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Crack deflection by an interface — asymptotics of the
residual thermal stresses
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Scott, 75015 Paris, France
"Laboratoire de Génie Mécanique, UPRES 496, IUT A, Université de Bordeaux I, 33405 Talence, France

The He and Hutchinson (1989) criterion allows to predict a matrix crack deflection by an interface under mechanical
loadings. It has been improved by the same authors and Evans (1994) to take into account the residual thermal stresses. This
criterion is revisited here from an asymptotic point of view. A first-order (local) and second-order (non-local) forms of this
criterion are proposed for mechanical loadings. Next, the same approach is carried out for a pure thermal loading, i.e. for a
cooling process for instance. It is shown that residual thermal stresses do not intervene at the leading order but play a role at
the second one. When combined loadings are considered, the first-order criterion is still unchanged but the second-order one
becomes quite illusory since it makes an explicit reference to the critical mechanical loading triggering the deflection.
Nevertheless, some trends on the deflection promotion or inhibition are derived for a notched bimaterial under four-point
bend loading. In the light of these results, criticisms to the He et al. (1994) expressions are brought.
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1. Introduction — the He and Hutchinson deflection criterion

Brittleness of new materials like ceramics is often an undesired counterpart to their high mechanical and
thermal qualities. To avoid these negative effects, fibres or other inclusions are inserted, not as reinforce-
ments (their stiffness is often lower than that of the bulk material), but in order to promote toughening
processes (Evans, 1997). Cracks growing within the matrix impinge on the interface and are expected to
kink along the interfaces with these inclusions and either to blunt the primary crack tip (T-crack, Ben-
veniste et al., 1989; Dollar and Steif, 1992) or to develop dissipative processes by friction.
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An efficient criterion able to predict such crack deflection is of course essential to taylor these composite
materials. An approach has been proposed by He and Hutchinson (1989) (see also Gupta et al. (1992),
Martinez and Gupta (1994) and Kumar and Singh (1998)), it is based on the classical analysis of energy
release rates at the tip of virtual crack extensions either deflecting along the interface or penetrating into
the fibre, once the primary crack impinges on the interface. Mechanical loadings are considered in such
mechanisms but because of the thermal treatments involved in the manufacturing of these composite
materials, the influence of residual thermal stresses which result of a cooling process must not be omitted. In
view of these remarks, He et al. (1994) improved the previous criterion by additional terms taking into
account residual thermal stresses.

In the present analysis, asymptotics show that residual stresses intervene in two ways. First, the intensity
factors split into a mechanical part (analogous to the SIF’s) and a thermal one (analogous to the TSIF’s,
Meyer and Schmauder, 1992). Second, the asymptotics of the displacement fields include an additional non-
singular term (Munz et al., 1993) which is of second order, it means that it is negligible provided the virtual
increments keep very small. If not, it is necessary to retain this second-order influence as well as the me-
chanical one which lacks in the above mentioned analysis by He et al. (1994)). Second-order, either thermal
or mechanical, terms modify substantially the criteria, simplifications are no longer allowed and the role of
increment lengths is enhanced, although it was not totally absent in the initial forms as will be seen below.
Moreover, the criteria evolve from a local form at the leading order to a non-local one if the second-order
terms are employed.

1.1. The He and Hutchinson deflection criterion

We consider a plane strain linear elasticity problem for a bimaterial Q made of two isotropic layers
QW (k = 1,2) defined by the Young’s moduli E) and £@ (Fig. 1). For simplicity, it is assumed that the two
materials have the same Poisson ratio v(!) = v(?) =y,

Material 1 is pre-cracked, the slit lies from the edge to the interface with the second material in the
middle of the specimen. The structure is submitted to a four-point bending test which is symmetrical and
allows computational as well as analytical simplifications. The equations of the problem, settled on the half
structure still denoted Q (Fig. 2), read

‘_
*2
- (2 (1)
Q Q
X
F* :
- 112.5 mm
F
I
—
‘_
-_—
10 mm

Fig. 1. The specimen under four-point bend loading.



Fig. 2. The half structure obtained by symmetry.

—V-e"=0 inQ=0YuQe?,

o™ =C-V,U" in Q,

o™ -n=gn on T, (1)
o, =0, Uy=0 onlj

¢™-n=0 elsewhere on 0%,

where U™ is the displacement field, ¢™ the stress field (the index m distinguishes mechanical from thermal
loadings). They are linked together by the constitutive law (1) (second term), V; is the symmetrical part of
the gradient, C is the elasticity tensor, it takes different values in Q" and Q'» depending on E® (k = 1,2)
and v. Eq. (1) (third to fifth terms) are the boundary conditions, g is the pressure applied on the specimen at
the loading points of the bending test and Eq. (1) (fourth term) are symmetry conditions. The last relation
(1) (fifth term) expresses that the remaining part of the boundary 0Q of the specimen, including the faces F*
and F~ of the primary crack, is stress free. Here and throughout the paper n denotes a unit (outer) normal
to the line (2D) under consideration.

In order to study the conditions for a crack impinging on the interface to deflect along the interface
(index d) or to penetrate into material 2 (index p), He and Hutchinson (1989) consider two crack increments
with respective length a4 and a, which are assumed to be small (Fig. 3). Then, using integral formulations,
they estimate the energy release rate at the new crack tips, either in deflection G4 or in penetration G,. The
ratio G4/G,, which arises to be independent of the applied loads, is compared to the ratio of the interface
toughness G,. to the material 2 toughness G,.. Deflection is assumed to occur if

Gu o, Ge.
G, Gy

The left hand side takes the particular form

where R is a geometrical parameter and A the singularity exponent at the tip of the primary crack. Nev-
ertheless more thorough explanations will be given below and the discussion will not take place here. In

ag/21 | )

Fig. 3. The crack increment in deflection and penetration.



particular, He and Hutchinson add, for obvious reasons, the questionable assumption a4 = a, which is
debated in Ahn et al. (1998). The choice of the increment lengths is still an open problem. We have recently
proposed an argument based on the minimum of total energy principle of Lawn to derive these lengths
instead of prescribing them (Leguillon et al., 2000a,c). It is found that they differ slightly, but their influence
on the deflection criterion vanishes if there is no elastic contrast between the materials and remains small if
the elastic mismatch increases.

