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Fracture of porous materials – Influence of the pore size

D. Leguillona,*, R. Piatb
a LMM – CNRS UMR 7607, University P. et M. Curie (Paris 6), Paris, France

b  Institute of Solid  Mechanics, University  of  Karlsruhe, Karlsruhe,   Germany

The random distribution of pores in location, size and shape makes the fracture of porous materials a difficult problem. We
address herein a simplified model of porous material as can be obtained for instance in ceramics by introducing organic or
polymer particles prior to the sintering step. Resulting spherical pores are almost regularly located with a homogeneous
distribution in size. A fracture criterion involving both toughness and tensile strength allows studying the competition
between, on the one hand the crack blunting due to the pores and resulting in an apparent toughness enhancement, and on
the other hand the weakening effect caused by an increasing volume fraction of pores.

Keywords: Porous materials; Fracture mechanics; Toughening; Weakening

1. Introduction

The random distribution of pores in location, size and shape makes the fracture of porous materials a dif-
ficult problem and a quite sparse literature exists in the domain. Contradictory results are often reported in
fracture of porous materials: strengthening and weakening [1–6].

We address herein a simplified model of porous material as can be obtained for instance in ceramics by
introducing organic or polymer particles like corn starch or polyamide prior to the sintering step. Resulting
spherical pores are almost regularly located with a homogeneous distribution in size. Assuming the pores are
small compared to the structure, a fracture criterion involving both toughness and tensile strength allows
studying the competition between, on the one hand the crack blunting due to the pores and resulting in an
apparent toughness enhancement; and on the other hand the weakening effect caused by an increasing volume
fraction of pores.

* Corresponding author. LMM, University Paris 6, Case 162, 4 Place Jussieu, 75252 Paris cedex 05, France. Tel.: +33 144 275 322; fax:

+33 144 275 259.
E-mail address: dol@ccr.jussieu.fr (D. Leguillon).
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In a first step, the blunting effect due to a single pore is examined, the so-called key-hole problem [7]. It
exhibits a strong size effect related to the pore diameter, larger the pore, higher the apparent toughness. This
effect is due to the size of the pore whatever the size of the specimen (see also [8]), in this sense it differs from
the statistical size effects analysed by Weibull [9] in a pioneering work. Nevertheless, in both cases homothetic
specimens would lead to different results, either because of the size of the pore or the size of the specimen, and,
based on experiments, it would be difficult to distinguish between the two approaches.

In Section 2, the effect of two neighbouring pores ahead of the primary crack is analysed. There is now a
competition between the pore size effect leading to an apparent toughness enhancement and a weakening effect
caused by the decreasing width of the ligament between pores. The section concludes on a brief analysis of the
role of the shape of the pores considering circular and elliptical pores.

Next the role of collateral pores is analysed, the question being: under a symmetrical loading, does a crack
can kink out of the symmetry axis toward the nearest pore?

Section 6 is dedicated to an attempt to generalize these results to porous materials. The selected
model is quite simple; the system of pores is embedded in a neighbouring area of dense material, itself
immersed in a homogeneous material with homogenized properties taking into account the volume frac-
tion of pores.

Nomenclature

a,d ligament width and pore diameter (m)
A,D scaling coefficients (MPa�1)
e specimen thickness (plane elasticity) (m)
E,C,m Young’s modulus, stiffness matrix (MPa) and Poisson’s ratio
G energy release rate (J m�2)
Gc,Gd,Gp toughness, generic, of a dense, of a porous ceramic (J m�2)
Fi Gauge functions of the inner expansion
kI mode I stress intensity factor (MPa m1/2)
kcI ; k

c app
I toughness and apparent toughness (MPa m1/2)

