bðl0Þ � Bð0Þ

l0

ð38Þ

As a consequence there is now a size effect, according to (7), the remote load at failure is a function of the
actual microstructure length d through l0 = ‘0/d since it fulfils

r1 P
1

j

Gc

Dðl0Þ

� �1�k
rc

~rhhðW 1ðy 01; y02; 0ÞÞ ffiffiffiffiffiffiffiffiffiffi
y02
1
þy02

2

p
¼l0

��

0

@

1

A
2k�1

ð39Þ

It proves useful to compare the above relationship, including a size effect, with (29), which is free of size effects.
A practical parameter to quantify this effect is the ratio

R ¼ kappc

kc
¼ A

Dðl0Þ

� �1�k
1

~rhhðW 1ðy01; y 02; 0ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02
1
þy02

2
¼l0

p��

0

@

1

A
2k�1

ð40Þ

R > 1 (resp. R < 1) expresses a strengthening (resp. weakening) phenomenon.
The criterion (38) or (39), as well as the parameter R, are independent of any macroscopic length able to

characterize the specimens or structures size. Thus any analysis of homothetic specimens or structures is irrel-
evant here. The meaningful quantity is the actual value of the small parameter d, characteristic of the geometry
at the microscale.

Relations (38)–(40) are valid in many different situations as illustrated in the following examples of Sections
5–8.

5. Example 1: failure at a blunted notch

5.1. The V-notched specimens in bending

In [9], the above analysis was performed in the generic case of a blunted V-notch (Fig. 3) and a comparison
is made with three-point bending experiments by Dunn et al. [24] on PMMA (E = 2.3 GPa, m = 0.36,
Gc = 394 J m�2, rc = 124 MPa, specimens size: length 76.2 mm · width 17.8 mm · thickness 12.7 mm).
Fig. 4 shows the apparent toughness improvement brought by the notch root radius d (ranging from 1 to
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100 lm) for different openings x. Along the vertical axis is the ratio R (40) of the apparent GSIF kappc to the
primary GSIF k. In Fig. 5, the criterion corresponding to a sharp notch (solid line) is compared to the cor-
rected one (diamonds) taking into account a small notch root radius as reported in the experiments by Dunn
et al. [24] and Yosibash et al. [25].

1

1.1

1.2

1.3

1.4

1.5

1.00E-03 1.00E-02 1.00E-01

45˚

60˚

90˚

120˚

d

R

(mm)

Fig. 4. The apparent toughness improvement R brought by the notch root radius d (mm) for different V-notch opening [9].
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ω
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Fig. 5. Comparison with experiments by Dunn et al. on PMMA specimens (all results are from Dunn et al. [24] except x = 45� from

Yosibash et al. [25]). (1) Experiments (error bars), (2) Prediction using the sharp notch criterion (solid line), (3) Correction for a notch tip

radius d = 25.4 lm (d = 30 lm for x = 45�) (diamonds). From [9].

Fig. 6. A blunt notch in a three-point bending specimen.
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5.1.1. The single edge notched specimens in bending (SENB)

A very similar study has been carried out on notched specimens of ceramics. The measure of the toughness
in ceramic materials is performed using three-point bending on so-called SENB specimens (Fig. 6). Neverthe-
less it is very difficult or impossible to machine a perfect sharp slit; there is necessarily a rounded tip and the
toughness measure is biased [26]. In [10] the authors propose a correction to bring to the measure in terms of
the root radius d. In that case the far field problem is the usual three-point bending cracked specimen and
involves the classical mode I stress intensity factor kI. Corrections are illustrated in Fig. 7 dedicated to Silicon
Nitride (rc = 580 MPa, kIc = 5.4 MPa m1/2, specimens size: 45 · 4 · 3 mm) and showing the ratio R of the
apparent (measured) toughness kappIc to the actual toughness kIc as a function of the square root of the blunting
radius

ffiffiffi
d

p
(used classically as a relevant parameter in this kind of experiments and models).

6. Example 2: the step-over mechanism

As a second example, let us consider a case frequently observed in bedded sediments (and in layered ceram-
ics by the way). A primary crack impinges on an interlayer (Fig. 8) and there is a competition between the
crack growth through the interlayer and a step-over the interlayer with a new crack onset in the next bed
of sediments. This problem is of great interest for the oil and gas industry, a better understanding of this kind
of mechanisms will surely lead to a better characterization of fractured reservoirs and to an improvement of
the predictive models of oil and gas production.

