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Abstract: Energy efficiency in buildings can be achieved by many approaches including a high-performance HVAC system, 
passive design strategies, and accurate energy consumption prediction. Energy evaluation is crucial in existing buildings 
to improve system control by detecting any unusual pattern of consumption as well as identifying the most influential 
variables in energy usage for a better target in retrofit projects. This paper aims to identify the significant contributors to 
energy consumption in both heating and non-heating periods of campus buildings situated in the south of France. The 
linear regression model is adopted to investigate the relationship between the dependent variable (response) and 
independent variables (predictors). During the heating period, the analysis focuses on five potential variables, namely, time 
index (daytime/night-time), day index (weekday/weekend), building size, indoor and outdoor climate, and their confounding. 
When electric heaters (reversible air-conditioners) are likely to be involved, results have shown that the model with the 
interactive effect variables achieves a coefficient of determination of 68%. That model consists of CO2, time index, day 
index, building size, indoor humidity, and indoor temperature. During the non-heating period, the occupancy rate is the 
main target for its impact level on electricity use. The regression model has found that the occupancy rate and day index 
alone can explain 50% of the consumption variation. Together, this study points out the importance of the occupant’s 
precision to better the predictive model in future studies. This includes a better assumption of occupied space and schedule 
and a better understanding of the scale of the occupant.  
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1. INTRODUCTION  

Studies to date have proposed many approaches and techniques to forecast energy consumption at the design stage or 

analyses of retrofit options to achieve higher energy efficiency in buildings. Varying from literature reviews, there is no 

specific structure available on building energy (Fumo, 2014). Data-driven is one of the most frequently discussed due to 

its ease of use and capacity for handling massive data sets (Afroz et al., 2018). A recent study (Foucquier et al., 2013)  

categorizes this approach into three categories as follows: (1) Physical models: demand in-depth understanding of how to 

construct overall information for usage in widely used simulation software.  (2) Statistical methods: to create the model, 

historical data is needed. This approach entails Multiple Linear Regression, Conditional Demand Analysis, Genetic 

Algorithm, Artificial Neural Network, and Support Vector Machine. (3) Hybrid mode seeks to close the gap between 

physicals and statistical models.  

 

Higher education buildings are designed for various activities which accommodate office, classroom, e-learning, laboratory, 

workshop, residential and parking (Pérez-Lombard, Ortiz and Pout, 2008). Due to the low building densities on campus 

and the shorter operating hours during the peak energy demand seasons, campus buildings offer a better possibility for 

energy reduction (Chung and Rhee, 2014). However, energy consumption is encouraged to decrease in response to the 

current trend of becoming a sustainable development in education by positively implementing low carbon activities on 

campus (Luo, Han and Zhou, 2017).  

 

Although there are many different energy consumers in a building, HVAC systems, lighting systems, IT equipment, and 

server equipment are frequently the biggest consumers (Agarwal, Weng and Gupta, 2009). However, the primary flaw in 

energy forecasting, particularly in structures with air conditioning systems, is brought on by the outside weather, occupant 

changes during the day, and the internal loads put in place in the building (Neto and Fiorelli, 2008). In many current 

simulation tools for simulating building performance, occupant behaviours are viewed as static, deterministic schedules or 

settings (Hong et al., 2018). The randomization of occupancy has a statistical impact on how efficiently a building uses 

energy (Carlucci et al., 2016).  

  

The objective of this paper is to identify the most influential variables on electricity consumption during heating and non-

heating period. The analyse is done through predicting technique using one of the data-driven approach. As the case study 

is existing buildings with historical data available both on site and on outdoor climate, multiple linear regression model is 

adopted for its simple structure, quick and efficient predictive ability.  

2. METHOD 

2.1. Multiple linear regression  

The technique used in this work is a multivariate regression analysis, which synchronically takes into account changes in 

the independent and dependent variables (Uyanık and Güler, 2013).   

