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Abstract Satellite retrievals of carbon monoxide (CO) are routinely assimilated in atmospheric chemistry
models to improve air quality forecasts, produce reanalyzes and to estimate emissions. This study applies the
quantile‐conserving ensemble filter framework, a novel assimilation algorithm that can deal with non‐Gaussian
and modestly nonlinear distributions. Instead of assuming normal distributions like the Ensemble Adjustments
Kalman Filter (EAKF), we now apply a bounded normal rank histogram (BNRH) distribution for the prior. The
goal is to efficiently estimate bounded quantities such as CO atmospheric mixing ratios and emission fluxes
while maintaining the good performance achieved by the EAKF. We contrast assimilating meteorological and
MOPITT (Measurement of Pollution in the Troposphere) observations for May 2018. We evaluate the results
with the fourth deployment of the NASA Atmospheric Tomography Mission (ATom‐4) airborne field
campaign. We also compare simulations with CO tropospheric columns from the network for the detection of
atmospheric composition change and surface in‐situ observations from NOAA carbon cycle greenhouse gases.
While the differences remain small, the BNRH approach clearly works better than the EAKF in comparison to
all observation data sets.

Plain Language Summary The MOPITT instrument on the NASA/Terra satellite can detect
carbon monoxide (CO) pollution in the lower and mid‐tropospheric atmosphere but cannot accurately
differentiate small changes in the altitude of pollution plumes. Such satellite observations are assimilated
in numerical model predictions to improve the spatial and temporal distribution of CO in the atmosphere
and to estimate emission fluxes. We present a novel method that does not require assumptions about the
model and the observations, leading to a more efficient and accurate assimilation of the satellite
observations.

1. Introduction
Capturing spatio‐temporal variability of atmospheric constituents is important for both short‐term air quality
monitoring and multi‐scale chemical weather forecasting (e.g., Brasseur & Kumar, 2021), as well as supporting
chemistry‐climate applications (e.g., Staniaszek et al., 2022). Carbon monoxide (CO) plays a central role in
tropospheric chemistry. As the primary sink of the hydroxyl radical (OH), CO indirectly controls methane (CH4)
lifetimes (Gaubert et al., 2017; Prather, 2007; Zhao et al., 2020), which may become increasingly important with
the potential rise of hydrogen (H2) emissions (Bertagni et al., 2022).

Large scale episodic but ubiquitous wildfire sources of CO and other chemicals produce tropospheric ozone (O3)
(Bourgeois et al., 2021; Jaffe & Wigder, 2012; Lin et al., 2017). Butler et al. (2018) estimated that CO contributes
to around 10% of the global tropospheric O3 burden. In combination with other data sets, satellite CO observations
have proven useful in a number of different atmospheric applications, for example, to characterize urban envi-
ronments (Silva et al., 2013; W. Tang et al., 2019; Wu et al., 2022), biogenic fluxes (Hudman et al., 2008; Parazoo

RESEARCH ARTICLE
10.1029/2023JD040647

Key Points:
• A novel non Gaussian and nonlinear

ensemble data assimilation (DA)
framework is applied to MOPITT joint
state/flux optimization

• The new method performs better than
the Ensemble Adjustment Kalman
Filter in comparison to independent
observations

• MOPITT observations indicate that
CAMS‐GLOB‐ANT_v5.3 emission
fluxes are underestimated across the
mid‐latitudes in May 2018

Correspondence to:
B. Gaubert,
gaubert@ucar.edu

Citation:
Gaubert, B., Anderson, J. L., Trudeau, M.,
Smith, N., McKain, K., Pétron, G., et al.
(2024). Nonlinear and non‐Gaussian
ensemble assimilation of MOPITT CO.
Journal of Geophysical Research:
Atmospheres, 129, e2023JD040647.
https://doi.org/10.1029/2023JD040647

Received 20 DEC 2023
Accepted 4 JUN 2024

Author Contributions:
Conceptualization: Benjamin Gaubert,
Jeffrey L. Anderson
Data curation: Benjamin Gaubert,
Michael Trudeau, Nadia Smith,
Kathryn McKain, Gabrielle Pétron,
Claire Granier, Ivan Ortega, James
W. Hannigan, Wenfu Tang, Daniel Ziskin
Formal analysis: Benjamin Gaubert
Funding acquisition: Benjamin Gaubert
Investigation: Benjamin Gaubert
Methodology: Benjamin Gaubert
Project administration:
Benjamin Gaubert
Resources: Benjamin Gaubert
Software: Jeffrey L. Anderson,
Michael Trudeau, Kevin Raeder, Louisa
K. Emmons
Supervision: Benjamin Gaubert, Louisa
K. Emmons, Helen M. Worden, David
P. Edwards
Validation: Benjamin Gaubert
Visualization: Benjamin Gaubert
Writing – original draft:
Benjamin Gaubert, Jeffrey L. Anderson,
Nadia Smith
Writing – review & editing:
Benjamin Gaubert, Michael Trudeau,

© 2024. American Geophysical Union. All
Rights Reserved.

GAUBERT ET AL. 1 of 17

https://orcid.org/0000-0002-6595-0686
https://orcid.org/0000-0002-8323-5758
https://orcid.org/0000-0002-6166-7154
https://orcid.org/0000-0002-3007-6044
https://orcid.org/0000-0003-2325-6212
https://orcid.org/0000-0002-0067-617X
https://orcid.org/0000-0002-4269-1677
https://orcid.org/0000-0002-0107-4496
https://orcid.org/0000-0002-5949-9307
https://orcid.org/0000-0003-4342-1190
mailto:gaubert@ucar.edu
https://doi.org/10.1029/2023JD040647
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023JD040647&domain=pdf&date_stamp=2024-06-25


et al., 2021; Worden et al., 2019), ozone formation (Cheng et al., 2017, 2018), urban plume chemistry (Lama
et al., 2022), wildfire emission trends (Buchholz et al., 2022) and chemistry (Juncosa Calahorrano et al., 2021) as
well as long‐range transport (Ceamanos et al., 2023).

The longest satellite record of CO column abundance retrievals is based on The Measurements of Pollution
In The Troposphere (MOPITT) (Buchholz et al., 2021), and is used in reanalysis systems (Gaubert
et al., 2017; Inness et al., 2019; Miyazaki et al., 2017) as well as inverse modeling to monitor emission and
flux changes (Jiang et al., 2015; J. Liu et al., 2017; Zheng et al., 2019). Chemical DA efficiently integrates
satellite observations to evaluate and improve models, estimate emissions, and issue chemical weather
forecasts. As part of the Copernicus Atmosphere Monitoring Service or CAMS (Peuch et al., 2022), the
European Center for Medium‐Range Weather Forecasts (ECMWF) provides global air quality forecasts with
MOPITT and Infrared Atmospheric Sounding Interferometer (IASI) CO DA (Inness et al., 2022) and will
include operational real time assimilation of TROPOspheric Monitoring Instrument (TROPOMI). Satellite
CO retrievals are considered to be the best observations to estimate fire emissions and are used to reduce
uncertainties in the CO2 budget (J. Liu et al., 2017; van der Velde et al., 2021; Naus et al., 2022; Zheng
et al., 2023). Such CO observations also provide constraints on anthropogenic sources although discrepancies
between bottom‐up and top‐down emissions remain in places such as China or western Africa (Elguindi
et al., 2020). MOPITT inversions found that bottom‐up CO emissions are underestimated in China, espe-
cially in the northern part of the country, with dominant contribution from the residential, the industrial and
transportation sectors (Gaubert et al., 2020; Qu et al., 2022). CO inversions resulting from the assimilation of
the S5P/TROPOMI observations indicated that industrial point sources were underestimated in bottom‐up
inventories between 2017 and 2020 in China (Tian et al., 2022). Inversions of satellite CO observations
suggest a stronger seasonal cycle in CO emissions while the role of chemistry is also important and
improving global chemistry models remains a challenge today (Gaubert et al., 2016, 2023; Kopacz
et al., 2010; Shindell et al., 2006; Stein et al., 2014). Transport error, the hydroxyl radical OH, assimilation
settings, as well as biases and vertical representativeness of satellite observations all contribute to error in
inversions and complicate source attributions (Jiang et al., 2013; Müller et al., 2018; Z. Tang et al., 2022;
Gaubert et al., 2023).

