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Proving the Existence of Stable Assignments in
Democratic Forking Using Isabelle/HOL⋆

Jan-Georg Smaus1

1IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Abstract
We consider a recent game theory paper, on democratic forking: suppose you want to go to the opera
with a group of 10 friends, with a choice of two operas. Everyone has a preference for one of the operas,
but everyone also prefers a large community over a small one. Is there an assignment of each friend to
one opera that is stable? The paper answers the question affirmatively giving an algorithm.

We have formalised the main result of that paper in the proof assistant Isabelle. This provides proofs
of the results that are much more reliable, since computer-checked, than paper-and-pencil proofs. The
exercise has also been useful for improving the paper-and-pencil proof. We also contribute some results
concerning the uniqueness of assignments.

Keywords
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1. Introduction

About three years ago, a formalism in the field of social choice (a subfield of game theory), was
presented: democratic forking [2]. The scenario and the developed formalism are remarkably
simple: We have 𝑛 agents who have to decide between two alternatives 𝐴 or 𝐵, say (A)ida
and (B)ohème. The agents each have a preference concerning the alternatives, but they also
prefer a large group over a small one. The agents might stay all together or they might fork
into two separate groups. The authors have political/societal issues in mind, such as adherence
to political parties, cryptocurrencies [3] or open-source coding projects [4].

An assignment is a function assigning each agent to an alternative. It is stable if no agent has
an incentive to switch. The main question is: can a stable assignment be found? The authors
give an affirmative answer via an algorithm with several variants, and also address issues such
as strategy-proofness.

This seemingly simple formalism quickly leads to non-trivial considerations. E.g., while it is
relatively easy to see that stable assignments exist in the case of two alternatives, they do not
always exist for three or more alternatives.

In this paper, we present work on implementing the proposed formalism in the proof assistant
Isabelle/HOL [5]. Specifically, we have proven the first and main theorem of the paper, stating
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that a stable assignment exists.
Isabelle/HOL [5] is an interactive theorem prover (proof assistant) based on higher-order logic

(HOL). You can think of HOL as a combination of a functional programming language with
logic. Isabelle/HOL aims at being readable by humans and thus follows the usual mathematical
notation. We use standard Isabelle/HOL in Isar proof style [6] without any special libraries.

More generally, theorem provers are software for conducting mathematical proofs on a com-
puter to obtain a high degree of confidence [7].

Initially we intended to take the main theorem of [2] and its paper-and-pencil proof and
“just” implement a corresponding Isabelle/HOL proof. In the end, we also implemented some
additional results concerning uniqueness of assignments and elicitation (see Sec. 4). On the
game theory side, our contributions are: we (1) show that for certain preferences, there is
a unique stable assignments even for more than two alternatives; (2) spell out a lemma on
elicitation (Lemma 2); (3) weaken the assumptions of [2, Prop. 2] on uniqueness; (4) discovered
that totality of preferences is not required, except possibly for the uniqueness characterisation
result of Subsec. 4.4.

We have modelled our development as closely as possible on our source [2], yet in some places
the definitions are too imprecise, so we had to come up with reasonable precise definitions
ourselves, which we consider to be a contribution of this work on the theory side. Generally
speaking, the framework lent itself very well to formalisation in Isabelle.

The rest of this paper is organised as follows: the next section defines the basic concepts.
Section 3 presents the algorithm for finding a stable assignment and the proof of this fact.
Section 4 gives additional results concerning uniqueness and elicitation. Section 5 concludes.
For space reasons, some of the proofs are not presented here; a technical report is available [1].
The Isabelle code can be found at https://www.irit.fr/~Jan-Georg.Smaus/ICTCS2024/Forking.thy.

2. Basic Definitions

In this section we recall the formalism of [2], but we point out some places where we give more
explicit concepts or definitions.

Definition 1.
• Consider a set of alternatives {𝐴,𝐵} and a set of voters1 𝑉 = {𝑣1, . . . , 𝑣𝑛}.
• A community is an element of 𝒮 := {𝐴,𝐵}×N, i.e., an alternative paired with the number

of voters who have chosen this alternative.
• A preference is a subset of 𝒮×𝒮 , i.e., a relation on communities. We assume that preferences

are monotonic, i.e., (𝐴,𝑛) ≻ (𝐴,𝑛−1) ≻ . . . ≻ (𝐴, 1) and (𝐵,𝑛) ≻ (𝐵,𝑛−1) ≻ . . . ≻
(𝐵, 1) (and antisymmetric and transitive).

• A preference profile is an element of (2𝒮×𝒮)𝑛. It states the preferences of all voters. We
denote by ≻𝑖 the preference of voter 𝑣𝑖.

Example 1. Consider 𝑉 = {𝑣1, 𝑣2}, where the preference profile is given by 𝑣1 : (𝐴, 2) ≻1

(𝐴, 1) ≻1 (𝐵, 2) ≻1 (𝐵, 1) and 𝑣2 : (𝐵, 2) ≻2 (𝐵, 1) ≻2 (𝐴, 2) ≻2 (𝐴, 1). E.g., 𝑣1 prefers
being alone with 𝐴 to being in a group of 2 with 𝐵.
1We use this word rather than “agent” to avoid the letter 𝑎, to be confused with 𝐴.
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At this point we state an amazing observation: in [2] it is assumed throughout that the
preferences are total orders. It seems like a natural assumption to make and we initially added
it to our Isabelle code as well. We later observed that this assumption is never used, except for
one result stated in Subsec. 4.4.