1.2. First-order matched asymptotics — the HH criterion revisited

A generic crack increment is denoted F; with faces F;/ and F, (Fig. 4). Its dimensionless length ¢ is the

ratio between its actual length and the primary crack length /¢

F; . .

|7 | , in particular &g/, = i

L L
As in the He and Hutchinson analysis, ¢ is assumed to be small. Prior to any crack increment the solution to
Eq. (1) is now denoted U™ where the index 0 holds for a zero increment length (¢ = 0). To solve the
perturbed problem (i.e. including the small extension), one has to add to Eq. (1) new boundary conditions
on the crack extension faces

o(U™)-n=0 onF, and F.

E =

The unknown solution U™ can be described by means of two expansions. The outer one, valid out of a
region surrounding the crack tip and the increment, provides informations on the far displacement field

U™ (x1,x2) = U™ (x1,%) + fi(e)U™ (x1,20) + - - with lim £ (e) = 0. (2)

It is a perturbation to the initial solution U™. Terms U™ and U™ are defined in the unperturbed
domain Q. On the other hand, the near displacement field and the inner expansion are obtained after having
stretched the perturbed domain by 1/¢. The new variables are denoted y; = x;/¢ (j = 1,2). The resulting
domain Q" is unbounded and the dimensionless stretched increment length is one whatever its actual value.
The inner expansion reads

U™ ey, em) = Fo(e)V°(r1,00) + Fi(&)V (i, 32) + -+,

with
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Fig. 4. The two faces of the crack extension.
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These two expansions describing the same solution, it must exist an intermediate area in which both
expressions coincide. This common area is near the crack tip in the outer domain and far from it in the
inner one. The matching conditions are derived from this ascertainment. The behaviour of U™ when
approaching the crack tip is described at the first-order by the singular field #*u(¢) (the first term U™ (0, 0)
is present for consistency but does not play any role)

U™ (x1,x2) = U™(0,0) + kmr)y(qo) + e (3)

where » and ¢ are the polar coordinates with origin at the primary crack tip (Fig. 5). The coefficient &, is the
intensity factor of the singular mode (analogous to a SIF), it is independent of the geometry of the per-
turbation but, on the other hand, it depends on the applied loads and the geometry of the structure. A
single symmetrical mode is involved here for simplicity (the four-point bending test is symmetrical);
however, it exists also an antisymmetrical mode with the same exponent A which is not activated here
(vanishing intensity factor). The situation is quite similar to that of modes I and II at a crack tip in ho-
mogeneous materials. The opening condition writes &, > 0 and holds true for the four-point bending test.
The exponent 4 depends on the relative stiffness of the components, 1/2 < A < 1if EWD < ED 0 < 1< 1/2
if EO > E®)| the limit 2 = 1/2 corresponds to the classical case of a crack in a homogeneous material
E = E®@ (see Section 5). Each term of Eq. (3) can be known at least numerically (Leguillon and Sanchez-
Palencia, 1987).
The matching rules lead to

Fy(e) = 1, Fi(e) = kné,

VoOn, ) = U™(0,0),

Vi) ~ plu(p)  as p — oo
Here p =r/¢ is the stretched radial coordinate. As before, the constant leading term plays no role,
moreover function 7! has no index m since it is independent of the way loads are applied. The behaviour at
infinity of ! is ensured by splitting and superimposition

~ 1
V'(0n3) = plule) + V- (n,32). 4)
The complementary term ¥ " is the solution of a well-posed problem and decays at infinity. Thus we have

P
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Fig. 5. The polar coordinates with origin at the primary crack tip.



{ Qmo(gyl’ 8}’2) = QmO(O’ 0) + kmgllp)ﬁ(q)) + - ) (5)

1
U™ (gy1,602) = U™(0,0) + k& [p"u(@) + V (1, 02)] + -+

The two terms of the inner expansions are sufficient to give a ﬁrst-ordgr approximation of the energy
release rate. We need only a more precise knowledge of the behaviour of V' at infinity, it is defined in Eq.
(6) by the so-called dual mode p~*u~(¢) to p*u(¢) (Leguillon and Sanchez-Palencia, 1987). The expansion
of the elastic solution in positive powers of the distance » to the crack tip is a generalization of the Williams
series (exponents are not necessary integers and half integers). The successive terms have a finite energy in
the vicinity of the tip. On analogy, the behaviour at infinity is described by similar series but with negative
powers in order to have a bounded energy at infinity

~ ] _ _
V (yi,») ~Kp )ﬂ (9) as p — oo0. (6)

The coefficient K is the intensity factor of the dual mode, it is independent of the geometry of the whole
structure and the applied loads, especially it is independent of whether it is a mechanical or a thermal
loading. On the other hand it depends on the geometry of the perturbation (the direction of the crack
increment in the present case). The dual mode is symmetrical as well, in the general case one has to account
also for the dual mode to the antisymmetrical primal one.

Although it is not necessary in this section, it will prove useful in the forthcoming analysis to use once
more the matching rules. It brings to determine the next term of the outer expansion (2)

fie) = kK2, U™ (x1,x0) = u (@) + U™ (x1,x2). (7)

The complementary term le (x1,x>) is the solution of a well-posed problem in the unperturbed half
domain Q (to compare to Eq. (1))

V.o =0 inQ,

O'ml =C- VSanl in Q, (8)
ol =0, Uénl =0 on I},
o™ -n=—a(r*u (¢)) - n elsewhere on 0Q.

Although the dual mode »~“u(¢p) has not a finite energy in the vicinity of the primary crack tip, the final
boundary condition (8) (fourth term) is not questionable since the right hand side vanishes in this vicinity
and is smooth out of it.