The goal of this study is to investigate the impact of the recently developed quantile‐conserving ensemble
filter framework (QCEFF) described in three publications (Anderson, 2022, 2023; Anderson et al., 2024). In
past studies, we used of the Ensemble Adjustment Kalman Filter (EAKF) algorithm (Anderson, 2003) that
assumes the prior model error and the observation error are normally distributed. For instance the CO
chemistry is a coupled system that results in nonlinear sensitivity to initial conditions (Gaubert et al., 2016)
and emissions, which impacts CH4 (Gaubert et al., 2017). Here we introduce a non‐Gaussian filter update
that could outperform the EAKF in non‐Gaussian cases while performing nearly as well as the EAKF
otherwise. The analysis is performed using the bounded rank histogram filter and can represent arbitrary
prior distributions for observed variables (Anderson, 2010, 2020). In addition to the nonlinear and non‐
Gaussian analysis updates, the localization, the inflation and the regression of unobserved variables are
now perform in a transformed space that respects the appropriate bounds and can also better represent
nonlinear relations between observed and unobserved state variables. We will refer to this analysis update as
the bounded normal rank histogram (BNRH) assimilation algorithm (Anderson, 2023). This algorithm is
designed specifically for positive‐definite quantities such as CO atmospheric mixing ratios and emission
fluxes.

We evaluate the different assimilation configuration results with MOPITT dry air columns (XCO), and three
independent data sets that all cover a wide range of latitudes:

1. Global network of surface in‐situ remote sites.
2. Dry‐air tropospheric column‐averaged mole fraction of CO from the Network for Detection of Atmospheric

Composition Change (NDACC).
3. Aircraft in‐situ profiles from the CO NASA airborne Atmospheric Tomography Mission (ATom)

This paper is organized as follows, we introduce the observations used for assimilation and evaluation in Sec-
tion 2. The model and the assimilation algorithms are described in Section 3. Results of the assimilation ex-
periments are compared to independent data sets in Section 4 and conclusions are presented in Section 5.
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2. Observations
2.1. MOPITT V9J CO

We assimilate daytime observations of the most recent version 9 joint (V9J) MOPITT profile retrieval product,
described and evaluated in Deeter et al. (2022). The version nine includes a bias correction algorithm introduced
in V8 (Deeter et al., 2019) and shows comparable statistics with the evaluation data sets (Deeter et al., 2022).
However, it includes an improved cloud detection algorithm that increases the number of retrievals and thus the
spatial coverage (Deeter et al., 2021). The joint product shows a much larger vertical sensitivity by including CO
absorption bands in both the near infrared (2.3 μm) and in the thermal infrared channels (4.7 μm) (Worden
et al., 2010). Previous summertime assimilation of MOPITT V9J data showed improved modeled CO columns
when compared to NDACC Fourier transform infrared (FTIR) tropospheric dry‐air CO columns (Gaubert
et al., 2023).

2.2. Network for Detection of Atmospheric Composition Change (NDACC)

We evaluate prior and optimized CO with the independent NDACC data set of ground‐based Fourier transform
infrared spectrometer (FTIR). The tropospheric mixing ratio of CO, weighted by air mass (wVMR), is obtained
with ground‐based FTIR measurements of cloud‐free infrared spectra, with direct‐sun observations. The station
network includes remote and urban sites, in the southern hemisphere and at high latitudes of both hemispheres, but
there is a lack of data in the tropics. For the considered period, there were 12 operating sites and 143 daytime
average observations. For each observation, we apply the FTIR averaging kernels and a priori vertical profile to
simulated vertical profiles to account for the FTIR altitude sensitivity. The impact of the tropopause is diminished
by setting a maximum altitude lower than the height of the tropopause (Ortega et al., 2023).

2.3. NOAA Carbon Cycle Greenhouse Gases (CCGG)

We use the data from the CO GLOBALVIEWplus v2.0 ObsPack (Schuldt et al., 2021) provided by the NOAA
Global Monitoring Laboratory. We selected the representative site of the surface in‐situ network of flask sample
CO measurements (Novelli, 2003; Novelli et al., 1991). The observations are average for the month of May 2018
and compared to the modeled monthly mean.

2.4. NASA Atmospheric Tomography Mission (ATom)

The fourth ATom deployment (ATom‐4) occurred from 24 April to 21 May 2018 (Thompson et al., 2022). Here
we use the flights number 4 to 12 from 1 May to 22 May 2018 and we separate the Atlantic and the Pacific at the
meridian 70°W. The flight paths included vertical profiles reaching altitudes of up to 13 km. Figure 1 shows the
DC‐8 flight tracks and the resulting CO transects over the 2 different ocean basins. The CO mole fractions were
measured in situ with a cavity ring down instrument (Picarro G2401 m). The south Pacific deployment constitutes
flights 4 to 6 from 1 May to 7 May 2018. The Atlantic leg (flights 7 to 10) covered Antarctica to Greenland
(Figures 1c and 1d), from 9 May to 18 May 2018. The northern parts of the Pacific transect were sampled with the
last two flights. Since the campaign happened in the late boreal spring, the higher latitudes of the northern
hemisphere show a large background CO, usually higher than 100 ppb. Conversely, the CO levels were lower than
80 ppb in the southern hemisphere and less than 50 ppb in the southern high latitudes.

3. Methods
3.1. Community Atmosphere Model With Chemistry (CAM‐chem)

Simulations are conducted with the Community Atmosphere Model with Chemistry (CAM‐chem), a configu-
ration of the Community Earth System Model version 2.2 (CESM2.2), described in Danabasoglu et al. (2020). We
use the standard chemistry configuration, which is the MOZART tropospheric and stratospheric chemistry TS1
(Emmons et al., 2020) and the modal aerosol model (X. Liu et al., 2016), including the updated Volatility Basis
Set schemes for secondary organic aerosols (Tilmes et al., 2019). We only modify the nitric acid trihydrate
particle number densities from 0.01 to 10− 5 cm− 3 to better represent stratospheric ozone (Bouarar et al., 2021;
Wilka et al., 2021) and the heterogeneous aerosol uptake coefficient (γ) of 0.1 for hydroperoxyl radical (HO2),
with the reaction product being H2O instead of H2O2 following Gaubert et al. (2020). The model is run with 32
vertical layers on a 0.95° in latitude by 1.25° in longitude grid.
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Our ensemble experiments are initialized from a single CAM‐chem simulation where the temperature and the
winds are nudged to the Modern‐Era Retrospective Analysis for Research and Applications version 2 (Gelaro
et al., 2017), as in previous studies (Gaubert et al., 2021; Ortega et al., 2023). However, in our ensemble runs that
include meteorological DA, the CAM‐chem simulations are not nudged to a reanalysis. Sea surface temperatures
(SST) are prescribed from a daily analysis of Advanced Very High Resolution Radiometer (AVHRR) obser-
vations (Reynolds et al., 2007) on a 0.25° × 0.25° spatial grid and on a daily timescale. The Community Land
Model version 5 (CLM5) is online and coupled to the atmosphere at every physical time step of 30 min. CLM5 is
used to calculate the aerosols and gases dry deposition and to drive the Model of Emissions of Gases and Aerosols
from Nature, MEGAN v2.1 (Guenther et al., 2012). We are using the specified phenology configuration that
prescribes leaf area index. Anthropogenic emissions are provided by the CAMS‐GLOB‐ANT_v5.3 inventory,
described in detail in Soulie et al. (2024). The Fire INventory from NCAR (Wiedinmyer et al., 2023) version 2.5
(FINNv2.5) estimates daily biomass burning emissions from both the Moderate Resolution Imaging Spectror-
adiometer (MODIS) and the Visible/Infrared Imager Radiometer Suite (VIIRS). Methane and other greenhouse
gases are prescribed at the surface.

Figure 1. ATom‐4 campaign flight track location colored by research flight number (a). Altitude versus latitude carbon
monoxide atmospheric tomography for (b) Pacific and (c) Atlantic Oceans.
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3.2. Ensemble Adjustment Kalman Filter (EAKF)

The analysis update is estimated by the Ensemble Adjustment Kalman Filter (EAKF) (Anderson, 2001), as
implemented in the Data Assimilation Research Testbed (DART), an open‐source software for ensemble DA
(Anderson et al., 2009). The DA setup used here has been described in detail in Gaubert et al. (2023). It is derived
from the CAM + DART reanalysis (Raeder et al., 2021) and includes the MOPITT CO profile assimilation with
emission updates (Gaubert et al., 2020).

First a 30‐members ensemble of CAM‐Chem 6‐hourly forecasts is run in parallel. As in previous studies the
emissions are perturbed using the pseudo‐random fields derived from a two‐dimensional Gaussian distribution
(Evensen, 2003; Gaubert et al., 2014). This perturbation method compares well with other perturbation strategies
(Deng et al., 2022). The same fields are applied to all the species prescribed by the CAMS‐GLOB‐ANT_v5.3
anthropogenic inventory with a relative error standard deviation σ of 30% and fixed horizontal decorrelation
length l of 500 km. Another set of fields is applied to all the species emitted by the fire surface emission fluxes
with a σ of 20% and l of 300 km.