In Isabelle, we have a so-called theory file containing all definitions and theorems, with their
proofs, of our development. For modelling the above definitions, the theory file contains the
following:

type_synonym ’Al community = "’Al * nat"
type_synonym ’Al preference = "(’Al community) rel"
definition
monotonic :: "’Al preference ⇒ bool"
where "monotonic pref = (∀ S j k. k≤j −→ ((S,j),(S,k)) ∈ pref)"

In contrast to Def. 1, the set of alternatives is not fixed to being {𝐴,𝐵} but rather it is
modelled by a type parameter ’Al for the sake of generality.

Note that the above lines define monotonicity but do not yet impose that all preferences used
should actually be monotonic.

Definition 2. An assignment is a function 𝑓 : 𝑉 → {𝐴,𝐵}. It can be lifted to a community
assignment, i.e., for any voter 𝑣 ∈ 𝑉 , the pair (𝑓(𝑣), |𝑓−1(𝑓(𝑣))|) gives the community of 𝑣.

We often denote an assignment as ⟨𝑉𝐴, 𝑉𝐵⟩ where 𝑉𝐴 and 𝑉𝐵 are the sets of voters mapped
to 𝐴 and 𝐵 respectively.

In Isabelle, these definitions look as follows:

type_synonym (’V,’Al) assignment = "’V ⇒ ’Al"
definition
commAss ::"(’V,’Al) assignment ⇒ ’V ⇒ ’Al community"
where "commAss f v = (f v, card (f -‘ {f v}))"

In Isabelle/HOL, -‘ gives the inverse of a function, so f -‘ {f v} is the set of voters mapped
to f v by f, and card (f -‘ {f v}) is the cardinality of that set.

Given an assignment 𝑓 , a subset of voters may be interested in deviating, i.e., there may be
an assignment 𝑓 ′ such that for all voters in the subset, 𝑓 ′ assigns them to another alternative,
and they all prefer their “𝑓 ′-community” over their “𝑓 -community”. Formally we define:

Definition 3.

• Given an assignment 𝑓 : 𝑉 → {𝐴,𝐵}, a deviation is an assignment 𝑓 ′ : 𝑉 → {𝐴,𝐵}
such that 𝑓 ̸= 𝑓 ′ and for all voters 𝑣𝑖 where 𝑓(𝑣𝑖) ̸= 𝑓 ′(𝑣𝑖),

(𝑓 ′(𝑣𝑖), |𝑓 ′−1(𝑓 ′(𝑣𝑖))|) ≻𝑖 (𝑓(𝑣𝑖), |𝑓−1(𝑓(𝑣𝑖))|). (1)

• If no deviation exists, then an assignment is stable.



Example 2. Consider again Ex. 1. Each voter has an alternative at which she definitely wants to
be. Thus, the only stable assignment is ⟨{𝑣1}, {𝑣2}⟩, and the community of 𝑣1 is (𝐴, 1) and that
of 𝑣2 is (𝐵, 1).

Before we present the Isabelle versions of these definitions, we introduce the convenient
Isabelle feature of locales. A locale allows us to fix a certain preference profile and make certain
assumptions that are also made in [2], e.g., that the voter set is finite and that the preferences
are monotonic:

locale GoodPreferences =
fixes preferenceProfile :: " ’V ⇒ (’Al preference)"
assumes finite_V : "finite (UNIV::’V set)"
and monotonic_preferences: "∀ v. monotonic (preferenceProfile v)"
and antisym_preferences: "∀ v. antisym (preferenceProfile v)"
and trans_preferences: "∀ v. trans (preferenceProfile v)"

begin

UNIV denotes the universal set, which can be enhanced with a type declaration, so that
finite (UNIV ::’V set) says: the voter set is finite.

We could have also fixed the alternative set to {𝐴,𝐵} here, but we decided to make the
assumption of a two-element alternative set only where needed.

There is an Isabelle syntax feature allowing us to write 𝑐 ⪰𝑣 𝑐′ rather than (𝑐, 𝑐′) ∈
preferenceProfile 𝑣.

Now the Isabelle version of Def. 3:

definition
deviation :: "(’V,’Al) assignment ⇒ (’V,’Al) assignment ⇒ bool"
where "deviation f’ f = (f’ ̸=f ∧

(∀ v. (f’ v) ̸= (f v) −→ (commAss f’ v) ⪰𝑣 (commAss f v)))"
definition
stable :: "(’V,’Al) assignment ⇒ bool"
where "stable f = (∄ f’. deviation f’ f)"

Observe that the use of⪰𝑣 in the definition of deviation means that the definition depends
on the preference profile, which is not visible in the declared type of deviation since an element
of the type (’V,’Al) assignment does not carry any information about the preferences in
it. This is possible thanks to the locale, fixing a preference profile. Around 80% of the lines of
our Isabelle code are within the scope of the locale.

3. An Algorithm for Finding a Stable Assignment

Given a (monotonic) preference profile, one may wonder whether a stable assignment always
exists and if yes, how it can be found. In [2], the algorithm shown in Fig. 1 is presented to
answer both questions affirmatively (it is Thm. 1 there2):
2Note however that in [2] it is also said that the algorithm is polynomial.