Equation 1: The multiple linear regression model.   𝑌𝑖 = 𝛽0 + 𝑥𝑖,1𝛽1 + 𝑥𝑖,2𝛽2 + ⋯+ 𝑥𝑖,𝑝𝛽𝑝 + 𝑒𝑖   

Where:  

- 𝑌 = the response (dependent variable)  

- 𝑥 = the predictors (independent variables) 

- 𝛽 = the unknown regression coefficients   

- 𝑒 = the error to account for the discrepancy between predicted and the observed data 

- 𝑖 = 1 ,… , 𝑛 

- 𝑛 = the sample sizes 

2.2. Model selection 

This study employs a forward regression, which starts with a model with no predictors, to choose its predictors (the 

intercept-only model). Next, the variables are added to the model one at a time until none more can improve it by a particular 

standard. The variable that significantly improves the model is introduced at each step. A variable stay in the model once 

it is added. The analysis is done using Rstudio version 4.0.3. (2020-10-10) (Verzani, 2011). The train function [caret 

package] computes the forward regression; the tuning parameter nvmax specifies the maximum number of predictors to 

incorporate in the model. Regression analysis uses the Mean absolute error (MAE), Root means squared error (RMSE) 

metrics to measure the model's prediction error. The better the model, the lower the MAE, and RMSE. The coefficient of 

determination (R2) denotes the relationship between the values of the desired outcomes and those that the model predicts. 

The model is better the greater the R2. 
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2.3. Model evaluation metrics 

The performance of the models is assessed using 10-fold cross-validation after the best models from the combination of 

chosen parameters have been developed. The evaluation metrics can be calculated as follows (Botchkarev, 2019):  

 

Equation 2: Mean absolute error.      𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑁
𝑖=1  

Equation 3: Mean square error.    𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1     

Equation 4: Root mean square error.     𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂)2𝑁

𝑖=1  

Equation 5: Coefficient of determination.   𝑅2 =
∑(𝑦𝑖−𝑦𝑖̂)

2

∑(𝑦𝑖−𝑦𝑖̅)
2      

Where: 

- 𝑦̂ = predicted value of 𝑦 measured value at the ith moment 

- 𝑦̅ = mean value of 𝑦 measured value at the ith moment  

- N = the number of predictions 

3. CASE STUDY: IUT DE NÎMES SCHOOL BUILDINGS 

IUT de Nîmes campus situates in southern France, at 43°49'N longitude and 4°19'E latitude under Mediterranean weather. 

Three of five buildings on the campus were studied in this paper. These buildings, which were constructed in 1969, share 

the same building elements and layout with two sections: teaching and technical. The teaching section has two-storey and 

the technical has only one. Figure 1 displays a floor plan for one of the buildings.  

 

Figure 1 Teaching building floor plan, ground floor level 

 

Each building is naturally ventilated in summer and heated in winter. The primary heating source is a substation that 

supplies the building’s radiators. The secondary heating source is aerothermal which is regulated individually but connected 

to the primary source and therefore operates permanently. These sources are handled by the urban heating network which 

operates specifically during the heating period from November to April. The electricity system covers the rest of the 

appliances in the buildings including lighting, the electrical distributor, electrical radiators, reversible air-conditioners, and 

IT networks, etc. In winter, the user’s comfort relies greatly on the primary and secondary heaters. However, the third 

heating source (reversible air conditioners) is substituted when a disruption occurs in the main heating networks. 

Consequently, the electricity use intensity could be linked to outdoor and indoor climates.  
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IUT de Nîmes is equipped with an electric meter that measures the total current used in each building. For a thesis project, 

two types of climate sensors namely Elsys and Class’Air have been installed on site since 2020. These sensors measure 

the indoor CO2 level, indoor relative humidity, and indoor air temperature. In this paper, only Elsys sensor is used as it 

transmits measurements every 15 minutes, more frequently than the other one.  