A necessary condition for the crack to grow by an increment ¢/ is that the energy consumed during the
fracture process G.&f (where G, is the toughness of the material) at most equals the energy released between
the initial and final states

AW > Gél. 9)
The calculation of the change in the stored energy reduces to a contour integral
AW =W — W

:1/2/c-vsgm°-vsgm°dx— gn-U™dl—1/2 C-ngmg-vsgmcdx—&—/ gn-um™dl
Q

I, ol Iy

=172 [ [0U™) 0 U = o(U™) 0 U = (U™ U™ (10)

The line L is any contour surrounding the crack tip and the crack increment and starting and finishing on
the stress-free faces of the primary crack. Among others, the crack extension faces F; and F, form an



admissible contour which allows to rewrite Eq. (10) as a work done along Fr and gives rise to the COD
method (Rybicki and Kanninen, 1977)

AW = 1/2/ [a(gma)@-gmo—a(gmo).E-Q‘m]dl:—l/z/ a(U™) - n-U™dl.
Fg Fg

The integral along Fr means along the two faces F; and F, . Although it is an interesting formulation
from the mechanical point of view, such an expression is not numerically so easy to handle since it requires
the computation of stresses along Fg, i.e. in a region where singularities govern the behaviour. Thus we keep
Eq. (10) in which calculations can be performed far from this region. Inserting Eqgs. (5) and (6) in Eq. (10)
leads to (Leguillon, 1989)

AW = KEKe¥ + - - (11)
The following property, consequence of the contour independence of the integral i,
Y(r'u,r'v) # 0 only if p= —1,
and the normalization
Y(rturu) =1,
are required to settle Eq. (11). Let us define now the incremental energy release rate G
G—AS—ZV:%(kﬁlKS”"’I +-) (12)

Obviously it depends on ¢ and vanishes or tends to infinity as ¢ — 0 accordingto A > 1/2 or A < 1/2. In
the particular case 4 = 1/2, the leading term in Eq. (12) is independent of the increment and the definition
coincides with the usual differential one (in 2D)

ow
o’
where £ is the primary crack length.

As already mentioned, K in Eq. (11) depends on the shape of the perturbation, thus two energy release
rates must be computed, one for deflection (index d) and one for penetration (index p)

G=—

1 {
Gajp = 7 (kin/pS§?p1 +-- ')a

and the deflection and penetration criteria write respectively (see Eq. (9))
1 1
L L
Thus, deflection is promoted if

Gi Kafea\"'_ G
dd_Ddf & ) 13
G, K, <8p) ~ G (13)

(RKiZ ) > Gey (K ™) > G

This form of the He and Hutchinson criterion has been proposed by Leguillon and Sanchez-Palencia
(1992). It is a pure local criterion, obviously independent of the applied loads and the geometry of the
specimen. It is obtained by assuming G4 = G,c and G, < Ga, 1.e. deflection can occur while penetration is
inhibited, k2 is extracted from the equation and inserted in the inequality. This criterion takes a much
simplified form with the additional He and Hutchinson assumption ¢; = ¢, (see Section 1.1)
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Fig. 6. The deflection/penetration criterion (14) (g4 = ¢,) vs. the Young’s moduli ratio £/ /E® for v = 0.3. The toughnesses ratio
Gi./ G below the line entails deflection.

Table 1
Singularity exponents vs. the Young’s moduli ratio E")/E® for v = 0.3 computed from Leguillon and Sanchez-Palencia (1987)
EV/E@ 0.1 0.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
A 0.67 0.63 0.57 0.50 0.42 0.38 0.35 0.32 0.30 0.28 0.27 0.26 0.23
Ga_ K4 > Gie (14)
G, K, Gu

Comparisons exhibiting a good agreement between the form (14) of the criterion and He and Hutch-
inson results have already been proposed in (Leguillon et al., 2000a,b) for different values of the Dundurs
mismatch coefficients (Dundurs, 1967), they are not reproduced here. Fig. 6 plots the ratio K4/K, vs.
EW/E® for v = 0.3. The Young’s moduli ratio seems to us a more significant parameter to describe the
elastic mismatch between components. The singularity exponents are shown in Table 1.

2. The role of higher-order terms in the asymptotics
2.1. The first non-singular term

There are two second-order terms in the expansion of the solution near the primary crack tip which are
homogeneous to r. The first one corresponds to the rigid rotation and is irrelevant. The second one is the
generalization to the non-homogeneous case of the well known “T-stress” in homogeneous materials, it is
analytically known

U(xi,x2) = rt(e). (15)
The stress field is constant in each subdomain

(1) 2

o) =011 =5,
1 2

ng) =0, 0’52) = 02, (16)
1 2

‘752) = 0'(12) =0,

and the associated displacement field writes



1
1 (¢) = G (1 = v)s cos(),
1 1+v .
5 (¢) = = Ftvs sin(p), W)
2 1+v
17 (¢) = F[(1 = v)s = vom] cos(p),
5 () = F[(1 = v)on — vs]sin(g),
with
y  EO _E®
0n = =V & s
It is a non-singular symmetrical mode and depends on a single multiplicative parameter s. Clearly,
o) = 6% =0 if EV = E@ ie. if the two materials are identical. This allows to recover the “T-stress”
solution 0511) = 617 = 5 (and vanishing other components).

2.2. The next non-singular term

As will be seen in the forthcoming sections, the next term in the expansion in increasing powers of r is not
really necessary to carry out an improved asymptotic analysis involving thermal loadings, but in a first step
it must be taken into account to decide which terms are negligible or not. This next term can be calculated
(Leguillon and Sanchez-Palencia, 1987) and writes

W(x1,x) = rw(e),

as for the previous terms, there are two modes, one symmetrical and one antisymmetrical, associated with
the exponent {, but the antisymmetrical one is irrelevant in case of symmetrical loadings and will be omitted
here (the intensity factor in the Williams-like series vanishes). The exponent { depends as 4 on the relative
stiffness of the materials, 3/2 < {if EV < E?), 1 < { < 3/2if EW > E®), the limit { = 3/2 corresponds to a
crack in a homogeneous material. Moreover if E) < 0.45E® (about) then { > 2 and the term must be
neglected otherwise one would have to consider in place the integer term r*. Indeed, the expansions contains
integer powers of r and in addition non-integer ones like /4, ;.. ., thus { must be compared to 2 before
truncation of the series.