The computed ensemble prior provides the meteorological state vector consisting of specific humidity, cloud
liquid water, cloud ice, surface pressure, wind components and temperature, as well as the chemical state vector,
CO, and surface emissions COemi− ant and COemi− fire. Let the vector zpi , i = 1, …N, represent the prior model state
vector for the ith ensemble forecast valid at a time when observations are assimilated for an N‐member ensemble.
DART implements the EAKF using the two‐step algorithm described in (Anderson, 2003). The assimilation
algorithm can be described without loss of generality by examining the impact of a single observation, y, on a
single component of the model state vector, x. The first step is to obtain a prior estimate of the observation for each
ensemble member by applying a forward operator to the state vector:

ypi = h( z
p
i ),i = 1,…,N (1)

A normal distribution is fit to the prior ensemble of y. The observation likelihood is also represented by a normal
with a mean equal to the observed value and a specified observation error variance. A continuous normal posterior
distribution for y is computed using Bayes rule to multiply the prior distribution and the likelihood and an analysis
(posterior) ensemble, yai , is computed by conserving the quantiles from the prior ensemble relative to the prior
distribution (Anderson, 2022). Increments for the observation are defined as:

Δyi = yai − y
p
i (2)

In the second step, ensemble increments for each state variable are computed independently in parallel. The
increments for state variable x are computed using the prior ensemble covariance between x and y (σx,y) and the
observation error variance σy,y:

Δxi = α
σx,y
σy,y

Δyi (3)

α is the localization parameter (Anderson, 2012) used to limit the spatial impact of the observations given the
sampling errors caused by the small ensemble size. Here we use a half‐width 0.1 radians or ∼600 km for the
Gaspari–Cohn localization function (Gaspari & Cohn, 1999) and around 1,200 m in the vertical.

We also estimate emission fluxes using the state augmentation approach. By augmenting the state vector z with
these emission fluxes, we can use (Equation 3) to regress the observation space increments Δyi onto the unob-
served variables, here COemi− ant and COemi− fire, when assimilating MOPITT CO observations. As in Gaubert
et al. (2020), the relative emission increments are used to update the ensemble of emission input files:

Eai = E
p
i (1 + w

ΔCOemi,i
COemi,i

) (4)

The weight w is a function (a exp(− t/(τ))) used to propagate the increments forward in time with decreasing
impacts and set to zero at 2τ. The EAKF tends to underestimate the uncertainty associated with the prior
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distribution due to model error, limited ensemble size, and approximations in the assimilation algorithm. Some of
this lost variability is restored using an inflation algorithm applied to the prior. A spatially and temporally varying
inflation factor λx is applied to each state‐space variable (Anderson, 2009) to modify the ensemble spread without
affecting the ensemble mean of forecasts xpi :

xpi =
̅̅̅̅
λi

√
(xpi − x

p
i ) + x

p
i (5)

The spatially and temporally varying covariance inflation factor λx is itself optimized using the enhanced algo-
rithm introduced in Gharamti (2018). The settings for this algorithm include inflation lower and upper bounds of
0 and 25, an inflation standard deviation lower bound of 0.6, and an inflation damping of 0.9. An important
parameter is the control of the maximum increase of the inflation standard deviation during one analysis step, it
has been set to 1.05.

We note that Ensemble Kalman Filters, like the EAKF, provide optimal solutions if the observation likelihood is
Gaussian, the prediction model is linear and if the observation operator is a linear function of the state vector.
However, good performance has been achieved with usually slightly nonlinear and non‐Gaussian prediction
models such as in chemistry applications (e.g., Gaubert et al., 2016).

3.3. Quantile‐Conserving Ensemble Filter Framework (QCEFF)

The QCEFF generalizes both steps of the EAKF assimilation algorithm. In the first step (Anderson, 2022),
computing the increment for the observed variable, an arbitrary distribution can be fit to the prior ensemble of y
that is obtained by applying the forward operator. An arbitrary distribution can also be used for the observation
likelihood. Bayes rule is still used to compute the posterior continuous distribution by taking the product of the
prior and the likelihood. The posterior ensemble is again obtained by conserving the quantile of the ensemble
members. The distribution used here for the prior is the BNRH distribution presented in Appendix C of
Anderson (2023) and generalized to allow mixed distributions that have both discrete and continuous probabilities
(Anderson et al., 2024). An N‐member ensemble sample of a scalar partitions the real number line into N+1
intervals. The BNRH distribution places 1

N+1 of the probability into each region. For interior regions, the prob-
ability is uniformly distributed between adjacent ensemble members. If the quantity is bounded, the probability
between the outermost ensemble member and the bound is also uniformly distributed. The probability on un-
bounded tails is represented by an appropriately weighted normal distribution tail. Lower bounds of zero are used
for all tracer variables and sources. The likelihood is a truncated normal (Anderson, 2022) for all bounded state
variables (CO, COemi− ant and COemi− fire) and a normal for all other variables.

The QCEFF also generalizes the second step of the EAKF, computing increments for a state variable x given
increments for an observed variable y, by allowing the regression to be performed in an appropriately transformed
space. The x and y ensembles are transformed independently for each regression. The transformation is applied
using cumulative distribution functions (CDFs) Fpx and Fpy for all the prior ensemble members for x and the prior
and analysis ensemble members for y, that is,

x̃pn = Φ− 1 [Fpx ( x
p
n)] (6)

ỹpn = Φ− 1 [Fpx ( y
p
n)] (7)

x̃an = Φ− 1 [Fax ( x
a
n)] (8)

where Φ is the CDF of a standard normal and Φ− 1 is the probit function or the inverse of the CDF of a standard
normal. Again, the BNRH (with a lower bound of 0 for tracers and sources) is the distribution type used to get the
CDFs for both the state and observation ensembles.

3.4. Assimilation Experiments

We focus on May 2018 because the ATom‐4 aircraft observations were available. The month of May is usually
characterized by fires, sometimes for agriculture, in the tropics of the northern hemisphere (Duncan et al., 2003).
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We carried out 3 assimilation experiments to show the relative impact of the two ensemble filters (EAKF and
QCEFF). The ensemble spinup starts on 11 April 2018 with perturbed nudging parameters to generate a
dynamical ensemble, and with perturbed emissions. In this case the ensemble is nudged to the CAM6+DART
reanalysis (Raeder et al., 2021). The Control‐DA (no CO assimilation) is initialized on 17 April 2018 with
assimilation of meteorological observations every 6 hr until 1 June 2018. The 2 MOPITT CO assimilation runs
(MOPITT‐DA‐EAKF and the MOPITT‐DA‐BNRH) are initialized from the Control‐DA on 24 April 2018. The
MOPITT‐DA‐BNRH uses QCEFF with BNRH distribution for the CO state and the CO emissions, the meteo-
rological DA is performed as in the other assimilation experiments with an EAKF. The emission optimization for
both MOPITT‐DA experiments starts on 1 May2,018. We perform 3 additional CAM‐chem simulation with the
same emissions, but with the updated MOZART TS1.2 chemistry, a reference simulation (CAM‐chem‐Ref) with
the standard emissions (CAMS‐GLOB‐ANT_v5.3/FINNv2.5), and with the two obtained posterior emissions for
each MOPITT assimilation (CAM‐chem‐post‐EAKF and CAM‐chem‐post‐BNRH).

4. Results: Assessment of CO Assimilation Impacts
4.1. Assimilation Impacts

Figure 2 shows the assimilation impacts at 3 different altitude layers (524 hPa, 763 hPa and at the surface). The
MOPITT assimilation decreases CO across the tropics but increases CO at high latitudes of the northern hemi-
sphere in the free troposphere and to a lesser extent toward the surface. There are larger increases toward the
surface and over the continents of the northern hemisphere. Differences between the MOPITT‐DA‐EAKF and the
MOPITT‐DA‐BNRH remains small but are getting larger toward the surface. CO concentrations can be increased
by up to 20 ppb close to large emissions sources, with the most impact in East‐Asia. This is likely due to different
emission flux estimates. Next, we will compare the various experiments with observational data sets to evaluate
the impacts of such CO changes.