 

The three studied buildings are Civil engineering building (GC), Electrical engineering building (GEII), and Material 

engineering building (GMP) with a total net surface area of 4762𝑚2, 3627𝑚2 and 6357𝑚2, respectively. In 2021, GEII was 

renovated that include the implementation of the building ventilation system, an automated lighting system, and upgrades 

to the building envelope. These are related to the installation of insulation, high-performance double-glazed windows, and 

overhangs. In 2022, the same renovation is done on GC from May to November. Long-term monitoring presents common 

measurement challenges that can lead to potential data gaps. In this study, such challenges emerged, notably in 2020, 

where technical issues resulted in significant data gaps. The outbreak of COVID-19 further compounded the problem, as 

it hindered the timely resolution of these technical issues, leaving the data unattended until the end of 2021. 

Nonetheless, the data collection process was fully restored in 2022, enabling a comprehensive understanding of the energy 

consumption evolution throughout the entire year, as presented in Table 1. 

 

Table 1: Monthly electricity consumption in 2022 of each referenced building  

Building Electricity consumption per month (MWh) 

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

GC 12.5 11.5 10.8 6.3 3.4 1.9 2.2 2.3 3.2 3.8 5.9 12.2 

GEII 12.0 5.0 5.2 2.9 4.1 4.3 3.0 2.5 4.3 4.1 3.1 8.9 

GMP 19.7 16.1 19.2 12.4 15.3 17.2 9.9 9.0 13.2 14.8 9.1 17.6 

 

To ensure the accuracy of the analysis, only a period with sufficient data collection was chosen. Therefore, the main subject 

of this study is on the heating period from November 2021 to April 2022 and on the non-heating period from August to 

October 2019 and May to October 2022. 

4. RESULTS AND DISCUSSION 

4.1. Heating period 

The outdoor climate is taken from climate data of Météo France – Nîmes Courbessac. Table 2 gives the statistical values 

of the outdoor climate and indoor climate measurements of each building. Although the windows remain closed most of 

the time to conserve the heat, the level of CO2 is in the acceptable range on average except in GMP when the maximum 

reaches 1780 ppm occasionally. IUT de Nîmes’s main heating source is a hot water heating system that flows through the 

pipes of each radiator. To obtain a constant comfortable temperature, the system follows a water law regulation that 

considers the outdoor temperature by adjusting the slope and parallel graph. Therefore, when the heating system is in a 

good condition, the indoor temperature is stable at approximately 20°C regardless of the outdoor temperature.  

 

However, failures in the heating system may occur from time to time on the campus, requiring users to activate the heating 

function of the air-conditioner if necessary. In this case, the electricity consumption may be increased by the indoor 

temperature and outdoor temperature. Nine potential variables that influence the change in electricity consumption are 

pre-selected. They are as follows: (1) Outdoor temperature (Text), (2) Outdoor humidity (HRext), (3) Solar radiation (SR), (4) 

Indoor temperature (Tin), (5) Indoor humidity (HRin), (6) Indoor CO2 level (CO2), (7) Building size, (8) Time index (daytime, 

night-time) and (9) Day index (weekday, weekend, and vacation). The time index in this context is the occupied hour and 

unoccupied hour that are referred to as ‘daytime’ and ‘night-time’, respectively.   

 

Table 2: Principal statistics of environment data of referenced building over a heating period 

Building  Variables Minimum 1st quartile   Mean 3rd quartile   Maximum 

Outdoor climate 

Text (°C) -3.5 5.7 9 12.1 27.5 

HRext (%) 18 51 64.9 80 97 

GC 

CO2 (ppm) 379 416 472 493 1084 

HRin (%) 22 32 38 44 56 

Tin (°C) 14.6 18.6 19.5 20.3 22.8 

GEII 

CO2 (ppm) 369 417 470 478 1043 

HRin (%) 18 29.3 38 44 69 
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Tin (°C) 13.5 18.1 19.8 21.9 23.3 

GMP 

CO2 (ppm) 380 422.9 549 602 1780 

HRin (%) 25 33.5 38.9 44 57 

Tin (°C) 17.1 20.8 21.2 21.8 23.4 

 

 

The main heating system on this campus is scheduled to deliver hot water at approximately 40°C during working hours on 

weekdays. At night-time and weekends, the hot water temperature is decreased to 20°C. In general, these buildings are 

the most occupied from 8 am to 12:30 am and from 1:30 pm to 5:30 pm daily and from Monday to Friday weekly. This 

leads to a similar trend of energy use during the occupied and non-occupied periods. Therefore, the time and day index is 

dominant in the indoor climate which makes a study on their interactive effect necessary. In developing a model, the time 

index and day index becomes constants, and they are used to couple with indoor CO2 level, indoor humidity, and indoor 

temperature to associate the change in electricity consumption.   