‘, ‘0 crack increment length (generic and at initiation) (m)
n unit normal vector
R ratio of the apparent toughness to the actual toughness of the material
Ud actual displacement field (m)
U0 leading term of the outer expansion, far field (m)
uI angular mode I shape function (MPa�1)
Vi terms of the inner expansions, near field (MPa�1)
x1,x2, r,h physical Cartesian and polar coordinates
y1,y2,q,h stretched dimensionless coordinates
dWp change in potential energy (J)
C1 artificial outer boundary in Xin

l,l0,f stretched crack lengths (generic and at initiation) and ligament width
Xin stretched ‘‘inner’’ domain
R,D,F primary crack, cavity and new crack increment boundaries in Xin

r(X) tension orthogonal to the failure direction associated with X (MPa)
r̂ðX Þ modified tension associated with X (MPa)
~rðY Þ tension orthogonal to the failure direction associated with Y in X in

rc tensile strength (MPa)
~rðY Þ stress tensor with components ~r11ðY Þ; ~r12ðY Þ; ~r22ðY Þ associated with Y in Xin

W path independent integral
rx; ry ; rS

x ; rS
y gradient and symmetric part of it with respect to x (resp. to y)
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2. Crack blunting by a cavity

2.1. The key-hole problem

Within the plane strain elasticity framework, we consider a cracked specimen (a CT specimen for instance,
Fig. 1) in which the primary crack ends in a circular cavity of diameter d, small compared to any dimension of
the structure and especially to the crack length.

The so-called ‘‘key-hole’’ problem consists in the prediction of the apparent toughness enhancement deriv-
ing from the blunting effect of the circular hole.

The solution Ud to the elastic problem is expressed as the solution U0 to the unperturbed problem (i.e. the
hole is not visible d ! 0) plus a correction, the smaller the pore diameter, the smaller the correction

Udðx1; x2Þ ¼ U 0ðx1; x2Þ þ small correction: ð1Þ

The leading term U0 is the far field; it is a satisfying approximation of the actual solution Ud except in the
vicinity of the perturbation (i.e. the cavity at the crack tip). Note that there is an uncertainty of the order of d
on the exact location of the crack tip in the unperturbed domain since details smaller or similar to d are not
visible.

The near field brings complementary information. The space variables are dilated by 1/d and the limit
d! 0 is considered again. The resulting domain Xin is unbounded with a semi-infinite crack ending in a cavity
with a unit diameter (Fig. 2).

The elastic solution expands in terms of the small parameter d and the stretched variables yi = xi/d to form
the inner expansion

Udðx1; x2Þ ¼ Udðdy1; dy2Þ ¼ F 0ðdÞV 0ðy1; y2Þ þ F 1ðdÞV 1ðy1; y2Þ þ � � � with lim
d!0

F 1ðdÞ
F 0ðdÞ

¼ 0: ð2Þ

Taking into account the change of variables and the derivation rule $y = 1/d$x (where $x and $y denote
the gradient operators with respect to the physical space variables xi and to the dimensionless variables yi), an
identification process in the elastic equations allows writing a set of equations in the variables yi for each Vi

Fig. 1. The CT specimen and the ‘‘key-hole’’ termination of the primary crack.

Fig. 2. The stretched single pore and the expected crack path.
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�ry :~rðV iÞ ¼ 0 in Xin;

~rðV iÞ ¼ C : rS
yV

i in Xin;

~rðV iÞ:n ¼ 0 along R and D:

8

>

>

<

>

>

:

ð3Þ

The first equation is the balance of momentum. The second one is the elastic constitutive law, C is the stiff-
ness matrix and rS

y the symmetric part of the gradient operator $y. The last equation expresses stress free
boundary conditions, R and D denote the primary crack faces and the boundary of the cavity, respectively.

This set of equations lacks of a statement prescribing the behaviour at infinity. The matching conditions
between the outer and inner expansions will provide this additional relation [10]. The behaviour of the far field
(unperturbed) near the crack tip (in the outer domain) writes

U 0ðx1; x2Þ ¼ U 0ð0; 0Þ þ kI
ffiffi

r
p

uIðhÞ þ � � � ð4Þ
Where r and h are the polar coordinates with the origin at the crack tip. The coefficient kI is the mode I stress
intensity factor of the classical square root behaviour of the opening mode I. The prescribed loading is sup-
posed symmetric to avoid the antisymmetric mode II. The first term of the expansion is an irrelevant constant
used for consistency. These terms must match with the leading terms of the inner expansion (2). Thus