Figure 2. Monthly average differences (May 2018) in carbon monoxide (ppb) between MOPITT‐DA‐EAKF and the Control‐
DA (left column) and between the MOPITT‐DA‐BNRH and the MOPITT‐DA‐EAKF for 3 different altitude levels
(∼500 hPa, ∼700 hPa and for the surface layer).
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4.2. Comparison With MOPITT XCO

Figure 3a shows the average MOPITT XCO values for the month of May 2018. A common boreal spring feature
is the large background values in the northern hemisphere, all greater than 75 ppb. The largest XCO values are
found in east and south Asia, western Africa and for a fire in Siberia. One can also notice the fires in central
America and in central Africa. Aside from the fire emission plumes, low XCO values ranging from 30 to 60 ppb
are found in the southern hemisphere. As in previous studies (Gaubert et al., 2023), the Control‐DA overestimates
XCO from the tropical fires while underestimating the XCO in the northern hemisphere, by more than 25 ppb
(Figure 3). As expected from the result of the MOPITT profile assimilation, the MOPITT‐DA‐EAKF and the
MOPITT‐DA‐BNRH biases against MOPITT XCO are similar. This suggests good agreement between the two
algorithms overall.

Figure 3. MOPITT XCO column‐average dry‐air mole fraction monthly average (May 2018). Panels b, c, and d show the
difference between the model XCO and the MOPITT XCO.
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Figure 5. Relative bias (%) of the monthly mean (May 2018) carbon monoxide across the global network of surface in‐situ
flask measurements. Title of each panel also indicates the root mean square errors and the Pearson correlation coefficient r.

Figure 4. Differences in XCO Root mean square errors against MOPITT. It shows the difference between MOPITT‐DA‐
EAKF and MOPITT‐DA‐BNRH. A negative value indicates an improvement with reduced errors.
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Figure 4 displays the impact of BNRH assimilation with respect to the EAKF. It shows the differences in the Root
Mean Square Errors (RMSE) against MOPITT XCO, which remains small overall, indicative of similar DA
performances. The impact of the assimilation algorithm improves the agreement with MOPITT in East‐Asia,
around the North China Plain where the CO values were increased at the surface. We will further evaluate the CO
with independent data sets in the next sections.

Table 1
Summary Statistics (RMSE) for the Comparison With Independent Set of Observations

Observations Control‐DA MOPITT‐DA‐EAKF MOPITT‐DA‐BNRH

Surface in‐situ (39 stations) 16.8 8.6 7.7

ATom Pacific Ocean (N = 14,954) 16.05 13.46 13.17

ATom Atlantic Ocean (N = 14,605) 16.03 15.09 14.83

NDACC wVMR (N = 143) 21.0 13.0 11.8

Note. The unit of the RMSE is ppb.

Figure 6. ATom‐4 carbon monoxide observations (Panels a and b) and assimilation results (other panels) for each ocean
basins. The data is bin averaged on a 100 hPa pressure by 10° latitude grid. Global Root Mean Square Errors are indicated for
the assimilation results.
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4.3. NOAA Global Network of Surface Observations

Figure 5 displays the relative bias at remote surface observation stations for the month of May 2018. The bias
pattern is similar to the previous MOPITT XCO comparison, with a CO underestimation of more than 20% in the
high latitudes and between 0% and 20% in the rest of the northern hemisphere. Lowest biases are found in the
tropics while the high latitudes of the southern hemisphere are overestimated, relative to low CO values. The
increase in CO following DA of MOPITT is in good agreement with the surface observations, but does not
eliminate the bias over the highest latitudes. This could be simply due to the limited assimilation spinup period
since CO assimilation started just a week before the study period, which gave insufficient time to constrain
transported CO in this region. The MOPITT‐DA‐BNRH show a RMSE reduced by around a ppb on average
(table 1).

4.4. ATom‐4

The ATom‐4 observations and simulations averaged over 100 hPa pressure by 10° latitude grid are shown in
Figure 6. The assimilation of MOPITT improves CO for both ocean basins and reduces the average biases by up to
20 ppb and the global RMSE by around 30%. Overall the differences in the southern hemisphere are much smaller
and the assimilation corrects in the right direction, reducing the small overestimation. In the tropics, there are
relatively large additional CO enhancements from African and South American fires. Higher observed CO, by up
to 30 ppb, is transported in the upper troposphere in the southern hemisphere of the Atlantic Ocean, but not over
the Pacific ocean. Despite the challenge of modeling such instantaneous cross section observations, the Control‐
Run simulation reproduces the shape of the profile with a CO maximum at 300 hPa over the Atlantic Ocean. The
MOPITT DA reduces CO in those regions leading to a reduced CO outflow in the upper troposphere for both
oceans.

ATom sampled fire plumes at lower altitudes, mostly in the free troposphere in the northern hemisphere. The
outflow from Africa sampled in the Northern hemisphere Atlantic is confine to a smaller vertical and horizontal
extent than the Control‐Run suggests. The MOPITT assimilation reduces CO in the upper troposphere, effectively
reducing the bias while not completely capturing the strength of the gradients. The CO tagged tracers from fire
source, suggest a large contribution from Asian fires, mainly from Russia. There are small differences between the
BNRH and the EAKF algorithms overall, but with the BNRH being consistently better (Table 1).

Figure 7. Simulated versus observed carbon monoxide wVMR (143 observations across 12 Network for the detection of
atmospheric composition change sites) for (a) Control‐DA, (b) MOPITT‐DA‐EAKF, (c) MOPITT‐DA‐BNRH. The Root
Mean Square Errors and the Pearson correlation coefficient are also indicated for each assimilation experiment.
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4.5. Evaluation With NDACC

Figure 7 shows the evaluation of the simulated CO columns (wVMR). As for previous observation data sets, the
MOPITT assimilation improves CO by reducing the underestimation in the southern hemisphere, where column
observations are in the 50–75 ppb range, and increasing CO in the northern hemisphere. Some of the higher CO
observations in the northern hemisphere are underestimated which causes the RMSE to remain higher than
10 ppb. This might be due to the short assimilation period compared to the CO lifetime during the boreal spring
and would probably be mitigated more with a longer run. The MOPITT‐DA‐BNRH RMSE is 11.8 ppb while the
MOPITT‐DA‐EAKF is 13 ppb (Table 1).

4.6. Posterior Emissions

Figure 8 shows the emission increments for the MOPITT‐DA‐EAKF and the MOPITT‐DA‐BNRH experiments.
The assimilations indicate that CAMS‐GLOB‐ANT_v5.3 underestimates anthropogenic CO emissions in China,

Figure 8. Differences between the posterior and prior emissions flux for May 2018. The top panels (a, b) show the
anthropogenic and the bottom panel the fire sources of carbon monoxide.
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central Europe, the eastern USA, and the northern portion of the middle east and the Rio de la Plata region. Lower
CO emissions are found in Nigeria, Eastern Africa, India, southeast Asia and the state of São Paulo in Brazil. The
FINN2.5 are overestimated in the tropics, especially central Africa as well as central America and Indonesia.
Positive increments are found in most of Russia and Australia. Differences between the assimilation algorithm
revealed different spatial patterns. The MOPITT‐DA‐BNRH seems to provide increments that are not as
smoothed spatially, with larger gradients. At this spatial resolution, there might be wrong attribution of fire related
CO enhancements to anthropogenic sources, in particular in regions where both sources are close to each others.

We performed additional CAM‐chem simulations with the posterior emissions and evaluate the results against
MOPITT XCO (Figure 9). The impact of the simulation using the MOPITT‐DA‐EAKF is large in the northern
hemisphere with a reduction in RMSE larger than 10 ppb over the continent and over the oceanic outflow. The
impact is not as important across the tropics and in the southern hemisphere. The simulation using emissions
resulting from the MOPITT‐DA‐BNRH experiment shows lower errors than the simulation using the MOPITT‐
DA‐EAKF posterior emissions across the northern hemisphere and achieve the most improvement in China and
India with an additional 10 ppb reduction in RMSE. Since the FINN2.5 over the Congo basin are not reduced as
much in the MOPITT‐DA‐BNRH than for the MOPITT‐DA‐EAKF estimate, the overestimation persist in the
tropics of the southern hemisphere. As discussed in earlier studies (Gaubert et al., 2023), errors in the tropics
following chemistry and transport representation are different than for the northern hemisphere and needs to be
studied further in future work.

5. Conclusions
We present the first large scale geophysical application of the QCEFF or QCEFF. For our chemistry application,
where both atmospheric mixing ratio and emission fluxes are positive quantities, we employed a BNRH
nonparametric distribution, enforcing the distribution to be satisfy this requirement. This paper presents a
comparison of the BNRH and the EAKF algorithm for MOPITT assimilation for 40 days. Overall the differences
remain fairly small, suggesting that the EAKF assumption works in most cases.