 

The model can be written as:  

 

Equation 6: Electricity consumption. P = β0 + β1size + β3Text + β4HRext + β5IT + β3time ∗ day(CO2 + HRin + Tin) 

  

To avoid biased in the model, the time and day index is transformed into a binary based on 0 as nighttime, 1 as daytime 

in the time index and 0 as the weekend, 1 as the weekday on the day index. Using 10-fold cross-validation in the forward 

regression, the first five models are presented in Table 3 where “ * ” represents a confounding effect.  

Table 3: Developed model equations and performance 

 Model Equation 
RMSE 
(kWh)  

MAE 
(kWh) 

R2 (%) 

Model 1 0.14 + CO2*day*time 10.51 7.53 52 

Model 2 0.07+0.13size +0.93 CO2*day*time 9.26 5.95 62 

Model 3 0.05+0.14size +0.09day*time+0.67CO2*day*time 8.71 5.41 67 

Model 4 0.05+0.14size+0.14day*time+0.69day*time*CO2– 0.13day*time*HRin 8.63 5.38 67 

Model 5 0.09+0.15size–0.07Tin+0.15day*time+0.71day*time*CO2 – 
0.15day*time*HRin 

8.55 5.51 68 

 

Models with SR, HRext, and Text variables have little to no improvement in the real values fitting, so they can be ignored 

and not present in this paper. Figure 2 compares the weight of the coefficient of the model’s inputs. Apart from the CO2 

*day*time, the rest of the variables have roughly the same coefficient weight which is less than the absolute value of 0.25. 

The most influential parameter is CO2 that is interacted with the time and day index. The level of CO2 can testify to the 

concentration of users in the space; Hence, it is one of the indicators of the user’s presence. But the level of CO2 can be 

impacted by many factors such as room size, the state of the window, the mechanical ventilation system, etc. Hence, the 

interaction effect can strengthen its ability in predicting as the time and day index can contribute to determining the 

presence of the occupant.  

 

Figure 2 Comparison between coefficients of predictor variables between Model 1, Model 2, Model 3, Model 4, and Model 5. The 
dashed line defines the negative and positive correlation of the variables when they are on the left and right, respectively. The further 

the data point from the dashed line, the more influential the variable on the model 
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Figure 3 illustrates the evolution of real electricity consumption in terms of hours of the day compared to the predicted 

value of the five models. Globally, the measured consumption is higher than the predicted ones during weekdays but lower 

during the weekend. The highest peak energy consumption happens at 11 am on a weekday and mostly stable throughout 

the whole day over the weekend. The models can follow the trend of consumption fairly. However, they struggle to reach 

the peak consumption in GC and GMP buildings.  

 

GEII’s highest peak, on the other hand, can be surpassed by Model 1 and Model 5. With R2 of 68%, Model 5 has the 

closest outcomes to real values both when they are stable and when they change for all buildings. Model 1, on the other 

hand, performs poorly with R2 of 52% as it noticeably overestimates and underestimates the measured values as to why 

it can surpass the peak of GEII. Between Model 4 and Model 5 the difference in outcomes is very minimal almost identical 

which hints that adding Tin to the model is unnecessary.   

 

 

Figure 3 Comparison of the measured values against the predicted values of the heating period, grouped by hour 

As the day index is transformed in 0 when it is a weekend, the multiplication with this variable is also 0 which results in 

constant predicted values on the weekend.  

 

The ideal design of the HVAC system should take into account key outdoor climate factors and main indoor environmental 

characteristics as they are strongly linked to energy use in buildings (Yang, Clements-Croome and Marson, 2017). 