F 0ðdÞ ¼ 1; F 1ðdÞ ¼ kI
ffiffiffi

d
p

; V 0ðy1; y2Þ � U 0ð0; 0Þ and V 1ðy1; y2Þ �
ffiffiffi

q
p

uIðhÞ with q ¼ r=d; ð5Þ
where � means ‘‘behaves like at infinity’’ (i.e. as q ! 1). The problem in the unknown function V0 has a triv-
ial solution

V 0ðy1; y2Þ ¼ U 0ð0; 0Þ; ð6Þ
whereas V1 must be numerically computed by finite elements (FE) in an artificially bounded (at a large dis-
tance of the perturbation) domain with either a Neumann or a Dirichlet condition prescribed along the
new artificial boundary C1

V 1ðy1; y2Þ ¼
ffiffiffi

q
p

uIðhÞ ðDirichletÞ or ~rðV 1Þ � n ¼ ~rð ffiffiffi

q
p

uIðhÞÞ � n ðNeumannÞ: ð7Þ

Finally the inner expansion writes

Udðx1; x2Þ ¼ Udðdy1; dy2Þ ¼ U 0ð0; 0Þ þ kI
ffiffiffi

d
p

V 1ðy1; y2Þ þ � � � ; ð8Þ
where V1 is solution of the complete set of Eqs. (3) and (7).

2.2. The onset of a new crack and the fracture criterion

Let us consider now a short crack with length ‘ facing the primary one (Fig. 2). The length is supposed to be
smaller or of the same order of magnitude than d. As a consequence, the outer expansion (1) is unchanged
since the details of the perturbation are not visible. The inner terms Vi are now solution to problems settled
on an unbounded domain embedding a crack with dimensionless length l = ‘/d (Fig. 2). The stress free
boundary condition (3)3 extends to the two faces F of the new crack. By analogy with (8), the corresponding
inner expansion writes

Udðx1; x2; ‘Þ ¼ Udðdy1; dy2; ldÞ ¼ U 0ð0; 0Þ þ kI
ffiffiffi

d
p

V 1ðy1; y2; lÞ þ � � � ð9Þ
The method follows that presented in [11], two conditions must be fulfilled, one involves the energy, the

other the stress field. But it differs slightly since there are now two small parameters instead of one, and
the stretching is performed with respect to d, not to ‘ as in [11]. Moreover, even if there is a stress concentra-
tion, the blunting due to the pore avoids any singularity. Thus, the stress field is derived from a FE compu-
tation instead of an explicit expression coming from the asymptotics as in [11]. The method is closer to that
employed in [12,13].

The change in potential energy caused by the onset of the new crack expands as

�dW p ¼ k2IdðAðlÞ � Að0ÞÞeþ � � � ¼ k2I ‘
AðlÞ � Að0Þ

l
eþ � � � ; ð10Þ
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where e holds for the specimen thickness (plane elasticity). The coefficient A(l) is extracted from V1 using the
path independent integral W [10,14]

AðlÞ ¼ W V 1ðy1; y2; lÞ;
ffiffiffi

q
p

uIðhÞ
� �

¼ 1

2

Z

C

~rðV 1Þ � n � ffiffiffi

q
p

uIðhÞ � ~rð ffiffiffi

q
p

uIðhÞÞ � n � V 1
h i

ds; ð11Þ

where C is any contour in the inner domain with normal n, surrounding the cavity and the crack extension and
starting and finishing on the stress free faces R of the primary crack (see (13) below for the definition of ~rÞ.

The energy condition for fracture derives from an energy balance and reads [11,12]

�dW p P Gce‘ ) G ¼ � dW p

e‘
¼ k2I

AðlÞ � Að0Þ
l

P Gc: ð12Þ

Here Gc denotes the toughness of the material and Gce‘ is the energy consumed to create a new crack surface
e‘.