𝑉𝐴 = 𝑉, 𝑉𝐵 = ∅, 𝑎← |𝑉𝐴|, 𝑏← |𝑉𝐵 |
while true do
𝑘 ← max{𝑗 : 0 ≤ 𝑗 ≤ 𝑎, |{𝑣𝑖 ∈ 𝑉𝐴 : (𝐵, 𝑏+ 𝑗) ≻𝑖 (𝐴, 𝑎)}| ≥ 𝑗}
if 𝑘 = 0 then

return {𝑉𝐴, 𝑉𝐵}
else

let 𝑋 = {𝑣𝑖 ∈ 𝑉𝐴 : (𝐵, 𝑏+ 𝑘) ≻𝑖 (𝐴, 𝑎)}
𝑉𝐵 ← 𝑉𝐵 ∪𝑋, 𝑉𝐴 ← 𝑉𝐴 ∖𝑋
𝑎← |𝑉𝐴|, 𝑏← |𝑉𝐵 |

endif
endwhile

Figure 1: Algorithm 1

Theorem 1. For any monotonic profile, there is a stable assignment.

Incidentally, the presentation in [2] contains a mistake (clear from the surrounding text)
which we corrected here: it says “𝑣𝑖 ∈ 𝑉 ” instead of “𝑣𝑖 ∈ 𝑉𝐴”.

To understand the algorithm better, it is useful to refine the notions of deviation and stability
by restricting the direction in which voters move:

Definition 4.

• Given an assignment 𝑓 , an 𝐴-deviation is a deviation 𝑓 ′ such that for any 𝑣𝑖 with 𝑓 ′(𝑣𝑖) ̸=
𝑓(𝑣𝑖), we have 𝑓 ′(𝑣𝑖) = 𝐴.

• If no 𝐴-deviation exists, then an assignment is 𝐴-stable.

In analogy we define these notions for 𝐵.

In Isabelle these definitions look as follows:

definition
dev_alt :: "(’V,’Al) assignment ⇒ (’V,’Al) assignment ⇒ ’Al⇒bool"
where "dev_alt f’ f S =

(deviation f’ f ∧ (∀ v. (f’ v) ̸= (f v) −→ f’ v = S))"
definition
stable_alt :: "(’V,’Al) assignment ⇒ ’Al ⇒ bool"
where "stable_alt f S = (∄ f’. dev_alt f’ f S)"

The following Isabelle lemma, whose proof has 24 lines, states that for the two-alternative
case, 𝐴-stability and 𝐵-stability together imply stability:

lemma stabilityAB :
assumes "stable_alt f A" and "stable_alt f B"
and "∀ x. (x=A) = (x ̸=B)"

shows "stable f"



The third assumption states that there are exactly two distinct alternatives.
So the algorithm initially places all voters in the 𝐴-community, and the while-loop computes

a sequence of 𝐵-deviations. For any threshold value 𝑗 ≤ 𝑎, the set {𝑣𝑖 ∈ 𝑉𝐴 : (𝐵, 𝑏+ 𝑗) ≻𝑖

(𝐴, 𝑎)} is the set of all voters who would switch from 𝐴 to 𝐵 under the condition that, well,
the size of the 𝐵-community grows by at least 𝑗 voters. If the cardinality of that set is ≥ 𝑗, then
a 𝐵-deviation exists, and the algorithm actually uses the maximum value of 𝑗 in each step.

While the algorithm uses the maximal possible 𝐵-deviation in each step, its correctness and
termination are guaranteed even for arbitrary 𝐵-deviations.

3.1. A Paper-and-pencil Version of the Induction Step

The Isabelle/HOL implementation of the formalism of [2] is the main contribution of this paper.
However, this endeavour allowed us to spell out in detail the paper-and-pencil version of the
“induction step” of the proof of Thm. 1.

Concerning the correctness of the algorithm, the proof of the theorem given in [2] says:
“Consider Algorithm 1. Let 𝑎 = |𝑉𝐴| and 𝑏 = |𝑉𝐵|. Initially, we place all agents in 𝑉𝐴 [. . . ].
If this assignment is not stable, then there exists a subset 𝑋 of some 𝑘 > 0 agents that all
prefer (𝐵, 𝑘) to (𝐴,𝑛). We move all these agents to 𝑉𝐵 . Monotonicity implies that moving
additional agents from 𝑉𝐴 to 𝑉𝐵 will never cause agents in 𝑉𝐵 to want to move back
to 𝑉𝐴; [. . . ]”

So at the heart of the correctness proof for the algorithm lies an “induction step” saying that
due to monotonicity, there could not possibly occur a situation where voters would want to
move (back) to 𝐴. This induction step is presented in [2] as if it were obvious, but in our opinion
it is not! After all, the argument does not generalise to three alternatives 𝐴, 𝐵, 𝐶 (see Ex. 4).

We formalise the induction step as the following lemma:

Lemma 1. Let 𝑓 be an 𝐴-stable assignment and 𝑓 ′ be a 𝐵-deviation of 𝑓 . Then 𝑓 ′ is 𝐴-stable.

Developing the paper-and-pencil proof of this induction step helped us implement the
Isabelle/HOL proof and vice versa. Before we present the paper-and-pencil proof, we give
a brief outline: Our proof assumes, for the purpose of deriving a contradiction, that after some
“forward” step (voters moving to 𝐵), there are voters moving (back) to 𝐴. If this “backward”
step only concerns voters just arrived from 𝐴, then the fact that they want to go back to 𝐴
contradicts them wanting to go to 𝐵 in the “forward” step. If this “backward” step concerns at
least one voter previously in 𝐵, it turns out that this voter would have wanted to move to 𝐴
even before the “forward” step, which breaks our induction hypothesis.

Proof. (Lemma 1) Throughout this proof, we frequently use monotonicity of preferences, and
for this, knowing the set inclusions between certain sets of voters is crucial. With the help of
some diagrams (see Fig. 2 and 3), these inclusions are easy to see.

The symbol ⊎ denotes disjoint union.