2.3. Higher-order matched asymptotics

The matching of the asymptotics must be revisited and becomes more entangled. With two additional
terms, the behaviour of the leading terms U™ and U™ (see Eq. (7)) now reads (with the previous re-
strictions concerning the last term 7%)

{ U™ (x1,x5) = U™(0,0) + knr*u(@) + Tnrt(9) + pur‘w(e) + -+ -,

Uml( ATy P ml ) (18)
U™ (x1,x2) = r"u (¢) + U™(0,0) + gmr’u(p) + - -,

where T;, is the intensity factor of the non-singular mode r¢(¢). In the following, we set s = 1, then T;, is the
component oy, of the non-singular generalized “T-stress”. In the four-point bending test illustrated in Fig.
1, it is numerically checked that T;, < 0 if the material 1 is softer than the material 2 and reciprocally 7, > 0
if the material 1 is stiffer. The coefficient p,, is the intensity factor of the next non-singular term and ¢, is the
intensity factor of the singular term in U™ (x;,x,), it is independent of the applied loads but depends on the
geometry of the specimen (see Eq. (8)). As a first consequence of the matching conditions, with a crack
increment with length ¢ either in penetration or deflection, three higher-order terms can be exhibited in the
inner expansions



U™ ey, e2) = U™(0,0) + ke p*u(@) + Tmtpt(@) + pme pw(ep) + - -+,
U™ (eyr, e2) = U™(0,0) + ke [p u(@) + V' (11,12)]

<2 S A1
+Tnelpt(@) + V- (31, 0)] + kmgme [p"u(@) + V- (31, 12)]

oo ~3
trmet [P w(@) + V- (n1,02)] +
As done in Section 1.2 for the first term, the splittings

{ V2(n.32) = ptl0) + 2 (31.2) (0)
V2 (3n,32) = prwl@) + V- (v1,32),

ensure respectively the second term to behave like pt(¢) and the third one like p‘w(¢) at infinity (new
matching conditions).

The entanglement arises in Eq. (19), as a matter of fact the place of the last term & in the expansions is
not so clear, the exponent 34 must be compared to {:

e If E0) < E® it is numerically checked (Leguillon and Sanchez-Palencia, 1987) that 3/ < {, moreover
if 1>2/3,1ie. EV < 0.1E? (about), both 3/ and { must be considered as extra terms and neglected
(otherwise one would account for another term involving &2, see Section 2.2).

e IfE) > E® the same numerical conclusion can be drawn SA < {, moreover if 1 < 1/3,1.e. EV > 4.5E?
(about) then &3 precedes the ¢ “T-stress” term itself.

o If EV) = E® 3} =, the two last terms of Eq. (19) confound, this will be the topic of Section 5.

Additional terms are now required to describe the behaviour of the complementary terms _Vj(yl, »)
(j = 1,2,3) at infinity (to compare to Eq. (6))

Vz(yl,yz) ~Kp~u () +Hp 't (¢) + Pp~*w (@) + - -,
(yl,yz)~K’ ‘u(¢) +H'p *lf (@) +Pp~w(p)+---, aSp—o00 (21)
7 (,32) ~ K" p~"u (@) + H'p™'t(9) + P'p~w () + -+ -,

Here p~'t () and p~*w™(¢) are the dual modes to pt(¢) and p‘w(¢). It is not necessary to proceed to a
new matching and calculate complementary terms in the outer expansion to derive the asymptotics of the
energy release rate, the contour integral y (see Eq. (10) in Section 1.2) can be computed in the inner do-
main. Using Egs. (19) and (21) leads obviously to a very awkward expression which is difficult to sort in
ascending powers of ¢. Then an improved but still simple form of the energy release rate expansion is
obtained by a truncation at the order defined by the minimum of A and 4/ — 1

1 .
G=5 k2 Ke** ™'+ knTw(K' + H) &+ -] (22)
if A>1/3, or
1 ,
G=5 (k2 Ke* '+ k2 quKe™ + ) (23)

if 1 < 1/3. The exponent { is no longer involved and the corresponding terms in Egs. (18)—(21) will be
neglected in the following. It is to be pointed out that K, K’ and H are concerned with the geometry of the
perturbation (deflection or penetration) whereas k,, T, and gy, are not. Then, using Egs. (22) and (23) first
for deflection and next for penetration leads to rewrite the deflection criterion as

Gq _ Ko+ (Ky + Ho)ng (s_d>”"1 _ Ge
Gy, Ky + (K, + Hy)ny \ & Gae’

(24)

10



with

m Tn
N = 1S (25)
if 2> 1/3, or
Ga _ Ka 1+ qmed (6" . Gie (26)
G, K, l+ qmed \ & Gy’

if 2 < 1/3. Very similar parameters to 75,, have been introduced by He et al. (1994) in view of analysing the
influence of residual thermal stresses. This will be discussed below in Section 4, but emphasis is put already
now on the fact that, even with the He and Hutchinson simplification &g = &, the criterion (24) still depends
on the increment lengths through ny,, = #™, whereas Eq. (26) becomes independent of them and writes as
the first order criterion (14), although an additional term is used in the expansions. On the other hand, both
criteria (24) and (26) are independent of the applied loads because either parameters in Eq. (25) or ¢y
(obviously from Eq. (8)) are independent of g. Indeed, the intensity factors are proportional to g

kn = Km& T = Tmg, (27)
where x,;, and 7, depend only on the geometry of the structure, and then

Tm 1,

_Sd/p'

m
Majp = Ko

It is the reason why the criterion takes again the form (24), g° is extracted from the equation G4 = Gy
and inserted in G, < Gy. The improved form of the criterion remains independent of the intensity of the
applied loads (see Eq. (13)) but depends now on the geometry of the specimen through the parameters xp,
and t,, or gy. It is no longer a local criterion. Fig. 7 shows this criterion when the material 1 is softer than
the material 2 (weak singularity) with the simplifying assumption & = ¢,, for different values of the sin-
gularity exponent. For large values of it, it is extremely dependent on the increment length. The next Fig. 8
shows the same criterion when the material 1 is now stiffer than the material 2. It is moderately sensitive to
the increment length or even totally insensitive in case of a very strong singularity (4 < 1/3). In particular,
note that the range on the horizontal axis is wider than that of Fig. 7. The non-locality of the criterion
implies that these curves depend on the geometry of the specimen and especially on the kind of test which is
worked out (the four-point bending test of Fig. 1 here).