Prior to the onset, in agreement with the well known Inglis solution [15], the inner expansion allows writing
the tension along the axis facing the primary crack as

rðUdðx1; 0ÞÞ ¼ C : rS
xU

dðx1; 0Þ ¼
1

d
C : rS

yU
dðdy1; 0; 0Þ ¼

kI
ffiffiffi

d
p ~rðV 1ðy1; 0; 0ÞÞ þ � � � ð13Þ

The function (A(l) � A(0))/l involved in (12) is an increasing function of l and thus (12) gives a lower
bound for the admissible l for a fixed intensity of the loading, i.e. for a fixed value of kI.

On the other hand, ~rðy1; 0Þ is a decreasing function of y1. Fulfilling the traction condition rP rc all along
the expected crack path 0 6 y1 6 l leads to (r is the tension acting on the expected crack path and rc the
tensile strength)

kI
ffiffiffi

d
p ~rðV 1ðl; 0; 0ÞÞP rc; ð14Þ

where ~r is the counterpart to r in Xin. The inequality (14) provides an upper bound for the admissible l. The
fracture criterion proposed in [11] states that both the energy condition (12) and the stress condition (14) must
be fulfilled at crack initiation. The compatibility of the two inequalities (12) and (14) (i.e. coincidence of the
upper and lower bounds) leads to an equation for the dimensionless initiation length l0 that turns to be a func-
tion of d

1

~rðV 1ðl0; 0; 0ÞÞ2
Aðl0Þ � Að0Þ

l0

¼ 1

d

Gc

r2
c

: ð15Þ

Finally the so-called apparent toughness can be derived from (12) and (15)

k
c app
I ¼

ffiffiffiffiffiffiffiffiffiffi

Gc

DðdÞ

s

with DðdÞ ¼ Aðl0Þ � Að0Þ
l0

and l0 ¼ l0ðdÞ according to ð15Þ: ð16Þ

This toughness is baptised apparent to recall that in any case the cavity is small compared to the whole
structure or specimen and that the only visible mechanism is a crack growth a priori governed by the Griffith
(or Irwin, see below) criterion.

The Irwin formula (E and m hold for the Young’s modulus and Poisson’s ratio of the material)

Gc ¼
1� m2

E
kcI ; ð17Þ

leads to derive the relative apparent toughness which is a meaningful parameter assessing the toughening/
weakening effect

R ¼ k
c app
I

kcI
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2

EDðdÞ

s

: ð18Þ

Here R > 1 (resp. R < 1) holds for a toughening (resp. weakening) effect.
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The presence of d in (15), (16) and (18) shows that there is a size effect which is due to the actual diameter of
the pore not to any dimensionless ratio.

Fig. 3 plots the ratio R (18) as a function of d for two different materials: a polymer (PMMA: E = 2.3 GPa,
m = 0.3, Gc = 394 J m�2, rc = 124 MPa) and a ceramic (Alumina: E = 350 GPa, m = 0.3, Gc = 45.4 J m�2,
rc = 290 MPa). Since there is a single material, FE computations can be carried out once for all with a dimen-
sionless Young’s modulus E = 1. Then, appropriate changes in the values of Gc and rc must be brought to
carry out the fracture criterion in the two materials. The Poisson’s ratio is taken 0.3 in both cases (anyway
it plays a minor role within a reasonable range [16]).

Not surprisingly, this model does not exhibit a threshold below which the toughness enhancement is not
visible as often invoked in the experimental results. Indeed this threshold is probably a consequence of the
microstructure of the material (grain size for instance in ceramics) that is not addressed here. The materials
are only described by macroscopic parameters like Young’s modulus, toughness. . . However, there is a con-
tinuous trend in Fig. 3 and it is clear that below d = 0.01 mm the predicted gain in toughness is lower than 5%,
and thus probably below the available accuracy of the measures.