In this proof we consider a hypothetical “backward step” leading to assignment 𝑓 ′′. We use a
three-letter notation for voter sets, indicating in what community the voters are according to 𝑓 ,



AXX

ABX

BBX ⇝ AAA XBX

ABA
?
⇝

ABA

AXA XBB

Figure 2: Forward step and backward step, case 1

𝑓 ′, and 𝑓 ′′ respectively. E.g., ABX := {𝑣 | 𝑓(𝑣) = 𝐴 ∧ 𝑓 ′(𝑣) = 𝐵} is the set of voters moving
from 𝐴 to 𝐵 in the forward step with nothing specified for the backward step.

Some voters move from 𝐴 to 𝐵 as illustrated by the boxes linked by ⇝ in Fig. 2, where
AXX := 𝑓−1(𝐴), BBX := 𝑓−1(𝐵), AAA = 𝑓 ′−1(𝐴)3, XBX = 𝑓 ′−1(𝐵), ABX := {𝑣 |
𝑓(𝑣) = 𝐴 ∧ 𝑓 ′(𝑣) = 𝐵}. For every voter 𝑢 ∈ ABX , since she moved, we have

(𝐵, |XBX |) ≻𝑢 (𝐴, |AXX |) (2)

(we suggest to look at Fig. 2 again).

For the purpose of deriving a contradiction, assume there was a “backward step” from 𝐵
(possibly back) to 𝐴. We denote by 𝑓 ′′ the assignment after this backward step.

Case 1: The backward step only concerns voters originally in 𝐴, i.e., {𝑣 | 𝑓 ′(𝑣) =
𝐵 ∧ 𝑓 ′′(𝑣) = 𝐴} ⊆ ABX , or equivalently, {𝑣 | 𝑓 ′(𝑣) = 𝐵 ∧ 𝑓 ′′(𝑣) = 𝐴} = {𝑣 | 𝑓(𝑣) =
𝐴 ∧ 𝑓 ′(𝑣) = 𝐵 ∧ 𝑓 ′′(𝑣) = 𝐴} =: ABA. This case is illustrated in Fig. 2 and we write
AXA := 𝑓 ′′−1(𝐴), XBB := 𝑓 ′′−1(𝐵).

For every voter 𝑢 ∈ ABA, since she moved, we have

(𝐴, |AXA|) ≻𝑢 (𝐵, |XBX |). (3)

By monotonicity
(𝐴, |AXX |) ≻𝑢 (𝐴, |AXA|). (4)

By transitivity, (2) and (4) imply that

(𝐵, |XBX |) ≻𝑢 (𝐴, |AXA|).

This gives a contradiction to (3).

Case 2: The “backward step” concerns at least one voter originally in 𝐵, i.e., {𝑣 |
𝑓 ′(𝑣) = 𝐵 ∧ 𝑓 ′′(𝑣) = 𝐴} ∖ABX ̸= ∅. This case is illustrated in Fig. 3 and we write XXA :=
𝑓 ′′−1(𝐴), XBB := 𝑓 ′′−1(𝐵), BBA := {𝑣 | 𝑓(𝑣) = 𝑓 ′(𝑣) = 𝐵 ∧ 𝑓 ′′(𝑣) = 𝐴}.
3Note that by construction 𝑓 ′−1(𝐴) ⊆ 𝑓−1(𝐴) and 𝑓 ′−1(𝐴) ⊆ 𝑓 ′′−1(𝐴), so we write AAA and not XAX .
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Figure 3: Forward and backward step, case 2

For every voter 𝑢 ∈ BBA, since she moved, we have

(𝐴, |XXA|) ≻𝑢 (𝐵, |XBX |). (5)

We now consider a further set, namely AXX ⊎ BBA, i.e., the voters originally in 𝐴, plus the
voters originally in 𝐵 that move to 𝐴 in the backward step. It is also illustrated in Fig 3 all to
the right. Observe that XXA ⊆ AXX ⊎ BBA, and so by monotonicity we have that for every
voter, in particular any 𝑢 ∈ BBA,

(𝐴, |AXX ⊎ BBA|) ≻𝑢 (𝐴, |XXA|), (6)

and again by monotonicity,

(𝐵, |XBX |) ≻𝑢 (𝐵, |BBX |). (7)

By transitivity, (5)-(7) imply that

(𝐴, |AXX ⊎ BBA|) ≻𝑢 (𝐵, |BBX |)

which contradicts the assumption that 𝑓 is 𝐴-stable. In short, if there was such a voter 𝑢, she
would have wanted to move to 𝐴 even before the “forward step” took place.

So in any case, the assumption that there was a “backward step” leads to a contradiction. □

3.2. Induction Step in Isabelle

In Isabelle, Lemma 1 looks as follows:

lemma staysStable :
assumes "stable_alt f A"
and "∀ x. (x=A) = (x ̸=B)"
and "dev_alt f’ f B"
shows "stable_alt f’ A"

The proof of this lemma has around 120 lines of Isabelle proofscript but it relies on numerous
auxiliary lemmas. It is the main contribution of this work. Some of the additional overhead
in the Isabelle proof is related to the subset relations among the various sets of voters and the
arities of these sets. Such set-theoretic reasoning is considered trivial in paper-and-pencil proofs
but must be spelt out in the smallest detail in Isabelle.



3.3. The Entire Algorithm

The previous two subsections talk about deviations (Def. 3) and 𝐵-deviations (Def. 4). These
definitions do not tell us how to construct an 𝑓 ′, given 𝑓 . In contrast, Algorithm 1 calculates
a number 𝑘 and then a set 𝑋 based on 𝑘, which translates into an assignment. But is this
assignment really a 𝐵-deviation? On the paper-and-pencil level this might be considered
“obvious by construction” but in Isabelle, it requires some overhead that we outline here.