1 5

0.75 A - lambda=0,67
a -=lambda=0,63
Q o5 ~+lambda=0,57
(©)
i
0.25 - MR = =
0 T 1
0 0.025 0.05
epsi_d=epsi_p

Fig. 7. The deflection/penetration criterion (24) vs. the increment length &4 = ¢, for different elastic contrasts corresponding to a weak
singularity (4 > 1/2). The values at g = ¢, = 0 correspond to the first-order criterion (14).
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-=|ambda=0,42
-+ |lambda=0,38
-»-lambda=0,35
-—-lambda=0,28
0.75 1 = lambda=0,23

0 0.025 0.05 0.075 0.1
epsi_d=epsi_p
Fig. 8. The deflection/penetration criterion (24) vs. the increment length ¢q = ¢, for different elastic contrasts corresponding to a strong

singularity (4 < 1/2). The two horizontal lines in the top corresponds to very strong singularities (4 < 1/3), they are derived from Eq.
(26) and keep constant whatever the increment length.

3. Residual thermal stresses
3.1. Introduction

Considering a uniform temperature change A@ = 0, the thermoelastic constitutive law of an isotropic
body is a linear relation between the stress field g, the strain field V U (i.e. the symmetrical part of the
gradient of the displacement) and O, it replaces the second term of Eq. (1).

c=C-(VU—-alO)=C-V,U - pIO, (28)
where o (K™!) is the thermal expansion coefficient (/ is the identity tensor, the expansion is assumed iso-
tropic as well). Coefficient § (MPaK ") allows to write down the constitutive law in a slightly different way

which will be useful in the forthcoming developments. In plane strain elasticity, these coefficients are linked
together, using the Poisson’s ratio v and the Young’s modulus E, by the relation

oc:lz,_v(l—Zv)ﬁ.

Equilibrium equation and boundary conditions (1) (first term) and (1) (third to fifth terms) must be
added to Eq. (28) to complete the set of equations of the thermomechanical problem on a domain £ with
boundary 0Q. The problem splits into two parts, a pure mechanical one accounting for the prescribed loads
and solution to Eq. (1), and a thermal contribution (index 0) satisfying

o' =C-(VU'—al®), ¢"-n=0 ondQ.

In a bimaterial Q@ = Q' U Q?, the displacement field U’ = U’® in Q¥ (k = 1,2) is proportional to @ and
must be solution to the following boundary value problem

—V.6=0 in Q,

6=C-V,U" in Q,

61, =0, U!=0, onlj, (29)
6] n=[FlOn onT

0 .n=pYOn elsewhere on QN QX

12



where the brackets [ | denote a jump through the interface I' located between QW and Q©®
[6] = @ _ 5(1)7 18] = ﬁ(z) _ ﬂ(l).

In the most general case, problem (29) must be numerically solved by a finite element method for in-
stance. For our purpose, we need only a description of the solution in the vicinity of the crack tip, dis-
regarding conditions on remote boundaries. Thus we have to solve Eq. (29) (first to third terms) with Eq.
(29) (fifth term) on the two faces F'* and F~ of the primary crack and Eq. (29) (fourth term) on the interface
I'. The stress components fulfil constant boundary conditions, as a consequence the solutions (of course
there is no uniqueness) are consistent with a second-order term in the asymptotics (see Section 2.1) which
reads in polar coordinates » and ¢

Uy(x1,22) = Oruy(¢). (30)
The explanation for the index d will be given in Section 3.2. One simple solution to this problem writes

~(1) _ ~() _ 1
0411 = Ogon = @ﬁ( )

& =oep?, 5, = 5, (31)
~(1 ~(2
‘7511)2 = 05132 =0

where &gﬁj denotes the component ij of Eq. (29) (second term) in the subdomain & and where the constant §
is defined below Eq. (33). Then the displacement field can be derived

ué‘l)«o) = 5 (1= 2)8" cos(p) = ol!) cos(p),
udz /() =5 (1= 2v)Y sin(p) =V sin(9), (32)
”dl (‘P) = 2(2 [(1— V)ﬁ — vs] cos(o),
”dz (QD) = E(z) [(1 — V)5 — Vﬁ ]sin(qo),
with
lE?an _ %ﬁm E%ﬁa)_ (33)
The stress field associated with this solution is

Jc(ill)l = 0511;2 = 05121)1 = ‘75111)2 - ‘75112 =0, (34)

2 . 2 ® “1 E®
o= (- B0 =12 (L7 "~ p7)0 = L £2[a]o,
which brings into evidence the role of the mismatch [a] = «/® — «()) in the thermal expansion coefficients. It

is clear that such a vector (30) is defined up to a solution (15) of the homogeneous problem (i.e. satisfying
homogeneous boundary conditions near the crack tip).

3.2. Asymptotics of residual thermal stresses

We consider in this section a pure thermal problem. The unperturbed and perturbed solutions now read
respectively U” (solution to Eq. (29)) and U%. In a first step, the unperturbed solution is splitted into an
homogeneous term (i.e. fulfiling homogeneous boundary conditions in the vicinity of the primary crack tip,
index h) and a particular solution which is taken to be U, (30)

UP(x,x;) = ng(xl,xz) + Uy(x1,x2). (35)

Of course, the so-called homogeneous term depends on the choice of the particular solution. Then the
previous results concerning asymptotics can be applied to ng with the truncation defined in Section 2.3

13



{ng(xl,xz) = QEO(O, 0) + koar*u(p) + Tpart(p) + -+ -, (36)

U™ (x1,x2) = r'u (@) + U"(0,0) + gor'u(p) + -+,

where g is independent of © and [«]. By analogy, kyq can be baptised TSIF (Meyer and Schmauder, 1992).
Moreover from Eq. (8) it comes U™ = U” and then

90 = qm = q. (37)

The perturbed solution Qﬁs (deflection) or U gs (penetration) has to satisfy additional boundary conditions
on the faces F;/ and F, of the crack extension. They depend on the mechanism, for deflection it is

GU%) -n=p"On onF;, 18
~ 0¢ _ p@ _ ( )
6(US) -n=p"On on F;,
and for penetration
GUY) -n=p?On on F; and Fy, (39)

with

5(Uy,) = C-V Uy, and o(Uy,) = 6(Ug,) — BIO.