In this criterion the fracture length ‘0 = l0d plays an important role. In a sense, it is not so far from the
Theory of the Critical Distance (TCD) involved in [17,18], the aim of the present special issue. Herein, due
to a decreasing function of the distance, the stress condition for failure can be interpreted as follows: prior
to crack initiation, the tension r at the distance ‘0 of the cavity must fulfil r = rc (see (13) and (14)); just like
in the TCD or in the point stress criterion [19]. But it differs because ‘0 cannot be considered as a material
parameter. As emphasized in Eq. (15) and illustrated in Table 1, it is a function of the cavity diameter d.

The critical length ‘0 does not vary strongly. It increases by a factor 1.8 and 1.5 for PMMA and Alumina,
respectively, while d increases by 10. Nevertheless, it cannot be considered as a constant otherwise the size
effect (16) would disappear.

3. Competition between strengthening and weakening in case of two cavities

3.1. The revised criterion for two circular cavities

In Section 2 it has been shown that a single pore at the tip of a crack increases the apparent toughness,
larger the pore, larger the enhancement. In porous materials other pores are located ahead of the crack tip.
In order to study their influence, in a first step we consider a simplified system made of two pores. A new

1.0

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4

d

R

PMMA

Alumina

( mm)√√

Fig. 3. The relative apparent toughness R ¼ k
c app
I =kcI vs. the square root of the cavity diameter d (mm1/2).

Table 1

Critical distance ‘0 as a function of the pore diameter d

d (lm) 10 20 30 40 50 60 70 80 90 100

PMMA ‘0 (lm) 13 15 17 18 19 20 21 22 23 24

Alumina ‘0 (lm) 37 39 42 44 46 48 50 51 53 54
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parameter intervenes: the ligament width a between the two pores or more precisely its dimensionless form
f = a/d, the ratio of the actual ligament width to the pore diameter (Fig. 4).

Provided the ligament width is smaller or of the same order of magnitude than the pore diameter, the far
field is once again unchanged, details are not visible at the macro-scale. On the other hand, the stretched inner
domain now embeds two pores with a unit diameter, the ligament width in between is f and it is partially or
totally cut by a crack starting from the first pore toward the second one with dimensionless length l 6 f. The
inner expansion keeps the same form (8), the stress free boundary conditions in (3) extending to the second
cavity. The function V1 and the coefficient A now depend on the two parameters l and f. The inner expansion
writes

Udðx1; x2; ‘; aÞ ¼ Udðdy1; dy2; ld; fdÞ ¼ U 0ð0; 0Þ þ kI
ffiffiffi

d
p

V 1ðy1; y2; l; fÞ þ � � � ð19Þ
The coefficient A involved in the energy release rate still derives from the contour integral W mentioned in

(11)

Aðl; fÞ ¼ W V 1ðy1; y2; l; fÞ;
ffiffiffi

q
p

uIðhÞ
� �

¼ 1

2

Z

C

~rðV 1Þ � n � ffiffiffi

q
p

uIðhÞ � ~rð ffiffiffi

q
p

uIðhÞÞ � n � V 1
h i

ds: ð20Þ

By analogy, the notations in this section are similar to that of Section 2; nevertheless, they correspond to
different constants and functions since the geometry of the problem is changed.

The energy balance writes

G ¼ � dW p

e‘
¼ k2I

Aðl; fÞ � Að0; fÞ
l

P Gc: ð21Þ

For a fixed value of f and a prescribed loading (occurring in (21) through kI), the left hand side member is
still an increasing function of l leading to a lower bound for the admissible lengths l. But the tension
~rðV 1ðy1; 0; 0; fÞÞ acting on the ligament prior to any crack onset (see (13)) is no longer a decreasing function
of the distance to the first pore (Fig. 5). It is first decreasing and then it increases again when approaching the
second pore, there is a stress concentration in the vicinity of each pore but stronger near the first one. Then ~r

must be replaced by the function:

r̂ðy1; fÞ ¼ Inf
06s6y1

; ~rðV 1ðs; 0; 0; fÞÞ; ð22Þ

such that the condition ensuring the tension to be larger than the strength rc all along the putative crack path
0 6 y1 6 l writes