Given an assignment 𝑓 , the4 alternative 𝐵 and a natural number 𝑗, we define the set of voters
who would switch to 𝐵 provided the size of the 𝐵-community grows by at least 𝑗. We also
define the maximum 𝑗 such that the cardinality of that set is greater or equal to 𝑗, exactly as
this is done in the algorithm:

definition
deviators :: "(’V,’Al) assignment ⇒ ’Al ⇒ nat ⇒ ’V set"
where "deviators f B j = { v. f v ̸= B ∧

(B, card (f -‘ {B}) + j) ⪰𝑣 (f v, card (f -‘ {f v}))}"
definition
dev_max :: "(’V,’Al) assignment ⇒ ’Al ⇒ nat"
where "dev_max f B = Max {j. card (deviators f B j) ≥ j}"

We continue our Isabelle implementation of the algorithm, which is naturally in a functional
programming style, as Isabelle/HOL is based on the typed 𝜆-calculus [8]. We define the assign-
ment making all voters in the maximal deviators set switch towards 𝐵, and letting all other
voters stay where they are:

definition
max_dev_alt :: "(’V,’Al) assignment ⇒ ’Al ⇒ (’V,’Al) assignment"
where "max_dev_alt f B =

(𝜆v. if v∈deviators f B (dev_max f B) then B else f v)"

If the deviators set is empty, then this assignment will be identical to 𝑓 and we have reached
a fixpoint, which is the break condition of the algorithm loop. In this case, the assignment
reached is 𝐵-stable:

lemma max_dev_alt_is_stable :
assumes "max_dev_alt f B = f"
shows "stable_alt f B"

which takes 20 lines to prove using some auxiliary lemmas.
The function algo iterates max_deviat_alt, starting with the initial assignment 𝜆𝑣.A, i.e.,

the assignment assigning all voters to A:

4The lemmas are formulated for Algorithm 1, which moves voters from 𝐴 to 𝐵, but technically, A and B are just
variables, so the lemmas also hold for 𝐴 and 𝐵 swapped.



fun algo
where
"algo 0 A B = (𝜆v. A)"

| "algo (Suc j) A B = max_dev_alt (algo j A B) B"

This function is written using the function package of Isabelle/HOL which provides excellent
support for proving termination and other things [9, 10].

The following lemma completes the induction proof based on Lemma 1 (staysStable); the
computed assignment is 𝐴-stable at all times:

lemma staysStableInduct :
assumes "∀ x. (x=A) = (x ̸=B)"
shows "stable_alt (algo n A B) A"

The following lemma states that after at most a number of iterations corresponding to the
number of voters, a fixpoint is reached:

lemma is_fixpoint :
shows "algo (Suc (Suc (card (UNIV::’V set)))) A B =

algo (Suc (card (UNIV::’V set))) A B"

For space reasons, this paper does not present any Isabelle/HOL proofs, except the proof of the
Isabelle version of Thm. 1. This proof has just five lines, and is based on some comprehensible
lemmas stated above, so we consider it the occasion to show how lemmas are tied together in
an Isabelle/HOL proof.

The theorem states that after at most a number of iterations corresponding to the number
of voters, the algorithm has computed a stable assignment. In the proof, the successor of the
cardinality of the voter set is abbreviated by the macro ?n1 for readability:

lemma algo_finds_stable_assignment :
assumes "∀ x. (x=A) = (x ̸=B)"
shows "stable (algo (Suc (card (UNIV::’V set))) A B)"

(is "stable (algo ?n1 A B)")
proof -

have "stable_alt (algo ?n1 A B) A"
using assms by (rule staysStableInduct)

moreover have "algo (Suc ?n1) A B = algo ?n1 A B"
by (rule is_fixpoint)

hence "max_dev_alt (algo ?n1 A B) B = algo ?n1 A B" by simp
hence "stable_alt (algo ?n1 A B) B" by (rule max_dev_alt_is_stable)
ultimately show ?thesis using assms by (rule stabilityAB)

qed

Note that the third line of the proof effectively uses the recursive definition of algo given
above.



This completes the presentation of the Isabelle/HOL development concerning Algorithm 1
and thus the main result of [2]. It consists of just under 1000 lines.

Unlike [2], we have not assumed that preferences are total. In the extreme case, we could have
preferences where any community (𝐴, _) would be unrelated to (𝐵, _). Then there could be no
deviations (it can never be better to switch to another alternative) and thus any assignment is
trivially stable. So to make our results interesting, at least some (𝐴, _), (𝐵, _) should be related.

4. Additional Results: Uniqueness and Elicitation

4.1. Clear Preferences and Unique Assignments

In [2], a non-interleaving preference is defined as a preference≻ such that either (𝐴, 1) ≻ (𝐵,𝑛)
or (𝐵, 1) ≻ (𝐴,𝑛). It is stated as “Observation 1” with three lines of proof that if all preferences
are non-interleaving, then the unique stable assignment is the one that assigns a voter 𝑣𝑖 to 𝐴
if and only if (𝐴, 1) ≻𝑖 (𝐵,𝑛).

We found that this result can be generalised to an arbitrary, even infinite, number of alterna-
tives, so we make this assumption, in this subsection only.