Our assessment showed that the BNRH algorithm improves CO with regards to 3 different independent data sets,
the surface in‐situ observations, vertical profiles from NASA ATom‐4 and from NDACC ground‐based XCO
observations. The impact on derived posterior emissions are much larger than for the state assimilation, where the
magnitude of the increments is comparable to the MOPITT assimilation. Emission increments can even have a

Figure 9. Differences in XCO root mean square errors against MOPITT. Panel (a) shows the difference between CAM‐chem‐
REF and CAM‐chem‐post‐EAKF and panel (b) show the difference between CAM‐chem‐post‐BNRH and CAM‐chem‐post‐
EAKF. A negative value indicates an improvement with reduced errors.
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different sign. CAM‐chem simulations with the prior, EAKF‐ and BNRH‐based anthropogenic and fire CO
emissions showed an improved fit to MOPITT when the BNRH emissions are used. We consider the BNRH to
provide more appropriate results, by providing a distribution that respects the boundaries of the emission dis-
tributions. Further improvements can be achieved by assimilating more observational data sets such as Cross‐
track Infrared Sounder (CrIS), IASI and TROPOMI, and by running at higher spatial and temporal resolution,
which will be the basis of future work.

Data Availability Statement
The MOPITT Version 9 data set is available from NASA through the Earthdata portal (https://earthdata.nasa.
gov/). CESM2.2 is a publicly released version of the Community Earth System Model that is available at (https://
www.cesm.ucar.edu/, last access: 15 March 2023). The Data Assimilation Research Testbed is open‐source
software (version Manhattan; Boulder, Colorado: UCAR/NCAR/CISL/DAReS, https://doi.org/10.5065/
D6WQ0202); code and documentation are available at (https://dart.ucar.edu/, last access: 20 November 2023).
Surface in‐situ CO flask observations (Pétron et al., 2019) were obtained from the obspack_co_1_GLO-
BALVIEWplus_v2.0_2021‐12‐08 (Schuldt et al., 2021). The ATom data set is available on the Oak Ridge
National Laboratory Distributed Active Archive Center (McKain & Sweeney, 2021; Wofsy et al., 2021).

References
Anderson, J. L. (2001). An ensemble adjustment kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884–2903. https://doi.

org/10.1175/1520‐0493(2001)129〈2884:aeakff〉2.0.co;2
Anderson, J. L. (2003). A local least squares framework for ensemble filtering. Monthly Weather Review, 131(4), 634–642. https://doi.org/10.

1175/1520‐0493(2003)131〈0634:allsff〉2.0.co;2
Anderson, J. L. (2009). Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A: Dynamic Meteorology and
Oceanography, 61(1), 72–83. https://doi.org/10.3402/tellusa.v61i1.15524

Anderson, J. L. (2010). A non‐Gaussian ensemble filter update for data assimilation. Monthly Weather Review, 138(11), 4186–4198. https://doi.
org/10.1175/2010mwr3253.1

Anderson, J. L. (2012). Localization and sampling error correction in ensemble kalman filter data assimilation.Monthly Weather Review, 140(7),
2359–2371. https://doi.org/10.1175/mwr‐d‐11‐00013.1

Anderson, J. L. (2020). A marginal adjustment rank histogram filter for non‐Gaussian ensemble data assimilation. Monthly Weather Review,
148(8), 3361–3378. https://doi.org/10.1175/mwr‐d‐19‐0307.1

Anderson, J. L. (2022). A quantile‐conserving ensemble filter framework. Part I: Updating an observed variable.Monthly Weather Review, 150(5),
1061–1074. https://doi.org/10.1175/mwr‐d‐21‐0229.1

Anderson, J. L. (2023). A quantile‐conserving ensemble filter framework. Part II: Regression of observation increments in a probit and probability
integral transformed space. Monthly Weather Review, 151(10), 2759–2777. https://doi.org/10.1175/mwr‐d‐23‐0065.1

Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Avellano, A. (2009). The data assimilation research testbed: A community
facility. Bulletin of the American Meteorological Society, 90(9), 1283–1296. https://doi.org/10.1175/2009bams2618.1

Anderson, J. L., Riedel, C., Wieringa, M., Ishraque, F., Smith, M., & Kershaw, H. (2024). A quantile‐conserving ensemble filter framework. Part
III: Data assimilation for mixed distributions with application to a low‐order tracer advection model.Monthly Weather Review. https://doi.org/
10.1175/mwr‐d‐23‐0255.1

Bertagni, M. B., Pacala, S. W., Paulot, F., & Porporato, A. (2022). Risk of the hydrogen economy for atmospheric methane. Nature Commu-
nications, 13(1), 7706. https://doi.org/10.1038/s41467‐022‐35419‐7

Bouarar, I., Gaubert, B., Brasseur, G. P., Steinbrecht, W., Doumbia, T., Tilmes, S., et al. (2021). Ozone anomalies in the free troposphere during
the COVID‐19 pandemic. Geophysical Research Letters, 48(16). https://doi.org/10.1029/2021gl094204

Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Thompson, C. R., Aikin, K. C., et al. (2021). Large contribution of biomass burning
emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences, 118(52), e2109628118.
https://doi.org/10.1073/pnas.2109628118

Brasseur, G. P., & Kumar, R. (2021). Chemical weather and chemical climate. AGU Advances, 2(2). https://doi.org/10.1029/2021av000399
Buchholz, R. R., Park, M., Worden, H. M., Tang, W., Edwards, D. P., Gaubert, B., et al. (2022). New seasonal pattern of pollution emerges from

changing North American wildfires. Nature Communications, 13(1), 2043. https://doi.org/10.1038/s41467‐022‐29623‐8
Buchholz, R. R., Worden, H. M., Park, M., Francis, G., Deeter, M. N., Edwards, D. P., et al. (2021). Air pollution trends measured from terra: CO

and AOD over industrial fire‐prone and background regions. Remote Sensing of Environment, 256, 112275. https://doi.org/10.1016/j.rse.2020.
112275

Butler, T., Lupascu, A., Coates, J., & Zhu, S. (2018). Toast 1.0: Tropospheric ozone attribution of sources with tagging for CESM 1.2.2. Geo-
scientific Model Development, 11(7), 2825–2840. https://doi.org/10.5194/gmd‐11‐2825‐2018

Ceamanos, X., Coopman, Q., George, M., Riedi, J., Parrington, M., & Clerbaux, C. (2023). Remote sensing and model analysis of biomass
burning smoke transported across the Atlantic during the 2020 Western US wildfire season. Scientific Reports, 13(1), 16014. https://doi.org/10.
1038/s41598‐023‐39312‐1

Cheng, Y., Wang, Y., Zhang, Y., Chen, G., Crawford, J. H., Kleb, M. M., et al. (2017). Large biogenic contribution to boundary layer O3 ‐CO
regression slope in summer. Geophysical Research Letters, 44(13), 7061–7068. https://doi.org/10.1002/2017gl074405

Cheng, Y., Wang, Y., Zhang, Y., Crawford, J. H., Diskin, G. S., Weinheimer, A. J., & Fried, A. (2018). Estimator of surface ozone using
formaldehyde and carbon monoxide concentrations over the eastern United States in summer. Journal of Geophysical Research: Atmospheres,
123(14), 7642–7655. https://doi.org/10.1029/2018jd028452

Danabasoglu, G., Lamarque, J.‐F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. (2020). The community Earth system model
version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2). https://doi.org/10.1029/2019ms001916

Acknowledgments
We would like to acknowledge high‐
performance computing support from
Cheyenne (https://doi.org/10.5065/
D6RX99HX) provided by NSF NCAR's
Computational and Information Systems
Laboratory, sponsored by the National
Science Foundation. The NSF NCAR
MOPITT project is supported by the
National Aeronautics and Space
Administration (NASA) Earth Observing
System (EOS) program. The NDACC
effort at NSF NCAR is supported under
contract by NASA. This material is based
upon work supported by the NSF National
Center for Atmospheric Research, which is
a major facility sponsored by the National
Science Foundation under Cooperative
Agreement No. 1852977. This study was
supported by NOAA's Climate Program
Office's Atmospheric Chemistry, Carbon
Cycle, and Climate program, Grant
#NA18OAR4310283.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040647