It is clear that the particular solution ru,(¢) (32) fulfils Eq. (38) but not Eq. (39) (this is the reason for the
index d). Nevertheless, it is not unique and we shall now define another particular solution

U, (x1,x2) = O ruy (o),

which satisfies Eq. (39) instead of Eq. (38), using a combination of Egs. (17) and (32) by adjusting the
parameter s. Taking

1—2v EO@ — E@pM) EM E®
T EV—E® WED—E®) T+v

[«], (40)
leads to

G =06 +pY), &5 =0+ 57,

o= 08", o= 0p”,

~() _ ~(2) _
Opi = Op1 = 0,
and then
1 2 1 2
{ Jéz)z = 0'1(32>2 — ‘7;1)2 = ‘7;1>2 =0,
1 2
0';1)1 = ai)l)] =s50.

We emphasize on the following point: it is impossible to carry out the above calculation of the new particular
solution U, if the two materials have identical elastic properties and different expansion coefficients (see
Section 5). Of course, if both are identical, there is no problem because residual stresses are absent.

The associated displacement field U, (x,x;) derives from Egs. (15)-(17) and (30)~(32) with Eq. (40). The
analogous to Eq. (35) is

UP(x1,x0) = U (x1,x2) + Uy (x1,x2),
and Eq. (36) (first term) rewrites (while Eq. (36) (second term) still holds)

UL (x1,%2) = UL (0,0) + kopr'u(p) + Typrt(p) + -+

14



Moreover, the difference between ng and Q;O is the non-singular term (15) (i.e. a term homogeneous to r),
then

koa = kop = ko,  Top = Tpa + 5O,

(see Eq. (40) and the remark following Eq. (18)). Depending on the material mismatch, the thermal loading
can cause either a crack opening or closure. In case of closure, with the present boundary conditions it leads
to ky < 0, i.e. the crack faces overlap. But, as will be discussed in Section 4, this solution must be kept in this
form and is significant when combined loadings (i.e. mechanical and thermal) are under considerations.

Otherwise, in case of a single thermal loading, either the condition k4 > 0 holds and a fracture analysis
can be carried out, or the closure condition [U"]-n= 0= ky =0 on the crack faces, makes such an
analysis unnecessary. The homogeneous parts of the unperturbed solution Qﬁ?p are solution to the fol-
lowing boundary value problems

—V-:.04=0 1in Q,
og=C-VUY in Q,
Ud’ﬂ:ﬁ%[[a]]gﬁ on Iy, (41)
[64] - =0 on T,
o412 =0, Ul'=0 onlIj,
a4 - n = 0 elsewhere on 0Q,
where I'q is the upper part of the boundary in Q% (see Fig. 9),
—V.0,=0 inQ,
gy =C-VUY inQ,
0p-n=—0Bsn on I, 42)
[op]-n=0 onT,
op12 = 0, Ug=0 onl
op - n = 0 elsewhere on 00,

where I'y is made of the right part in the boundary of QW and the left one in Q% (see Fig. 9).

Problems (41) and (42) show that these solutions are linear functions of the temperature change ® and of
the expansion coefficients mismatch [o] (see Eq. (40)). As a consequence the intensity factors themselves are
linear functions of these parameters

E® E®

10l Toao = toap 7 Ol (43)
where kg and 144/, depend only on the geometry of the specimen in problems (41) and (42). The coefficient
E® /(1 4 v) has been introduced for homogeneity reasons (see Egs. (48) and (49)).

kHZKQ

!
L r r
p P
F — F -«—
N I

Fig. 9. The equivalent thermal/mechanical problems.
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Without new difficulties, the associated inner expansions are derived
U (em,e02) = U, (0,0) + ko p'u(@) + Toajpept(@) + Ocpuy (@) + -+,

. | ~2
Ugip (v, en) = Ug), (0,0) + ke’ [p (@) + Vg, 01,32)] + Toajptlpt(@) + Vg1, 3)] (44)
+Ocpuy, (@) + -+

Here, ¢ is written in place of &g/, for simplicity. The main feature is that an additional thermal term occurs
at the same order ¢ than the generalized “T-stress”.

3.3. Energy release rate for thermal loadings

Relation (10) expresses the amount of energy released during the fracture process as a contour integral.
Such an expression, based on homogeneous boundary conditions near the crack tip (crack faces are stress
free and there is no jump through the interface I'), is no longer valid for U” and U%. As a starting point, we
use the definition of the stored energy proposed by Nairn (1997) to define AW

&

AW = 1/2/ a(U™) - (VU — al@)dx — 1/2/ a(U") - (V,U” — al®)dx.
Q
As already done, this stored energy change can be written as a work on the crack extension faces
AW = _1/2/ c(U™) - U di = 1/2/ 6(U™) -1 U™ — 6(U") - n- U™]dI, (45)
Fg Fy

where the integral along the extension F; means along F U Fy .
In order to get, as in Section 1.2, a contour integral y computed far from this region and independent of
the selected line, Eq. (45) is rewritten

AWy = <172 [ () 0,01 =172 [ (0(Wy) - p16] - Uy a1 (46)
with
Ugip(x1,32) = Ughp (x1,%2) = Uy (x1,%2).
With the judicious choice of U/, made previously the second term in the right hand side of Eq. (46)

vanishes and moreover

&(Qg*/’p) -n=0 on Fg.