We say that a preference is clear if there exists an alternative that is preferred to any other
alternative even for the smallest, i.e., one-member, community. Note that this is a generalisation
of “non-interleaving” to an arbitrary number of alternatives. It is defined in Isabelle as follows:

definition
clear :: "’Al preference ⇒ bool"
where "clear p = (∃ S. ∀ T. S ̸=T −→ (∀ n. ((S,1),(T,n)) ∈ p))"

E.g., for three alternatives, (𝐴, 2) ≻ (𝐴, 1) ≻ (𝐵, 2) ≻ (𝐶, 2) ≻ (𝐵, 1) ≻ (𝐶, 1) is a clear
preference (for 𝐴). The example also illustrates that the name “non-interleaving” would have
been inappropriate for more than two alternatives.

For space reasons we only present the final result, stating that any stable assignment is
necessarily the assignment mapping each voter to her clearly preferred alternative. This
additional development consists of about 130 lines.

lemma genericUniqueStable :
assumes "∀ v. clear (preferenceProfile v)" and "stable f"

shows "f = (𝜆v. THE S. ∀ T. S ̸=T −→ (∀ n. (S,1) ⪰𝑣(T,n)))"

4.2. Non-critically-interleaving Preferences for Elicitation

A somewhat weaker condition than “non-interleaving” is also proposed by [2]:

Definition 5. A preference is non-critically-interleaving if (𝐴, 𝑡) ≻ (𝐵,𝑛) ≻ (𝐵,𝑛 − 𝑡) ≻
(𝐴, 𝑡 − 1) or (𝐵, 𝑡) ≻ (𝐴,𝑛) ≻ (𝐴,𝑛 − 𝑡) ≻ (𝐵, 𝑡 − 1) for some 𝑡 ∈ [1, 𝑛]. We say in this
case that (𝐴, 𝑡), resp. (𝐵, 𝑡), is the threshold of ≻.5 A profile is non-critically-interleaving if it
contains only such preferences.
5This sentence has been added by us.



The essential point is this: for a voter, there is a threshold value 𝑡 at which she would definitely
want to be at her preferred alternative. Note that for 𝑡 = 1, the definition stipulates · · · ≻ (𝐴, 0);
this spurious part simply disappears.

Non-critically-interleaving preferences facilitate elicitation. The threshold of each voter is
sufficient for deciding the condition (𝐵, 𝑏 + 𝑗) ≻𝑖 (𝐴, 𝑎) of Algorithm 1. We contribute the
following lemma.

Lemma 2. Consider 𝑎, 𝑏, 𝑖 ∈ [1, 𝑛] such that 𝑎 + 𝑏 = 𝑛 and 0 < 𝑖 ≤ 𝑎 and a non-critically-
interleaving preference ≻.

If the threshold of ≻ is (𝐵, 𝑡) for some 𝑡 ≤ 𝑏 + 𝑖, or (𝐴, 𝑡) for some 𝑡 > 𝑎, then (𝐵, 𝑏 + 𝑖) ≻
(𝐴, 𝑎). Otherwise, (𝐴, 𝑎) ≻ (𝐵, 𝑏+ 𝑖).

In Isabelle the lemma looks as follows. This development has around 80 lines.

lemma nci_elicitation :
assumes "a+b= card (UNIV::’V set)" (is "a+b=?n") and "j ≤ a"
and "monotonic pref" and "trans pref"
and "threshold pref B t A ∨ threshold pref A t B"

shows "if ((threshold pref B t A ∧ t ≤ b+j) ∨
(threshold pref A t B ∧ t > a))

then ((B,b+j),(A,a)) ∈ pref else ((A,a),(B,b+j)) ∈ pref"

4.3. Strong Preferences for Uniqueness

[2, Prop. 2] states conditions for uniqueness of assignments, assuming non-critically-interleaving
preferences. We make the assumptions both weaker (we do not require non-critically-
interleaving preferences) and more explicit.

Below, 𝑉 ′
𝐴 (𝑉 ′

𝐵) denotes the set of voters with preferred alternative 𝐴 (𝐵) who will definitely
be with 𝐴 (𝐵) in any stable assignment. Our definition of these sets is equivalent to that of [2]
but makes explicit that these are the voters who move in the first step of Algorithm 1.

Proposition 1. Let

𝑘 := max{𝑗 : 0 ≤ 𝑗 ≤ 𝑛, |{𝑣𝑖 ∈ 𝑉 : (𝐵, 𝑗) ≻𝑖 (𝐴,𝑛)}| ≥ 𝑗}
𝑉 ′
𝐵 := {𝑣𝑖 ∈ 𝑉 : (𝐵, 𝑘) ≻𝑖 (𝐴,𝑛)}

and 𝑉 ′
𝐴 be defined analogously. If for each voter 𝑣𝑖 ∈ 𝑉 ∖ (𝑉 ′

𝐴 ∪ 𝑉 ′
𝐵), either (𝐵, |𝑉 ′

𝐵| + 1) ≻𝑖

(𝐴,𝑛− |𝑉 ′
𝐵|) or (𝐴, |𝑉 ′

𝐴|+ 1) ≻𝑖 (𝐵,𝑛− |𝑉 ′
𝐴|), then there is a unique stable assignment.

Example 3. Consider 𝑛 = 9 and suppose that

(𝐴, 1) ≻1 (𝐵, 9), ≻2=≻1, (𝐴, 2) ≻3 (𝐵, 9), (𝐴, 5) ≻4 (𝐵, 9), ≻5=≻4,
(𝐵, 2) ≻6 (𝐴, 9), ≻7=≻6,
(𝐵, 3) ≻8 (𝐴, 7), (𝐴, 6) ≻9 (𝐵, 4)

Then 𝑉 ′
𝐴 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and 𝑉 ′

𝐵 = {𝑣6, 𝑣7}. Moreover 𝑣8 will necessarily join 𝑉 ′
𝐵 and 𝑣9

will join 𝑉 ′
𝐴, so there is a unique stable assignment.