In the simplified frame of Fig. 8, the structure is submitted to a remote tension r1. The pre-existing crack is
therefore undergoing a mode I opening. Attention is paid to bring out the size effect resulting from variations
of the interlayer thickness d.

0.8

1

1.2

1.4

1.6

1.8

2

0 10 12

R

d (µm1/2)

2 4 6 8

Fig. 7. The ratio R vs. the square root of the notch-root radius
ffiffiffi
d

p
(lm1/2) for Silicon Nitride. (1) experiments (diamonds) [26] and (2)

prediction (solid line).

Fig. 8. A crack impinging on an interlayer and the step-over mechanism.
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As already mentioned the far field is obtained for d ! 0, then the interlayer disappears and the far field
involves the classical crack tip stress intensity factor kI. It is related to the remote tension according to Tada’s
formula (a is the thickness of the adjacent beds, Fig. 8)

kI ¼ 5r1a
1=2 ð41Þ

The final form of the criterion is still (38) with k = 0.5. In the following numerical example, the two beds are
made of sandstone with the material parameters: E1 = 2 GPa, m1 = 0.3, rc = 3 MPa, Gc = 80 J m�2. The inter-
layer is made of shale with: E2 = 0.4 GPa and m2 = 0.3 (no special attention is paid to the Poisson’s ratios
whose values play a minor role within a reasonable range). In general situations, the sandstone beds thickness
is some metres while the shale interlayers thickness is only some centimetres.

Fig. 9 shows the size effect observed on the ratio R for different shale interlayer thicknesses (in cm). It is
clear that, even for very thin layers, the primary crack is strongly blunted by the soft layer of shale. As a con-
sequence of (41), for a fixed a, the same effect is observed on the remote load

r1 ¼ RkIc

5a1=2
ð42Þ

A more detailed analysis is proposed in [11] where the competition between step-over, primary crack arrest
and penetration in the shale layer is studied in response to a remote horizontal tension and a vertical overbur-
den compression (prohibiting any horizontal crack deflection along the interlayer). Moreover, it must be noted
that this step-over mechanism is accompanied by a slight shift (ignored herein), the new crack is not strictly
ahead of the primary one but a little aside.

7. Example 3: failure in tension at a hole in a PMMA specimen

Let us consider a small circular hole in a plate of PMMA submitted to a remote tension r1 (Fig. 10). The
drilled plate is assumed to be sufficiently thick to promote a plane strain analysis rather than a plane stress
one. The cavity diameter d is assumed to be small compared to the plate length or width. The two small
parameters are the crack increment length and the diameter of the hole. In this case there is a stress concen-
tration but no singularity. Nevertheless, the reasoning remains the same, the leading term of the far field
expansion (d ! 0) reduces to a single term

U 0ðx1; x2Þ ¼ r1rtðhÞ ð43Þ
The function rt(h) is similar to that in equation (9).

The inner problem prior to any crack onset is an infinite plate with a hole of diameter 1 submitted to a
remote tension r1 at infinity. In this case the solution W 1ðy01; y 02; 0Þ is known analytically [27] and the tension
on both sides of the hole (at the ‘‘equator’’) at a distance ‘ such that ‘ = ld, prior to any crack onset writes at
the leading order

0

2

4

6

8

0 10 15 20

d (cm)

R

5

Fig. 9. The ratio R for the step-over mechanism vs. the thickness d (cm) of the shale interlayer.
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r ¼ r1 þ r1
2

1

2lþ 1

� �2

þ 3
1

2lþ 1

� �4
" #

¼ r1~rðlÞ ð44Þ

Clearly, the stress concentration factor of such geometry is 3; r = 3r1 at l = 0, i.e. on the two sides of the
hole. Following a maximum stress criterion, failure would occur for r1 = rc/3 whatever the diameter of
the cavity. It is contradictory with the experiments showing that if the cavity size becomes smaller then the
applied load leading to failure increases from rc/3 to rc [15].