Recalling that the index h holds for homogeneous (i.e. homogeneous boundary conditions in the vicinity of
the primary crack tip), Eq. (46) becomes

Ay = 172 [ 6(UY,) - UYl, — G(U,) - Ui

E

Then the expression of the energy release rate is similar to Egs. (22) and (23), the index 6 replacing m.
Coefficients K, K’ and H are unchanged and it is important to note that at the first-order, the deflection
criterion (13) is not altered by the residual stresses. At the second-order, the criterion writes like (24)—(26).
Moreover, since ¢y = g, = ¢ in the present case Eq. (37), the second form of the criterion (26) remains
unchanged whatever the kind of loading.
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As already mentioned ky and Ty, depend on @ and on the expansion coefficients mismatch (see Eq.
(43)). Thus, in case of thermal loading, the criterion (24) is independent of the temperature change © and
the expansion coefficient mismatch [o] since from Eq. (43)

Tod/p 1-
0 P 12
Najp = —&q/m -
d/p Ky /P

This independence holds true obviously for Eq. (26) from the properties of gy (see Eq. (36)). Once again
@Z[a]]z can be extracted from G4 = G;. and inserted in G, < Gx to get the particular form (24) of the
criterion which is non-local. As observed in Figs. 10 and 11, the criterion depends in both cases (weak and
strong singularities) on the increment length eq = ¢,. This is mainly due to the strong influence of the “T-
stress ”intensity factor Tjq/, in the ratio (26). The range on the horizontal axis is now quite narrow. Figs. 10
and 11 are plotted for ky > 0, as already noted, the other case is meaningless since the primary crack is
closed.

It is numerically checked (Table 2) that if [o] < 0, i.e. o)) > o, then both interface and material 2 are in
traction (@ < 0 during a cooling process) in the vicinity of the primary crack tip. This result was not

8 -
—-lambda=0,67
6 - -=lambda=0,63
o -+ |lambda=0,57
o
©
(]

0 0.005 0.01 0.015
epsi_d=epsi_p
Fig. 10. The deflection/penetration criterion (14) vs. the increment length &4 = ¢, for different elastic contrasts corresponding to a weak
singularity (4 > 1/2). The criterion is independent of the thermal amplitude @ and the expansion coeflicients mismatch [«], provided
ko > 0.

-=|lambda=0,42
-+ |ambda=0,38
-»-lambda=0,35
—-+-lambda=0,28
-=|lambda=0,23

§
3% w
o WW

0 T T 1
0 0.005 0.01 0.015
epsi_d=epsi_p

Fig. 11. The deflection/penetration criterion (24) vs. the increment length &y = ¢, for different elastic contrasts corresponding to a
strong singularity (1 < 1/2). As in Fig. 10 it is independent of @ and [«].
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Table 2
The dimensionless traction ; = ((1 +v)/E®)(0;/[«]©)(i = 1,2) on the interface and ahead of the crack tip for two different elastic
contrasts

EW/E® ) 11 (interface) G2, (material 2)
0.2 0.63 0.8 1.2
3.0 0.38 0.5 2.6

predictable, the local stress field is governed by the crack tip singularity. On the other hand, the remote
stress field is moderate and, as expected, the material having the larger expansion coefficient is in traction
during the cooling process. It is a consequence of the geometry and of the stress free boundary conditions,
the specimen deforms so as to reduce the residual stresses. As a matter of fact, if [a] < 0, the near stress
field ahead of the crack tip is tensile while the remote one is compressive. Such an unexpected residual
stresses redistribution near a crack tip has already been observed by Autesserre (1995) in a quite different
situation.

4. Combination of mechanical and thermal loadings, a criterion for crack deflection

In the previous sections, the residual stresses are computed as the result of an equivalent thermal loading
acting on the structure. If a mechanical loading (1) is superimposed, the actual intensity factors are the sum
of the two contributions

k=lkn+ko, Tap=Tn~+ Toasp, (47)

where the indices m (Section 2) and 0 (Section 3) hold respectively for mechanical and thermal. Of course
the opening condition involves the actual intensity factor and reads k = k;,, + k» > 0 whatever the sign of &
(see Section 3.2).

With Eq. (37) the energy release rate still reads like (22) and (23) without index (see Eq. (47)). In the
second case it still gives rise to a criterion independent of the applied loads (26). But it is no longer possible
to derive without care a criterion independent of the applied loads in the first case. From Egs. (27), (43) and
(47) it becomes

k:g(’cm'i_’c()&zi,@[m] )
I+v g (48)

Tap =g (Tm + Taajp £y 2 )

As already done, we consider that deflection occurs, i.e. Gy = G, while penetration is inhibited G, < Gy,
but it is no longer possible to proceed as before. Let g. denotes the critical load such that deflection occurs,
we set the dimensionless parameter

~EY 0[]
S+ oge

(49)

C

It measures the relative importance of thermal stresses compared to mechanical ones at onset of the
mechanism under consideration.

Then, using the above mentioned equality to extract (gc)2 and inserting in the inequality leads to the
usual form of the criterion (24) with

18



0.75 -

- E1/E2=0.2
= E1/E2=3.

0.5 1

o~
\\\‘N

Gd/Gp

ksi

Fig. 12. The influence of residual thermal stresses on the deflection/penetration criterion for a specimen under combined mechanical
and thermal loadings. The vertical axis corresponds to the absence of residual stresses, on the right side «® < «(!) and the deflection
trend is lowered by the residual stresses.

Td/p 1—J Tm‘f’fﬁd/p’fc 1—4
lapp = = Fp = 7 T 8 B (50)

The criterion now depends on the ratio &, it makes an explicit reference to the processing temperature @
and the critical load g, which is an implicit function of G;. making Eq. (24) a little bit illusory.

Fig. 12 shows the trends of residual stresses effects. If material 2 is stiffer than material 1 and if £, < 0, i.e.
a® > o), then the residual thermal stresses tend to promote deflection. Inversely, deflection is not fa-
voured if «? < o). Moreover, it is clear in Fig. 12 that the criterion is almost insensitive to residual stresses
if material 1 is stiffer than material 2.

Parameters like Eq. (50) have been introduced by He et al. (1994) in their analysis. With a slightly
different reasoning, they get an analogous relation to Eq. (24). However, from our point of view, with the
present notations their parameters read

Toarp 15

(He et al., 1994, footnote on p. 3445). As a matter of fact, there is no reason to neglect 7, when it is
compared to Tyq or Ty,. Moreover, the criterion is written under the form (24) with an additional squared
term (17?/’;)2 but it has been shown that some preceding terms can exist in the expansions (Section 2.3).
Finally, no reference is made to the critical value k. of k corresponding to g. (or even to g. itself), the
analysis is simply carried out for different values of the parameters (51).