GAUBERT ET AL. 14 of 17

 21698996, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040647 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [09/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
https://www.cesm.ucar.edu/
https://www.cesm.ucar.edu/
https://doi.org/10.5065/D6WQ0202
https://doi.org/10.5065/D6WQ0202
https://dart.ucar.edu/
https://doi.org/10.1175/1520-0493(2001)129%E2%8C%A92884:aeakff%E2%8C%AA2.0.co;2
https://doi.org/10.1175/1520-0493(2001)129%E2%8C%A92884:aeakff%E2%8C%AA2.0.co;2
https://doi.org/10.1175/1520-0493(2003)131%E2%8C%A90634:allsff%E2%8C%AA2.0.co;2
https://doi.org/10.1175/1520-0493(2003)131%E2%8C%A90634:allsff%E2%8C%AA2.0.co;2
https://doi.org/10.3402/tellusa.v61i1.15524
https://doi.org/10.1175/2010mwr3253.1
https://doi.org/10.1175/2010mwr3253.1
https://doi.org/10.1175/mwr-d-11-00013.1
https://doi.org/10.1175/mwr-d-19-0307.1
https://doi.org/10.1175/mwr-d-21-0229.1
https://doi.org/10.1175/mwr-d-23-0065.1
https://doi.org/10.1175/2009bams2618.1
https://doi.org/10.1175/mwr-d-23-0255.1
https://doi.org/10.1175/mwr-d-23-0255.1
https://doi.org/10.1038/s41467-022-35419-7
https://doi.org/10.1029/2021gl094204
https://doi.org/10.1073/pnas.2109628118
https://doi.org/10.1029/2021av000399
https://doi.org/10.1038/s41467-022-29623-8
https://doi.org/10.1016/j.rse.2020.112275
https://doi.org/10.1016/j.rse.2020.112275
https://doi.org/10.5194/gmd-11-2825-2018
https://doi.org/10.1038/s41598-023-39312-1
https://doi.org/10.1038/s41598-023-39312-1
https://doi.org/10.1002/2017gl074405
https://doi.org/10.1029/2018jd028452
https://doi.org/10.1029/2019ms001916
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.5065/D6RX99HX


Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez‐Alonso, S., et al. (2019). Radiance‐based retrieval bias mitigation for
the MOPITT instrument: The version 8 product. Atmospheric Measurement Techniques, 12(8), 4561–4580. https://doi.org/10.5194/amt‐12‐
4561‐2019

Deeter, M. N., Francis, G., Gille, J., Mao, D., Martínez‐Alonso, S., Worden, H., et al. (2022). The MOPITT version 9 CO product: Sampling
enhancements and validation. Atmospheric Measurement Techniques, 15(8), 2325–2344. https://doi.org/10.5194/amt‐15‐2325‐2022

Deeter, M. N., Mao, D., Martinez‐Alonso, S., Worden, H. M., Andreae, M. O., & Schlager, H. (2021). Impacts of MOPITT cloud detection
revisions on observation frequency and mapping of highly polluted scenes. Remote Sensing of Environment, 262, 112516. https://doi.org/10.
1016/j.rse.2021.112516

Deng, S., Shen, Z., Chen, S., & Wang, R. (2022). Comparison of perturbation strategies for the initial ensemble in ocean data assimilation with a
fully coupled Earth system model. Journal of Marine Science and Engineering, 10(3), 412. https://doi.org/10.3390/jmse10030412

Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., & Logan, J. A. (2003). Interannual and seasonal variability of biomass burning emissions
constrained by satellite observations. Journal of Geophysical Research, 108(D2). https://doi.org/10.1029/2002jd002378

Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H., et al. (2020). Intercomparison of magnitudes and trends in anthro-
pogenic surface emissions from bottom‐up inventories top‐down estimates and emission scenarios. Earth's Future, 8(8). https://doi.org/10.
1029/2020ef001520

Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J.‐F., et al. (2020). The chemistry mechanism in the
community Earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(4). https://doi.org/10.1029/
2019ms001882

Evensen, G. (2003). The ensemble kalman filter: Theoretical formulation and practical implementation.Ocean Dynamics, 53(4), 343–367. https://
doi.org/10.1007/s10236‐003‐0036‐9

Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteo-
rological Society, 125(554), 723–757. https://doi.org/10.1002/qj.49712555417

Gaubert, B., Arellano, A. F., Barré, J., Worden, H. M., Emmons, L. K., Tilmes, S., et al. (2016). Toward a chemical reanalysis in a coupled
chemistry‐climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. Journal of Geophysical
Research: Atmospheres, 121(12), 7310–7343. https://doi.org/10.1002/2016jd024863

Gaubert, B., Bouarar, I., Doumbia, T., Liu, Y., Stavrakou, T., Deroubaix, A., et al. (2021). Global changes in secondary atmospheric pollutants
during the 2020 COVID‐19 pandemic. Journal of Geophysical Research: Atmospheres, 126(8). https://doi.org/10.1029/2020jd034213

Gaubert, B., Coman, A., Foret, G., Meleux, F., Ung, A., Rouil, L., et al. (2014). Regional scale ozone data assimilation using an ensemble Kalman
filter and the CHIMERE chemical transport model.Geoscientific Model Development, 7(1), 283–302. https://doi.org/10.5194/gmd‐7‐283‐2014

Gaubert, B., Edwards, D. P., Anderson, J. L., Arellano, A. F., Barré, J., Buchholz, R. R., et al. (2023). Global scale inversions from MOPITT CO
and MODIS AOD. Remote Sensing, 15(19), 4813. https://doi.org/10.3390/rs15194813

Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Arellano Jr., A. F., et al. (2020). Correcting model biases of CO in East Asia:
Impact on oxidant distributions during KORUS‐AQ. Atmospheric Chemistry and Physics, 20(23), 14617–14647. https://doi.org/10.5194/acp‐
20‐14617‐2020

Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., et al. (2017). Chemical feedback from decreasing carbon
monoxide emissions. Geophysical Research Letters, 44(19), 9985–9995. https://doi.org/10.1002/2017gl074987

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern‐Era Retrospective analysis for research and
applications version 2 (MERRA‐2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli‐d‐16‐0758.1

Gharamti, M. E. (2018). Enhanced adaptive inflation algorithm for ensemble filters. Monthly Weather Review, 146(2), 623–640. https://doi.org/
10.1175/mwr‐d‐17‐0187.1

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases
and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific
Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd‐5‐1471‐2012

Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu, S., et al. (2008). Biogenic versus anthropogenic sources of CO in the
United States. Geophysical Research Letters, 35(4). https://doi.org/10.1029/2007gl032393

Inness, A., Aben, I., Ades, M., Borsdorff, T., Flemming, J., Jones, L., et al. (2022). Assimilation of S5P/TROPOMI carbon monoxide data with the
global CAMS near‐real‐time system. Atmospheric Chemistry and Physics, 22(21), 14355–14376. https://doi.org/10.5194/acp‐22‐14355‐2022

Inness, A., Ades, M., Agustí‐Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.‐M., et al. (2019). The CAMS reanalysis of atmospheric
composition. Atmospheric Chemistry and Physics, 19(6), 3515–3556. https://doi.org/10.5194/acp‐19‐3515‐2019

Jaffe, D. A., & Wigder, N. L. (2012). Ozone production from wildfires: A critical review. Atmospheric Environment, 51, 1–10. https://doi.org/10.
1016/j.atmosenv.2011.11.063

Jiang, Z., Jones, D. B. A., Worden, H. M., Deeter, M. N., Henze, D. K., Worden, J., et al. (2013). Impact of model errors in convective transport on
CO source estimates inferred from MOPITT CO retrievals. Journal of Geophysical Research: Atmospheres, 118(4), 2073–2083. https://doi.
org/10.1002/jgrd.50216

Jiang, Z., Jones, D. B. A., Worden, H. M., & Henze, D. K. (2015). Sensitivity of top‐down CO source estimates to the modeled vertical structure in
atmospheric CO. Atmospheric Chemistry and Physics, 15(3), 1521–1537. https://doi.org/10.5194/acp‐15‐1521‐2015

Juncosa Calahorrano, J. F., Payne, V. H., Kulawik, S., Ford, B., Flocke, F., Campos, T., & Fischer, E. V. (2021). Evolution of acyl peroxynitrates
(PANs) in wildfire smoke plumes detected by the cross‐track infrared sounder (CrIS) over the western U.S. During summer 2018.Geophysical
Research Letters, 48(23). https://doi.org/10.1029/2021gl093405

Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., et al. (2010). Global estimates of CO sources with high
resolution by adjoint inversion of multiple satellite datasets (MOPITT AIRS SCIAMACHY TES). Atmospheric Chemistry and Physics, 10(3),
855–876. https://doi.org/10.5194/acp‐10‐855‐2010