kI
ffiffiffi

d
p r̂ðl; fÞP rc: ð23Þ

The compatibility between (21) and (23) finally takes the form

1

r̂ðl0; fÞ2
Aðl0; fÞ � Að0; fÞ

l0

¼ 1

d

Gc

r2
c

: ð24Þ

Fig. 4. The two pores and the expected crack path (in the stretched domain), (a) mix criterion when l < f, (b) energy criterion when l > f.
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The apparent toughness is now a function of both d and a

k
c app
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gc

Dðd; aÞ

s

and R ¼ k
c app
I

kcI
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2

EDðd; aÞ

s

; ð25Þ

with Dðd; aÞ ¼ Aðl0; fÞ � Að0; fÞ
l0

; l0 = l0(d,f) according to (24) and f = a/d.

Figs. 6 and 7 exhibit the competition between weakening and strengthening effects in two different materi-
als: PMMA and Alumina. The strengthening is due to the crack blunting whereas the weakening is caused by
the proximity of the second pore. The lack of smoothness (arrows in Figs. 6 and 7) is a consequence of two
regimes. If the distance between pores is small, the initiation length l0 is larger than the ligament width f, then
the crack jumps from one pore to the next one and this mechanism is uniquely governed by the energy con-
dition, the stress condition is trivially satisfied. It leads to a weakening effect. Whereas if the distance between
pores is large, there is first a crack initiation governed by the condition

kI P k
c app
I ; ð26Þ

followed by a crack growth toward the next pore. It occurs when the initiation length l0 is much smaller than
the ligament width f. Then the situation is close to the previous one (a single pore), the crack can jump the
initiation length without a strong influence of the next pore, there is a strengthening effect.

Note that the energy criterion alone, based on the fracture of the whole ligament whatever its width, and
always leads to a weakening since there is a smaller amount of matter to break due to the pores. It is plotted in

0

0.5

1

1.5

0 0.5 1 1.5

µ

σ

Fig. 5. The tension ~r acting on the ligament (dotted line) and the modified function r̂ (solid line) for f = 1.5.

0

0.5

1

1.5

0 2 4 6 8 10

ζ

R

Fig. 6. The weakening/strengthening effects for d = 0.1 mm (solid line) and d = 0.01 mm (dashed line) in PMMA in function of the

dimensionless distance between pores f = a/d. The dotted line represents the energy criterion (for comparison). The arrows point toward

the transition point between energy and mix criterion.
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Figs. 6, 7, 11, 13 and 14 for comparison (dotted line). Above the transition point (arrow) the energy criterion
still holds true but is no longer a sufficient condition.

For d = 0.1 mm the strengthening effect due to the blunting is visible for fP 0.4 (i.e. aP 0.04 mm) in
PMMA and fP 1(aP 0.1 mm) in Alumina. This effect diminishes clearly for d = 0.01 mm, it remains but
with a slight strengthening for fP 2(aP 0.02 mm) in PMMA and almost disappears in Alumina (it con-
founds with the energy criteria). Complementary computations have been carried out for smaller pores:
d = 0.001 mm, but no toughness enhancement can be longer observed for the two materials in that case.

Some small discrepancies can be observed between Fig. 3 on the one hand, and 6 and 7 on the other hand,
when f becomes large, thus when the influence of the second pore becomes negligible. They are perceptible
mainly for d = 0.1 mm in PMMA when ‘0 becomes small compared to d (Table 1), i.e. l0 small compared
to 1. They are due to FE inaccuracies; meshes differ in the two geometries (one or two pores) and should have
been strongly refined near the inital pore when short crack increments are involved, to have an enough large
number of broken elements. Nevertheless, the discrepancies do not exceed 5% in the worse case and are
smaller (�1%) in the other ones.

3.2. The influence of the shape of the pores

The shape of the pores plays a role in the above phenomena but smaller than expected. Fig. 9 compares, in
PMMA, circular pores to elliptical ones for which the ratio between the long and short axis equals three. They

0

0.5

1

1.5

0 2 4 6 8 10

ζ

R

Fig. 7. The weakening/strengthening effects for d = 0.1 mm (solid line) and d = 0.01 mm (dashed line) in Alumina in function of the

dimensionless distance between pores f = a/d. The dotted line represents the energy criterion (for comparison) and almost confounds with

the dashed line. The arrows point toward the transition point between energy and mix criterion.