However, when the electricity supplies other demands but not the HVAC system, the mentioned key contributors become 

irrelevant. The case study, IUT de Nîmes, has two separate consumption systems, heating, and electricity.  

 

 

Figure 4 Percentage of difference between measured values and predicted values of each model in the heating period 

However, the results show that a relationship between indoor climate and electricity usage has been found, which is likely 

to be true when the main heating system is disrupted or inefficient. That means the user turns on the electric heater when 

the radiators are not working due to the disruption in the system or when the heat diffused from the radiator is not to their 

satisfactory temperature. In this case, the indoor climate especially the level of CO2 somehow can explain the variation in 

energy consumption. Based on Figure 4, the biggest error of approximately 40% happens at 8 am and not at 11 am when 

the electricity consumes the highest. Therefore, these models are manipulated by the sudden increase in CO2 and the 
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status change from non-occupied to occupied.  Model 1 and Model 2 maintain an error percentage of approximately 20% 

throughout the whole week. Model 3, Model 4, and Model 5 have the smallest different around 5% on the weekend when 

the measurements are stable, but they also have the biggest difference of 40% maximum when the consumption fluctuates. 

Overall, these models overestimate electricity consumption on the weekend and underestimate electricity consumption on 

the weekday. 

4.2. Non-Heating period 

The non-heating period in Mediterranean weather is mostly from either April or May to October which differs from one year 

to another. Figure 5 shows a boxplot of hourly electricity consumption non-heating period in 2017, 2019, and 2022. During 

this period, there are three vacations namely spring break – two weeks in May, summer break – four weeks in August, and 

Toussaint - one week in May. When a building is vacant for a long period, the number of plugged-in equipment is likely to 

decrease which leads to a lesser or at least equivalent to the current used over the weekend. The bigger the boxplot, the 

more significantly different between the maximum and the minimum values which is the case for each building on Weekday.  

 

Figure 5 Boxplot of electricity consumption during the non-heating period (May to October) of 2017 2019 and 2022 showing median, 
inter-quartile range, upper and lower quartile 

From May to November 2022, the GC building was undergoing a renovation hence the number of occupied rooms has 

reduced greatly. Therefore, the electricity consumption of GC in 2022 is four times lower than typical usage in 2017 and 

2019. GEII on the other hand was undergoing a renovation from May to November 2021. The implementation of a 

mechanical ventilation system causes the consumption in 2022 to be marginally higher than it was before the renovation. 

As the day index and occupancy rate statistically influence the fluctuation of electricity consumption, the explanatory model 

is employed to unbiasedly study their impact level. During the typical unoccupied period, the electricity consumption of GC 

and GMP is roughly twice it is of GEII. This is due to the server room operating 24 hours a day, seven days a week in these 

two buildings.  

 

The occupancy rate is the ratio of occupied rooms to the total amount of available space, as shown in Table 4. With the 

use of the campus’s academic schedule, the occupied room can be identified over the selected academic year to calculate 

the occupancy rate each hour. However, the academic schedule is only available from August to October 2019 and May 

to October 2022. Therefore, the analysis is done within this timeframe. 

 

Table 4: Occupancy profile 

 
Building 

 Number of rooms Occupancy rate Occupancy profile 

Classroom Atelier  Offices Others Total Minimum Maximum Schedule Average number of 
occupants 

GC 19 26 7 7 59 0.13 0.63  
8h00 – 18h00, 

Monday - Friday 

Classroom: 30 
Atelier: 15 
Offices: 3 

GEII 14 20 7 4 45 0.18 0.6 
GMP 27 30 16 11 84 0.2 0.6 

The difference between R2 in Model 1 and Model 2 shows that the day index contributes to making a model better. The 

occupancy rate is important, but alone, its ability to predict values is rather weak.   