Here is the Isabelle version of Prop. 1:

lemma argmaxUniqueStable :
assumes "stable f"
and "∀ x. (x=A) = (x ̸=B)"
and "(∀ v. v /∈ sureFirstAlt B A ∪ sureFirstAlt A B −→

((B,card (sureFirstAlt B A) + 1) ⪰𝑣

(A,card (UNIV::’V set)-card (sureFirstAlt B A))) ∨
((A,card (sureFirstAlt A B) + 1) ⪰𝑣

(B,card (UNIV::’V set)-card (sureFirstAlt A B))))"
shows "f = (𝜆v. if v ∈ (sureFirstAlt A B) ∨

(A,card (sureFirstAlt A B) + 1) ⪰𝑣

(B,card (UNIV::’V set)-card (sureFirstAlt A B))
then A else B)"

The Isabelle development consists of approximately 250 lines of code.

4.4. A Characterisation of Uniqueness

[2, Thm. 2] states that there is a unique stable assignment if and only if Algorithm 1 returns the
same assignment as its symmetric version starting from ⟨∅, 𝑉 ⟩. The proof of this theorem refers
to “the properties of Algorithm 1” which we find too vague. In fact, we were very surprised
when we discovered that we needed preferences to be total, but for all previous results we do
not! And even here, we are not sure that the result really needs total preferences.

To prove Thm. 2, the following lemma is useful. It says that there cannot be two distinct
stable assignments such that one is obtained from the other by switching some voters.

Lemma 3. Let 𝑉 = 𝑉𝐴 ⊎ 𝑉𝐵 ⊎ 𝐶 ⊎𝐷 where 𝐶 ̸= ∅ and 𝐷 ̸= ∅. Let 𝑓1 = ⟨𝑉𝐴 ⊎ 𝐶, 𝑉𝐵 ⊎𝐷⟩
and 𝑓2 = ⟨𝑉𝐴 ⊎𝐷,𝑉𝐵 ⊎ 𝐶⟩. Assume all preferences are total.

Then 𝑓1 and 𝑓2 cannot both be stable assignments.

Proof. For the purpose of deriving a contradiction, let us assume that 𝑓1 and 𝑓2 are both stable
assignments.

Since 𝑓1 is stable, and preferences are total, there is at least one voter 𝑣𝑎 ∈ 𝐶 such that
(𝐴, |𝑉𝐴⊎𝐶|) ≻𝑎 (𝐵, |𝑉𝐵⊎𝐷⊎𝐶|) (otherwise the group 𝐶 would move to 𝐵). By monotonicity
(𝐴, |𝑉𝐴⊎𝐶|) ≻𝑎 (𝐵, |𝑉𝐵 ⊎𝐶|). If |𝐷|+1 ≥ |𝐶|, then (𝐴, |𝑉𝐴⊎𝐷|+1) ≻𝑎 (𝐴, |𝑉𝐴⊎𝐶|) and
thus (𝐴, |𝑉𝐴 ⊎𝐷|+ 1) ≻𝑎 (𝐵, |𝑉𝐵 ⊎ 𝐶|), so 𝑣𝑎 would want to deviate from 𝑓2, contradicting
the stability of 𝑓2. Therefore |𝐷|+ 1 < |𝐶|.

In the previous paragraph, by switching the roles of 𝐶 and 𝐷, and 𝐴 and 𝐵, we can show that
|𝐶|+ 1 < |𝐷|.

This is a contradiction, so our assumption that 𝑓1 and 𝑓2 are both stable is false. □

Its Isabelle version looks as follows:



lemma noSwapStable :
assumes "∀ x. (x=A) = (x ̸=B)"
and "(∀ v x y. x ̸=y −→(x ⪰𝑣 y) ∨ y ⪰𝑣 x)"
and "VA ∩ C = {} ∧ VA ∩ D = {} ∧ D ∩ C = {}"
and "C ̸={}" and "D ̸={}"

shows "¬ (stable (𝜆u. if u∈VA∪C then A else B) ∧
stable (𝜆u. if u∈VA∪D then A else B))"

So if a profile admits (at least) two distinct stable assignments, then one must be obtained
from the other by shuffling some voters from 𝐴 to 𝐵 or vice versa, but not both ways.

Theorem 2. Assume that all preferences are total.
Algorithm 1 and the reverse Algorithm 1 return the same assignment if and only if the profile

admits a unique stable assignment.

Proof. One direction is trivial and already clearly stated in [2].