Fig. 8. The different tested pore shapes. The aspect ratio for ellipses is three. (a) horizontal elliptical pores, (b) circular pores, (c) vertical

elliptical pores.
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are horizontally (respectively vertically) placed along the crack axis (Fig. 8), in both cases the length of the
horizontal axis of the ellipse is d = 0.01 mm (stretched to 1 in Fig. 8).

Vertical elliptical pores lead to a significant blunting effect while horizontals ones do not exhibit a contrary
effect and roughly confound with the circular pores.

4. Crack deflection out of the symmetry axis

Under a symmetric loading, the question is: can a crack kink out of the straight symmetry axis to grow
toward the nearest pore? To this purpose, we consider the following simplified frame made of four pores.
The primary crack ends in the first pore, there are two symmetric pores aside of the symmetry axis and a
fourth pore ahead, on the symmetry axis but at a larger distance than the two collateral ones (Fig. 10). Note
that even if the structure is symmetric a random distribution of micro flaws (at a smaller scale than the pore
diameter) induces a single (thus non symmetric) deflection rather than two symmetric ones as shown in Fig. 10.

Fig. 11 illustrates the competition between the two considered mechanisms: the straight propagation of the
crack along the symmetry axis and the crack kinking toward the nearest collateral pore. Clearly the straight
propagation is promoted except for collateral pores very close to the primary (blunted) crack tip.
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Fig. 9. The weakening/strengthening effects in PMMA for d = 0.01 mm for different pores shapes in function of the dimensionless distance

between pores f = a/d, vertical elliptical pores (triangles), circular pores (squares), horizontal elliptical pores (diamonds).

Fig. 10. The four pores system and the two expected crack paths (in the stretched domain), (a) straight propagation along the symmetry

axis, (b) kink toward the nearest collateral pore.
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The transition between deflection and straight propagation occurs for a dimensionless distance between
pores f slightly larger than 1 and this value remains almost unchanged for other pore sizes (either smaller
d = 0.001 mm or larger d = 0.1 mm) even if the mechanisms are different. For smaller values of d, the energy
criterion is involved for both curves while it is the mix criterion that governs for larger d (see Fig. 11).

5. Crack growth in a porous material

Contradictory results are reported in the fracture behaviour of porous materials: strengthening and weak-
ening just as in Section 3. Thus, an attempt is made in this section to generalize the above approach, that
exhibits such a phenomenon, to the study of a crack growth in a porous material.

Nevertheless, even with a regular distribution of pores in size, shape and location, the above approach
remains of a very high complexity. The dilatation yi = xi/d leads to a set of infinitely many pores distributed
in a dense matrix throughout the unbounded stretched domain and it is impossible to carry out any FE ana-
lysis. Strong simplifications are required. Only the two nearest pores ahead of the crack tip are kept, embedded
in a neighbouring region made of dense material. This region is itself immersed in a homogeneous material
(Fig. 12) with homogenized properties, which plays the role of the remote structure made of infinitely many
pores in a dense matrix. This means that distant pores are assumed not to influence significantly the fracture
process except through an average (homogenized) effect. The porosity V (the surface fraction of pores in plane
elasticity) depends both on the pore diameter d and the distance between pores a

V ¼ p

4

1

ð1þ 1Þ2
with 1 ¼ a=d: ð27Þ
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Fig. 11. The competition between the straight propagation along the symmetry axis (dashed line) and the crack kinking toward the nearest

pore (solid line) in PMMA for d = 0.01 mm. For f below the marked line the crack kinks out of the symmetry axis. The dotted line

represents the energy criterion for the kinked crack (for comparison). The arrow points toward the transition point between energy and

mix criterion. For the straight propagation the mix criterion is solely involved.