The energy condition (34) together with Eq. (44) and the stress condition r = rc lead to the equation defin-
ing the crack initiation length ‘0 = l0d (keep in mind that there are two symmetric cracks with a total length
2‘0 as shown in Fig. 10) solution to the equation (the analogous to (37))

1

~r2ðl0Þ
� Bðl0Þ � Bð0Þ

2l0

¼ 1

d

Gc

r2
c

ð45Þ

As already reported, the function B(l) is extracted from W 1ðy01; y 02; lÞ computed by finite elements. Replacing
now l0 in Eq. (44) with in addition the stress condition r = rc finally allows determining r1 at failure as illus-
trated in Fig. 11.

r1 ¼ rc

~rðl0Þ
ð46Þ

The solid line is the theoretical prediction and the diamonds correspond to experiments on PMMA [20]
(E = 3 GPa, m = 0.36, Gc = 290 J m�2, rc = 72 MPa, specimens size: 100 · 30 · 10 mm). Clearly this approach
is able to render the size effect observed in the experiments (Fig. 5) not as perfectly as expected, new experi-
ments are still in progress. It can be noted that Li and Zhang [20] propose to improve the present criterion

Fig. 10. A circular hole in a PMMA plate in tension with two short cracks at the ‘‘equator’’.
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Fig. 11. Failure load prediction (solid line) compared to experiments [20] (diamonds).
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using an additional parameter taking into account the quasi-brittleness of PMMA and the roughness of the
fracture pattern.

8. Example 4: failure in compression in rocks

Let us consider again a circular hole in a specimen of rock but submitted now to a remote compressive load
r1 (Fig. 12). As in the first example, the two small parameters are the crack increment length ‘ and the diam-
eter d of the hole.

The far field is unchanged and still reduces to a single term (Eq. (43)) but with r1 < 0. As above, the inner
field is known analytically and the tension at a distance ‘ such that ‘ = ld along the axis passing through the
two poles of the cavity writes [27]

r ¼ r1
2

1

2lþ 1

� �2

� 3
1

2lþ 1

� �4
" #

ð47Þ

The tension at the two poles, i.e. at l = 0 is then r = �r1. The use of the stress criterion would lead to the
prediction of cracks initiation at the two poles if r1 = �rc, conclusion that is in general contradictory with
the experiments [21,22]. It is almost true if the hole is sufficiently large (although remaining small compared
to the specimen); but the compression must be increased as the hole diameter decreases. The strength in
compression is of course an upper bound to this loading process.

The method described above to derive numerically the load initiating the fracture mechanism for the plate
under tensile load, and especially the Eq. (45), remains the same for compressive conditions. Now r1 has a
negative value, ~r is computed along the axis passing through the two poles and the function still noted B cor-
responds to the concerned perturbation, i.e. two cracks at the poles instead of two cracks at the equator.

This case has been investigated by different authors [17,18,21]. It is experimentally convenient since the
crack growth is stable but tests are difficult to carry out for practical reasons and experimental data are quite
scarce in the literature. As already mentioned, usual fracture mechanics models need an initial crack length to
work properly, that is sometimes taken equal to the Irwin’s length. According to Sammis and Ashby’s model
[17] and Carter’s experiment [21,22], these values of the critical crack length are usually too large to be real-
istic. Therefore they use the initial crack length, as well as kIc, as fitting parameters of the models. It is impor-
tant to notice that in contrast to Carter’s analysis, the model developed herein allows an effective numerical
determination of the crack length at initiation instead of a more or less arbitrary choice.

The present theoretical predictions are compared to experimental data obtained by Carter et al. [22], on
Tyndallstone (a kind of limestone) and potash rock specimens (the specimens size ranges from
152 · 89 · 84 mm to 305 · 305 · 89 mm [21]). For Tyndallstone, Carter et al. report values of rc ranging from
0.5 to 5 MPa and a value of the toughness kIc of 1 MPa m1/2 (however measured on a sample of stronger Tyn-
dallstone). For potash rock, the experimental tensile strength and toughness (average values) measured by
Carter are rc = 1.7 MPa and kIc = 0.34 MPa m1/2.