Lama, S., Houweling, S., Boersma, K. F., Aben, I., van der Gon, H. A. C. D., & Krol, M. C. (2022). Estimation of OH in urban plumes using
TROPOMI‐inferred NO2/CO. Atmospheric Chemistry and Physics, 22(24), 16053–16071. https://doi.org/10.5194/acp‐22‐16053‐2022

Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. (2017). US surface ozone trends and extremes from 1980 to 2014: Quantifying
the roles of rising Asian emissions domestic controls wildfires and climate. Atmospheric Chemistry and Physics, 17(4), 2943–2970. https://doi.
org/10.5194/acp‐17‐2943‐2017

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical
continents to the 2015–2016 El Niño. Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aam5690

Liu, X., Ma, P.‐L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. (2016). Description and evaluation of a new four‐mode version of the modal
aerosol module (MAM4) within version 5.3 of the community atmosphere model. Geoscientific Model Development, 9(2), 505–522. https://
doi.org/10.5194/gmd‐9‐505‐2016

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040647

GAUBERT ET AL. 15 of 17

 21698996, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040647 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [09/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/amt-15-2325-2022
https://doi.org/10.1016/j.rse.2021.112516
https://doi.org/10.1016/j.rse.2021.112516
https://doi.org/10.3390/jmse10030412
https://doi.org/10.1029/2002jd002378
https://doi.org/10.1029/2020ef001520
https://doi.org/10.1029/2020ef001520
https://doi.org/10.1029/2019ms001882
https://doi.org/10.1029/2019ms001882
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1002/2016jd024863
https://doi.org/10.1029/2020jd034213
https://doi.org/10.5194/gmd-7-283-2014
https://doi.org/10.3390/rs15194813
https://doi.org/10.5194/acp-20-14617-2020
https://doi.org/10.5194/acp-20-14617-2020
https://doi.org/10.1002/2017gl074987
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.1175/mwr-d-17-0187.1
https://doi.org/10.1175/mwr-d-17-0187.1
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1029/2007gl032393
https://doi.org/10.5194/acp-22-14355-2022
https://doi.org/10.5194/acp-19-3515-2019
https://doi.org/10.1016/j.atmosenv.2011.11.063
https://doi.org/10.1016/j.atmosenv.2011.11.063
https://doi.org/10.1002/jgrd.50216
https://doi.org/10.1002/jgrd.50216
https://doi.org/10.5194/acp-15-1521-2015
https://doi.org/10.1029/2021gl093405
https://doi.org/10.5194/acp-10-855-2010
https://doi.org/10.5194/acp-22-16053-2022
https://doi.org/10.5194/acp-17-2943-2017
https://doi.org/10.5194/acp-17-2943-2017
https://doi.org/10.1126/science.aam5690
https://doi.org/10.5194/gmd-9-505-2016
https://doi.org/10.5194/gmd-9-505-2016


McKain, K., & Sweeney, C. (2021). ATom: CO2 CH4 and CO measurements from picarro 2016‐2018. ORNL Distributed Active Archive Center.
https://doi.org/10.3334/ORNLDAAC/1732

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., & Kanaya, Y. (2017). Decadal changes in global surface NOx emissions from
multi‐constituent satellite data assimilation. Atmospheric Chemistry and Physics, 17(2), 807–837. https://doi.org/10.5194/acp‐17‐807‐2017

Müller, J.‐F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P.‐F., et al. (2018). Top‐down CO emissions based on IASI
observations and hemispheric constraints on OH levels. Geophysical Research Letters, 45(3), 1621–1629. https://doi.org/10.1002/
2017gl076697

Naus, S., Domingues, L. G., Krol, M., Luijkx, I. T., Gatti, L. V., Miller, J. B., et al. (2022). Sixteen years of MOPITT satellite data strongly
constrain Amazon CO fire emissions. Atmospheric Chemistry and Physics, 22(22), 14735–14750. https://doi.org/10.5194/acp‐22‐14735‐2022

Novelli, P. C., Elkins, J. W., & Steele, L. P. (1991). The development and evaluation of a gravimetric reference scale for measurements of at-
mospheric carbon monoxide. Journal of Geophysical Research, 96(D7), 13109–13121. https://doi.org/10.1029/91jd01108

Novelli, P. C., Masarie, K. A., Lang, P. M., Hall, B. D., Myers, R. C., & Elkins, J. W. (2003). Reanalysis of tropospheric CO trends: Effects of the
1997–1998 wildfires. Journal of Geophysical Research, 108(D15). https://doi.org/10.1029/2002jd003031

Ortega, I., Gaubert, B., Hannigan, J. W., Brasseur, G., Worden, H. M., Blumenstock, T., et al. (2023). Anomalies of O3 CO C2H2 H2CO and
C2H6 detected with multiple ground‐based fourier‐transform infrared spectrometers and assessed with model simulation in 2020: COVID‐19
lockdowns versus natural variability. Elementa: Science of the Anthropocene, 11(1). https://doi.org/10.1525/elementa.2023.00015

Parazoo, N. C., Bowman, K. W., Baier, B. C., Liu, J., Lee, M., Kuai, L., et al. (2021). Covariation of airborne biogenic tracers (CO2 COS and CO)
supports stronger than expected growing season photosynthetic uptake in the southeastern US. Global Biogeochemical Cycles, 35(10). https://
doi.org/10.1029/2021gb006956

Pétron, G., Crotwell, A., Crotwell, M., Dlugokencky, E., Madronich, M., Moglia, E., et al. (2019). Earth system research laboratory carbon cycle
and greenhouse gases group flask‐air sample measurements of CO at global and regional background sites, 1967‐present. NOAA ESRL GML
CCGG Group. https://doi.org/10.15138/33BV‐S284

Peuch, V.‐H., Engelen, R., Dee, M. R. D., Flemming, J., Suttie, M., Ades, M., et al. (2022). The Copernicus atmosphere monitoring Service: From
research to operations. Bulletin of the American Meteorological Society, 103(12), E2650–E2668. https://doi.org/10.1175/bams‐d‐21‐0314.1

Prather, M. J. (2007). Lifetimes and time scales in atmospheric chemistry. Philosophical Transactions of the Royal Society A: Mathematical,
Physical & Engineering Sciences, 365(1856), 1705–1726. https://doi.org/10.1098/rsta.2007.2040

Qu, Z., Henze, D. K., Worden, H. M., Jiang, Z., Gaubert, B., Theys, N., & Wang, W. (2022). Sector‐based top‐down estimates of NOx SO2 and CO
emissions in East Asia. Geophysical Research Letters, 49(2). https://doi.org/10.1029/2021gl096009

Raeder, K., Hoar, T. J., El‐Gharamti, M., Johnson, B. K., Collins, N., Anderson, J. L., et al. (2021). A new CAM6+DART reanalysis with surface
forcing from CAM6 to other CESM models. Scientific Reports, 11(1), 16384. https://doi.org/10.1038/s41598‐021‐92927‐0

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high‐resolution‐blended analyses for sea
surface temperature. Journal of Climate, 20(22), 5473–5496. https://doi.org/10.1175/2007jcli1824.1

Schuldt, K. N., Aalto, T., Andrews, A., Baier, B., Bergamaschi, P., Biermann, T., et al. (2021). Multi‐laboratory compilation of atmospheric
carbon monoxide data for the period 1989‐2020; obspack_co_1_GLOBALVIEWplus_v2.0_2021‐12‐08. NOAA Global Monitoring Labora-
tory. Retrieved from https://gml.noaa.gov/ccgg/obspack/data.php?id=obspack_co_1_GLOBALVIEWplus_v2.0_2021‐12‐08

Shindell, D. T., Faluvegi, G., Stevenson, D. S., Krol, M. C., Emmons, L. K., Lamarque, J.‐F., et al. (2006). Multimodel simulations of carbon
monoxide: Comparison with observations and projected near‐future changes. Journal of Geophysical Research, 111(D19). https://doi.org/10.
1029/2006jd007100

Silva, S. J., Arellano, A. F., & Worden, H. M. (2013). Toward anthropogenic combustion emission constraints from space‐based analysis of urban
CO2/CO sensitivity. Geophysical Research Letters, 40(18), 4971–4976. https://doi.org/10.1002/grl.50954

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., et al. (2024). Global anthropogenic emissions (CAMS‐GLOB‐
ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses. Earth System Science Data,
16(5), 2261–2279. https://doi.org/10.5194/essd‐16‐2261‐2024