5. No elastic contrast, a particular case

As mentioned in Section 3.2, in case of penetration, if E(') = E® = E it is not possible (see Eq. (40)) to
exhibit a particular solution U, allowing simplifications in the calculation of the energy release rate by a
contour integral, U; must be used in both cases. Thus the previous reasoning remains valid in case of
deflection and we focus our attention on the penetration event with a pure thermal loading. Of course, the
first consequence of the absence of elastic contrast is 4 = 1/2, then /ru(¢) is the classical mode I. Intensity
factors &, and ky are the usual SIF and TSIF (Meyer and Schmauder, 1992).
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The “T-stress’ writes

{4”w>=é”w>=“ywl—wcmmm »

£ () = £ (@) = — 52 v sin().

For the particular solution U, (x;,x;) = Oruy(¢), Eq. (31) remains unchanged with a simplified form for §

1 E \J
S = ([, T Q)
y (1_v)(1+v)(°‘ - )

The displacement field (analogous to Eq. (32)) writes

uly) () = o) cos(p)
uy () = aV sin(p)
i) (9) = 15 (2 — va) cos(p)
u) (¢) = oV sin(g),

and the associated stress field still reads Eq. (34)

| 1

01(11)1 = 0512>2 = O_dl)l = ‘731)2 = Udlz =0, (54)

(2) o.

0-d22 T—v 14v H:d]

The inner expansions (44) now write
{ U (e, ey2) = U(0,0) + kov/z /pu(@) + Toa ept(@) + Ocpug(p) + -+,
. ~1
Up(eyn,e02) = UR(0,0) + kov/e [/pu(@) + Vo (v1,32)] + Toa ept() + Oclpug(p) + 7, > )] +
(55)

The index d is kept to Argcall the dependence on the choice of the particular solution U,. On the one hand,
a simplification occurs, V. (y1,1,) = 0, the “T-stress” (52) and (53) is solution to (}he unperturbed as well as
perturbed inner problems. On the other hand, the last term is completed by V', (y1,)2) since U, does not
fulfil the boundary conditions along the extension Fy.

Expression (46) of the change in stored energy still holds

Al = <172 [ G(U)-n-urai =172 [ (U - pr6)-n- Ut
Fr Fg
with
UM (x1,%2) = Uy (x1,%2) — Uy(x1,%2). (56)

On the contrary, the index d is not kept here for simplicity reasons, in fact U™ would have the indices p
and d to recall that it is the penetration problem but with U, as particular solution. The first integral
involves homogeneous terms (i.e. satisfying homogeneous boundary conditions in the vicinity of the pri-
mary crack tip) and can be transformed into a contour integral
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AW, =172 [ [G(U™) - U~ 6(UY) 0 UMdl =T [ UFnal
C Fg

G U -1 [ U ndl (57)
Fg
where the constant 7 is defined by Eq. (54) and can be compared to Eq. (43)
2)
. Odn 1 E ., E
== =an—w il =nr okl )

It remains in Eq. (57) an integral along the extension Fy but it involves only a displacement field, namely the
opening part of U™, no stresses are required. The inner expansion (55) with (56) can be used to evaluate it

i .1 d
U(eyr, 892) = UN(0,0) + kovVe[\/pu(@) + V1, 32)] + Toaept(@) + OcV (n,32) + -+,

using continuity properties, it leads to
—/ Uhndl = —kgs\/E/ ﬁ; -ndL — @sz/ L}Z -ndL + - - - = kye\/eB + O*B' +
Fr Fg Fg

where the integrals are calculated now on the stretched extension (still noted Fr) with dL = d//e. With these
notations G (incremental) reads

1 !
Gp = z (k(%Kp + kOT()B\/5 " ) (59)

Indeed, Kx/: = 0 since _Vz =0 and it can be proved that H, = 0 (Leguillon, 1993). Then the truncated cri-
terion writes
Ga  Kq+ ny(Ky + Hs) _ G
G,  K,+nlB Gy’

with

T
0 _ N 0 _ .
Ta = G, VoG Ty =3 Vo

The only term to calculate is (see Eq. (4))

Bz—/ K;-ndL:—/ V}-ndL,
Fg Fg

which can be done analytically since V' (y1,1,) has a simple form in case of homogeneous materials

Vi) = /o' u(e’

where p’ and ¢’ are new polar coordinates with origin at the tip of the crack extension (see Fig. 13). Then B
is related to the mode I crack opening

B = lin(0) ~wa(2m)] | /g’ =5 120) ~ s (2],

Thus, considering Eqs. (43) and (58), the same previous conclusions can be drawn in this case. It must be
simply pointed out that if the usual differential definition of the energy release rate is retained instead of Eq.
(59), no asymptotics are finally required

Gy =kKKy, G, =KkK,.
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Fig. 13. The change of origin for polar coordinates after a crack extension.

The deflection criterion takes again the simplified form
Gy Ky _ Gi
4 2d . e
G, K, Gy

and, of course, no deflection and penetration lengths are involved (24— 1 =0).

6. Conclusion

From an asymptotic analysis, it is shown that, in composite materials, the main role of residual thermal
stresses is to modify the stress intensity factors which split into a sum of a mechanical and a thermal
contribution, whereas the criterion which governs the crack path selection remains unchanged from me-
chanical to thermal and to combined thermal and mechanical loadings. Thus, residual stresses influence the
load level at which the mechanism starts but not the mechanism itself.

A secondary effect is to add a new term in the expansions, it is a non-singular one which occurs at the
same order than the generalized “T-stress”. Taking into account this additional term makes the criterion
evolve from a local formulation (i.e. depending only on local properties around the primary crack tip) to a
non-local one in which the geometry of the whole structure or specimen plays a role. If mechanical and
thermal loadings are taken separately, the improved criterion remains independent of the intensity of the
applied loads (i.e. mechanical forces or cooling temperature of a thermal process). This independence
property disappears for a combined loading, the criterion makes reference to the actual mechanical load
which triggers the crack growth or kinking, except in case of a very strong singularity when material 1
(containing the primary crack) is by far stiffer than material 2.
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