Figs. 13 and 14 give a comparison between computations and Carter’s experimental data, represented
by diamonds. The solid line gives the best agreement to the data and is obtained by implementing in the

Fig. 12. A circular hole with two short cracks at the ‘‘poles’’ in a block under compressive load.
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computations kIc = 0.4 MPa m1/2, rc = 1.5 MPa for Tyndallstone, and kIc = 0.23 MPa m1/2, rc = 0.4 MPa for
potash rock. The dashed lines are obtained by using kIc = 0.4 MPa m1/2, rc = 3 MPa for Tyndallstone and
kIc = 0.22 MPa m1/2, rc = 1.7 MPa for potash rock, which are the values used by Carter to achieve his fitting
process (following Sammis and Ashby’s model [17]) to the experimental data. Note that these values are quite
different from the measured values. All the computations are carried out with m = 0.3, once again the Poisson’s
ratio has not much influence on the failure computations.

The agreement is quite satisfactory. However, it is important to notice that, since the Eq. (44) depends on
1/d, the model cannot predict a finite value of r1 as d tends towards 0. But one must remind that, in all these
experiments, the strength in compression is of course an upper bound of the admissible remote loads, beyond
which a complete ruin of the specimen is expected. This upper bound cannot be represented here, being out of
the limits of the graph (the compressive strength is ranging respectively between 40 and 70 MPa for Tyndall-
stone, and averages 24.5 MPa for potash rock in Carter’s specimens).

For a hole in an infinite plate, Sammis and Ashby [17] found a dimensionless constant crack length l0 of
0.2, which is in good agreement with their experiments carried out on PMMA. With the model developed in
this paper, l0 is found to be increasing with the size of the hole and ranges from 0.13 to 0.24 for Tyndallstone
and from 0.20 to 0.29 for potash rock.
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Fig. 13. Comparison between predictions (solid and dashed lines) and Carter’s experimental data (diamonds) on Tyndallstone. Solid and

dashed lines correspond to different tensile strength.
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Fig. 14. Comparison between predictions (solid and dashed lines) and Carter’s experimental data (diamonds) on potash rock. Solid and

dashed lines correspond to different tensile strength.
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To better illustrate the sensitivity of the model to the failure parameters kIc and rc, computations have been
carried out with varying values. The comparison with respect to kIc is carried out at constant rc = 1.5 MPa.
The sensitivity analysis with respect to rc is carried out at constant kIc = 0.4 MPa m1/2 (Figs. 15 and 16).

An increase in kIc induces an increase in both the curvature and the vertical location of the curve. This effect
is more pronounced for cavities of small diameters. Increases in rc lead to the same changes in the curves, but
discrepancies now appear for cavities of large diameters. Roughly speaking, the energy criterion takes prece-
dence on the strength criterion for small size holes, whereas for large size holes, the strength criterion is
predominant.

9. Conclusions

The matched asymptotic expansions framework allows analyzing the interaction between the length of a
crack jump at initiation and a characteristic size of the microstructure. Thanks to a fracture criterion that
requires fulfilling both energy and stress conditions, the equations governing the size effects have been brought
into evidence and illustrated in very different situations for various brittle materials (PMMA, ceramics, rocks)
and in particular in the case of holed specimens in tension and compression. In the whole set of examples, it
must be pointed out that the relevant parameter is the actual root radius for blunted notches, the actual hole
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Fig. 15. Sensitivity of the model to the toughness: kIc = 0.2 MPa m1/2 (diamonds, solid line), kIc = 0.3 MPa m1/2 (triangles, dashed line),

kIc = 0.4 MPa m1/2 (squares, dotted line), kIc = 0.5 MPa m1/2 (solid diamonds, solid line), kIc = 0.6 MPa m1/2 (solid triangles, dashed line),

for Tyndallstone.
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Fig. 16. Sensitivity of the model to the tensile strength: rc = 1 MPa (diamonds, solid line), rc = 2.5 MPa (triangles, dashed line),

rc = 4 MPa (squares, dotted line), rc = 5.5 MPa (solid diamonds, solid line), rc = 7 MPa (solid triangles, dashed line), for Tyndallstone.
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diameter for cavities or the actual interlayer thickness for bedded sediments. It must be expressed using units
(say lm, mm or m) and does not allow any dimensionless analysis. Homothetic specimens are irrelevant herein
since the size of the specimens or of the structures has never been involved throughout the analysis, it holds
true whatever the size of the structure under consideration and thus the statistical effects are not addressed.
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