Staniaszek, Z., Griffiths, P. T., Folberth, G. A., O’Connor, F. M., Abraham, N. L., & Archibald, A. T. (2022). The role of future anthropogenic
methane emissions in air quality and climate. NPJ Climate and Atmospheric Science, 5(1), 21. https://doi.org/10.1038/s41612‐022‐00247‐5

Stein, O., Schultz, M. G., Bouarar, I., Clark, H., Huijnen, V., Gaudel, A., et al. (2014). On the wintertime low bias of Northern Hemisphere carbon
monoxide found in global model simulations. Atmospheric Chemistry and Physics, 14(17), 9295–9316. https://doi.org/10.5194/acp‐14‐9295‐
2014

Tang, W., Arellano, A. F., Gaubert, B., Miyazaki, K., & Worden, H. M. (2019). Satellite data reveal a common combustion emission pathway for
major cities in China. Atmospheric Chemistry and Physics, 19(7), 4269–4288. https://doi.org/10.5194/acp‐19‐4269‐2019

Tang, Z., Chen, J., & Jiang, Z. (2022). Discrepancy in assimilated atmospheric CO over East Asia in 2015–2020 by assimilating satellite and
surface CO measurements. Atmospheric Chemistry and Physics, 22(11), 7815–7826. https://doi.org/10.5194/acp‐22‐7815‐2022

Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F., Ryerson, T. B., et al. (2022). The NASA atmospheric tomography
(ATom) mission: Imaging the chemistry of the global atmosphere. Bulletin of the American Meteorological Society, 103(3), E761–E790.
https://doi.org/10.1175/bams‐d‐20‐0315.1

Tian, Y., Liu, C., Sun, Y., Borsdorff, T., Landgraf, J., Lu, X., et al. (2022). Satellite observations reveal a large CO emission discrepancy from
industrial point sources over China. Geophysical Research Letters, 49(5). https://doi.org/10.1029/2021gl097312

Tilmes, S., Hodzic, A., Emmons, L. K., Mills, M. J., Gettelman, A., Kinnison, D. E., et al. (2019). Climate forcing and trends of organic aerosols in
the community Earth system model (CESM2). Journal of Advances in Modeling Earth Systems, 11(12), 4323–4351. https://doi.org/10.1029/
2019ms001827

van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Borsdorff, T., Landgraf, J., et al. (2021). Vast CO2 release from
Australian fires in 2019–2020 constrained by satellite. Nature, 597(7876), 366–369. https://doi.org/10.1038/s41586‐021‐03712‐y

Wiedinmyer, C., Kimura, Y., McDonald‐Buller, E. C., Emmons, L. K., Buchholz, R. R., Tang, W., et al. (2023). The fire inventory from NCAR
version 2.5: An updated global fire emissions model for climate and chemistry applications. Geoscientific Model Development, 16(13), 3873–
3891. https://doi.org/10.5194/gmd‐16‐3873‐2023

Wilka, C., Solomon, S., Kinnison, D., & Tarasick, D. (2021). An Arctic ozone hole in 2020 if not for the Montreal Protocol. Atmospheric
Chemistry and Physics, 21(20), 15771–15781. https://doi.org/10.5194/acp‐21‐15771‐2021

Wofsy, S., Afshar, S., Allen, H., Apel, E., Asher, E., Barletta, B., et al. (2021). Atom: Merged atmospheric chemistry trace gases and aerosols
version 2 [dataset]. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1925

Worden, H. M., Bloom, A. A., Worden, J. R., Jiang, Z., Marais, E. A., Stavrakou, T., et al. (2019). New constraints on biogenic emissions using
satellite‐based estimates of carbon monoxide fluxes. Atmospheric Chemistry and Physics, 19(21), 13569–13579. https://doi.org/10.5194/acp‐
19‐13569‐2019

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040647

GAUBERT ET AL. 16 of 17

 21698996, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040647 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [09/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3334/ORNLDAAC/1732
https://doi.org/10.5194/acp-17-807-2017
https://doi.org/10.1002/2017gl076697
https://doi.org/10.1002/2017gl076697
https://doi.org/10.5194/acp-22-14735-2022
https://doi.org/10.1029/91jd01108
https://doi.org/10.1029/2002jd003031
https://doi.org/10.1525/elementa.2023.00015
https://doi.org/10.1029/2021gb006956
https://doi.org/10.1029/2021gb006956
https://doi.org/10.15138/33BV-S284
https://doi.org/10.1175/bams-d-21-0314.1
https://doi.org/10.1098/rsta.2007.2040
https://doi.org/10.1029/2021gl096009
https://doi.org/10.1038/s41598-021-92927-0
https://doi.org/10.1175/2007jcli1824.1
https://gml.noaa.gov/ccgg/obspack/data.php?id=obspack_co_1_GLOBALVIEWplus_v2.0_2021-12-08
https://doi.org/10.1029/2006jd007100
https://doi.org/10.1029/2006jd007100
https://doi.org/10.1002/grl.50954
https://doi.org/10.5194/essd-16-2261-2024
https://doi.org/10.1038/s41612-022-00247-5
https://doi.org/10.5194/acp-14-9295-2014
https://doi.org/10.5194/acp-14-9295-2014
https://doi.org/10.5194/acp-19-4269-2019
https://doi.org/10.5194/acp-22-7815-2022
https://doi.org/10.1175/bams-d-20-0315.1
https://doi.org/10.1029/2021gl097312
https://doi.org/10.1029/2019ms001827
https://doi.org/10.1029/2019ms001827
https://doi.org/10.1038/s41586-021-03712-y
https://doi.org/10.5194/gmd-16-3873-2023
https://doi.org/10.5194/acp-21-15771-2021
https://doi.org/10.3334/ORNLDAAC/1925
https://doi.org/10.5194/acp-19-13569-2019
https://doi.org/10.5194/acp-19-13569-2019


Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., & Nédélec, P. (2010). Observations of near‐surface carbon
monoxide from space using MOPITT multispectral retrievals. Journal of Geophysical Research, 115(D18). https://doi.org/10.1029/
2010jd014242

Wu, D., Liu, J., Wennberg, P. O., Palmer, P. I., Nelson, R. R., Kiel, M., & Eldering, A. (2022). Towards sector‐based attribution using intra‐city
variations in satellite‐based emission ratios between CO2 and CO. Atmospheric Chemistry and Physics, 22(22), 14547–14570. https://doi.org/
10.5194/acp‐22‐14547‐2022

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., et al. (2020). On the role of trend and variability in the hydroxyl radical
(OH) in the global methane budget. Atmospheric Chemistry and Physics, 20(21), 13011–13022. https://doi.org/10.5194/acp‐20‐13011‐2020

Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems‐Cheiney, A., Deeter, M. N., et al. (2019). Global atmospheric carbon monoxide budget 2000–
2017 inferred from multi‐species atmospheric inversions. Earth System Science Data, 11(3), 1411–1436. https://doi.org/10.5194/essd‐11‐
1411‐2019

Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., et al. (2023). Record‐high CO2 emissions from boreal fires in 2021.
Science, 379(6635), 912–917. https://doi.org/10.1126/science.ade0805

Journal of Geophysical Research: Atmospheres 10.1029/2023JD040647

GAUBERT ET AL. 17 of 17

 21698996, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040647 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [09/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2010jd014242
https://doi.org/10.1029/2010jd014242
https://doi.org/10.5194/acp-22-14547-2022
https://doi.org/10.5194/acp-22-14547-2022
https://doi.org/10.5194/acp-20-13011-2020
https://doi.org/10.5194/essd-11-1411-2019
https://doi.org/10.5194/essd-11-1411-2019
https://doi.org/10.1126/science.ade0805

	description
	Nonlinear and Non‐Gaussian Ensemble Assimilation of MOPITT CO
	1. Introduction
	2. Observations
	2.1. MOPITT V9J CO
	2.2. Network for Detection of Atmospheric Composition Change (NDACC)
	2.3. NOAA Carbon Cycle Greenhouse Gases (CCGG)
	2.4. NASA Atmospheric Tomography Mission (ATom)

	3. Methods
	3.1. Community Atmosphere Model With Chemistry (CAM‐chem)
	3.2. Ensemble Adjustment Kalman Filter (EAKF)
	3.3. Quantile‐Conserving Ensemble Filter Framework (QCEFF)
	3.4. Assimilation Experiments

	4. Results: Assessment of CO Assimilation Impacts
	4.1. Assimilation Impacts
	4.2. Comparison With MOPITT XCO
	4.3. NOAA Global Network of Surface Observations
	4.4. ATom‐4
	4.5. Evaluation With NDACC
	4.6. Posterior Emissions

	5. Conclusions
	Data Availability Statement