Fig. 12. The simplified model of porous material made of a neighbouring area of dense material embedded in the homogenized porous

material.
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The Poisson’s ratio is kept unchanged. The homogenized Young’s modulus Ehom is derived by a law of mix-
ture taking into account the porosity V and vanishing at percolation of pores (f = 0, V = p/4 ’ 0.78)

Ehom ¼ E 1� 4V

p

� �

: ð28Þ

It is a coarse approximation and, as will be seen further, the trends observed in the preceding sections are
not strongly modified.

The energy criterion expressed in terms of kcI and k
c app
I is independent of the Young’s modulus as well as of

the actual toughness of the dense material. It exhibits a ‘‘master curve’’ as already used in [12,16], it works in
case of very small pores for PMMA or small to very small pores in Alumina. For larger pores, the mix crite-
rion takes precedence and the strengthening effect is visible for small volume fraction of pores (Figs. 13 and
14).

The agreement between the predictions and the experiments is illustrated in Fig. 15 which shows a compar-
ison of the present model with experimental results on two different ceramics: SiC and B4C [4,6]. Gp/Gd is the
dimensionless ratio of the (apparent) toughness of the porous material to the toughness of the dense ceramic.
As expected, no reinforcement is observable. The prediction slightly underestimates the toughness for small
porosities. Nevertheless, despite an outrageously simplified model there is a satisfying agreement.

In these tests, the porosity is obtained by adding spherical particles of polyamide, PTFE or corn starch dur-
ing the sintering process (various symbols in Fig. 15), that are burned out at the end of the elaboration phase.
It leads to a quite regularly distributed porosity made of spherical pores with d ’ 0.01 mm.
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Fig. 13. Relative toughness of a porous PMMA in function of the of porosity. Energy criterion (dotted line) (for comparison), mix

criterion (dashed line d = 0.01 mm, solid line d = 0.1 mm).
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Fig. 14. Relative toughness of a porous Alumina in function of the porosity. The mix criterion (dashed line) confounds with the energy

(dotted line, invisible) for small pores (d = 0.01 mm). The strengthening effect is visible only for larger pores (solid line, d = 0.1 mm).
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To carry out the comparison more closely we have used the volume fraction of pores V 0 [6]

V 0 ¼ p

6

1

ð1þ 1Þ3
with 1 ¼ a=d; ð29Þ

and as a consequence a law of mixture vanishing at percolation of pores (i.e. f = 0, V 0 = p/6 ’ 0.52). It is re-
ported in [6] that the Young’s modulus and the toughness of the porous ceramic vanish around this value.

In this section as above, it is assumed that the initial location of the primary crack tip is in a pore, leading to
a tip blunting. It is a reasonable assumption provided there are enough pores to attract the crack, i.e. provided
the pores are not too much distant from each other. For V = 0.1 the distance between pores is lower than twice
the pore diameter (1 = 1.8) if the surface fraction of pore is considered (27); it is even smaller if the volume
fraction of pore (29) is used (f = 0.7). On the other hand, it is illusory to consider the limit V ! 0 because
in that case the crack should grow mainly within a dense material without meeting any pore and neither weak-
ening nor toughening would be observed, leading to R = 1.

6. Conclusion

The model of porous material is outrageously simplified: it is a 2D model based on a very schematic geom-
etry with homogenized material properties except in a very close vicinity of the primary (blunted) crack tip.
Nevertheless, it leads to a satisfying and conservative agreement with experiments. The mix criterion involving
both strength and toughness of the dense material is able to render the pore size effect leading to an apparent
strengthening for relatively large pores (d = 0.1 mm) and low fractions of voids. This strengthening effect
diminishes with the pore size, it almost disappear in alumina for d = 0.01 mm for instance whatever the
volume fraction of pores.

Recent discussions have evidenced another scenario that is likely to occur in case of high porosity (i.e. small
ligament widths): a jump of the crack toward and then through the next pore, leading to a new instantaneous
initiation starting from the second pore. A very similar analysis can be carried out in this situation with simply
a different crack extension (Fig. 4) and as a consequence new values of the coefficient A(l). Small changes can
be expected but only for very high porosities.
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