Table 5: Developed model performance 

 Model  Input RMSE (kWh)  MAE (kWh) R2 (%) 

Model 1 Occupancy rate 9.01 6.631 30 

Model 2 Occupancy rate, day index 7.58 5.354 50 

In summer, the model focuses on the impact of occupancy rate and day index potentially the true indicators of electricity 

usage.  Figure 6 shows a comparison between measured values and the predicted values in terms of an hour of the day 
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in each building. The predicted values show a non-uniform electricity trend throughout the studied period in hours of the 

day. The periods in this analysis are two months in 2019 and six months in 2022 which explains the difference between 

average hourly measured values between 2019 and 2022. Firstly, in the GC building, the consumption is underestimated 

in 2019 during typical usage but overestimated in 2022 when the building was undergoing renovation. The entire non-

heating period of 2022 is exceptional because the occupancy rate does not reflect the real occupied class. For instance, 

energy is consumed even though the rooms are programmed to be vacant due to construction work. As for the GEII 

building, by 2022, the renovation should have better energy efficiency, especially during winter. But in summer, it is 

understandable that the electricity consumption increases because mechanical ventilation is implemented, which adds up 

the consumption in return for the user’s comfort. Moreover, global GEII has always consumed the least energy on the 

whole campus for two main reasons. One, whilst the other buildings use of mechanical machines in the atelier that consume 

a huge amount of energy, most machines in GEII’s atelier are electrical which consumes far less. Second, the other two 

buildings have a constantly running server room that operates every day throughout the entire year. As much as having 

activities like the other buildings, the amount of electricity used by GEII is less dramatic which leads to the lowest least 

correlation between occupancy rate and electricity consumption. 

 

 

 

Figure 6 Comparison of the measured values against the predicted values of the non-heating period (August to October 2019 and May 
to October 2022), grouped by hour 

Moreover, during vacations and weekends, the occupancy rate is assumed to be 0 which leads to a constant predicted 

value. This assumption is not true for all cases. During the Toussaint holidays, students were on break, but the school was 

still accessible for school staff and researchers. Therefore, it is likely that some of the offices were occupied during that 

time which contributes to increasing the model’s error.   

5. CONCLUSION 

This study aims to analyse the electricity consumption concerning to indoor climate and the occupancy rate of heating and 

non-heating periods. In a heating period when the HVAC systems are not involved, the indoor climate factors are typically 

irrelevant to electricity use. An interruption in the system, however, can happen in the energy systems of large-scale 

buildings. Consequently, users are forced to use another option of heating to achieve a comfort level. For this study case, 

a higher education building has additional electric heaters (reversible air-conditioners). Thus, a relationship is found through 

the algorithm between the indoor climate and electricity consumption. Using multiple linear regression, the results have 

shown an average performance of the developed models, nonetheless, it can prove the impact of the interactive effect of 

time index, day index, and CO2 on electricity consumption. This interaction is potential because together, it can better 

determine the user’s presence. For a non-heating period, the models demonstrate a discernible effect of occupancy rate 

on electricity usage. The overall performance is still limited by the non-uniform situation of the studied buildings. Within the 

studied period, two of the buildings were renovating to increase their energy efficiency. The occupancy rate does not 

accurately represent whether a room is occupied or vacant during construction. Additionally, the models return a constant 

value with the assumption of zero occupancy rate on weekends and vacations. Some part of the building is still in use 

during the vacation due to the presence of school staff.  

 

A noteworthy limitation of our study lies in the analysis encompassing a post-pandemic period of COVID-19, where 

occupancy rates were not optimally represented due to the influential impact of the pandemic on building usage patterns. 

Consequently, the predictive ability of our models remained constrained. However, our findings underscore the crucial of 

accurate occupancy data for effective energy consumption forecasting. To achieve more precise estimations, future 

predictive models should incorporate correct data and consider primary contributors such as the main heater's power, 

equipment loads, lighting intensity, and other relevant factors. 
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This research highlights the significance of indoor climate conditions and occupancy rates as influential variables impacting 

electricity consumption. Despite the limitations posed by the post-pandemic period, our study offers valuable insights into 

the complexities of energy usage in large-scale buildings. The potential for further exploration and elaboration of these 

findings is substantial, paving the way for advancements in energy efficiency forecasting and management. 
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