Now assume that Algorithm 1 as well as the reverse Algorithm 1 both return the assignment
𝑓1, and for the purpose of deriving a contradiction, that another stable assignment 𝑓2 exists.
Without loss of generality, using Lemma 3, assume that 𝑓1 has the form ⟨𝑉𝐴, 𝑉𝐵 ⊎ 𝐶⟩ and 𝑓2
has the form ⟨𝑉𝐴 ⊎𝐶, 𝑉𝐵⟩. As Algorithm 1 starts from the assignment ⟨𝑉, ∅⟩ and terminates in
⟨𝑉𝐴, 𝑉𝐵⊎𝐶⟩, at some iteration it must have “skipped over” ⟨𝑉𝐴⊎𝐶, 𝑉𝐵⟩, i.e., it must be possible
to write 𝐶 = 𝐶 ′⊎𝐶 ′′ with 𝐶 ′′ ̸= ∅, 𝑉𝐵 = 𝑉 ′

𝐵 ⊎𝑉 ′′
𝐵 ⊎𝑉 ′′′

𝐵 with 𝑉 ′
𝐵 ̸= ∅, such that some iteration

of Algorithm 1 goes from ⟨𝑉𝐴 ⊎ 𝐶 ′ ⊎ 𝐶 ′′ ⊎ 𝑉 ′
𝐵 ⊎ 𝑉 ′′

𝐵 , 𝑉
′′′
𝐵 ⟩ to ⟨𝑉𝐴 ⊎ 𝐶 ′ ⊎ 𝑉 ′

𝐵, 𝑉
′′′
𝐵 ⊎ 𝐶 ′′ ⊎ 𝑉 ′′

𝐵⟩.
This means that for each voter 𝑣𝑖 ∈ 𝐶 ′′, we have

(𝐵, |𝑉 ′′′
𝐵 ⊎ 𝐶 ′′ ⊎ 𝑉 ′′

𝐵 |) ≻𝑖 (𝐴, |𝑉𝐴 ⊎ 𝐶 ′ ⊎ 𝐶 ′′ ⊎ 𝑉 ′
𝐵 ⊎ 𝑉 ′′

𝐵 |).

By monotonicity,

(𝐵, |𝑉 ′
𝐵 ⊎ 𝑉 ′′′

𝐵 ⊎ 𝐶 ′′ ⊎ 𝑉 ′′
𝐵 |) ≻𝑖 (𝐴, |𝑉𝐴 ⊎ 𝐶 ′ ⊎ 𝐶 ′′|),

which means that the voters in 𝐶 ′′ have a reason to deviate from

𝑓2 = ⟨𝑉𝐴 ⊎ 𝐶 ′ ⊎ 𝐶 ′′, 𝑉 ′
𝐵 ⊎ 𝑉 ′′

𝐵 ⊎ 𝑉 ′′′
𝐵 ⟩

This contradicts the assumption that 𝑓2 is a stable assignment. □

The proof of Lemma 3 is the only place where we use the assumption of total preferences;
Thm. 2 inherits this assumption. We strongly suspect that the assumption of totality could be
replaced by an assumption along the lines “only assignments arising during the run of Algorithm
1 are considered”, and so totality would not really be needed. But given that Algorithm 1 is run
in two directions and that we rely on contradiction proofs, a-priori excluding some assignments
from the reasoning seems complicated.

The Isabelle version looks as follows. The development has around 550 lines of code.



lemma twoDirectionsImplyUniqueness :
assumes "∀ x. (x=A) = (x ̸=B)"
and "(∀ v x y. x ̸=y −→(x ⪰𝑣 y) ∨ y ⪰𝑣 x)"
and "algo (Suc (card (UNIV::’V set))) A B =

algo (Suc (card (UNIV::’V set))) B A"
and "stable f2"

shows "algo (Suc (card (UNIV::’V set))) A B = f2"

Theorem 2 is not obvious and while trying to prove it we had doubts whether it actually
holds. The Isabelle code for this result corresponds to 25% of our entire Isabelle development.

5. Discussion and Future Work

Stable assignments do not always exist for more than two alternatives:

Example 4. Olivier Létoffé, a student doing an internship at at Toulouse University in 2022, has
found this example:

𝑣1 : (𝐴, 3) ≻1 (𝐴, 2) ≻1 (𝐵, 3) ≻1 (𝐵, 2) ≻1 (𝐶, 3) ≻1 (𝐶, 2)
≻1 (𝐴, 1) ≻1 (𝐵, 1) ≻1 (𝐶, 1)

𝑣2 : (𝐵, 3) ≻2 (𝐵, 2) ≻2 (𝐶, 3) ≻2 (𝐶, 2) ≻2 (𝐴, 3) ≻2 (𝐴, 2)
≻2 (𝐵, 1) ≻2 (𝐶, 1) ≻2 (𝐴, 1)

𝑣3 : (𝐶, 3) ≻3 (𝐶, 2) ≻3 (𝐴, 3) ≻3 (𝐴, 2) ≻3 (𝐵, 3) ≻3 (𝐵, 2)
≻3 (𝐶, 1) ≻3 (𝐴, 1) ≻3 (𝐵, 1)

Starting in (𝐴, 3), we turn in circles. No stable assignment exists. Independently, [2] also contains
such an example while the earlier unpublished version [11] (from which we started our work) does
not discuss this point at all.

Generalising the work to more than two alternatives is the obvious direction for future work:
under which conditions does a stable assignment exist, and which algorithm can find it?

In [2] complexity issues are also discussed, such as how hard it is to access a preference
relation. This is also an issue for future work.

Another interesting issue for future work is strategy-proofness, i.e., immunity to false report-
ing of preferences.

During the above-mentioned internship, some implementation work was done using Coq
rather than Isabelle/HOL. We found this implementation less natural, i.e., less close to the
source [2], than the one presented here; for example, the Coq implementation did not have the
notion of preferences between communities. Instead, the communities were mapped to natural
numbers that were then compared by the usual > relation. We are unable to judge whether a
better design would have been possible in Coq. In any case we found no such discrepancies for
Isabelle.

Relatively little work has been done on applications of proof assistants to game theory. To the
best of our knowledge, no work on formalising the framework of [2] has been published. We
believe that our work is a contribution to making the formalism proposed by [2] more precise
and the results more reliable, apart from the improvements of the theory shown in Section 4.
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