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ABSTRACT

This research embarked on a comparative exploration of the
holistic segmentation capabilities of Convolutional Neural Net-
works (CNNs) in both 2D and 3D formats, focusing on cystic
fibrosis (CF) lesions. The study utilized data from two CF ref-
erence centers, covering five major CF structural changes. Ini-
tially, it compared the 2D and 3D models, highlighting the 3D
model’s superior capability in capturing complex features like
mucus plugs and consolidations. To improve the 2D model’s
performance, a loss adapted to fine structures segmentation
was implemented and evaluated, significantly enhancing its
accuracy, though not surpassing the 3D model’s performance.
The models underwent further validation through external eval-
uation against pulmonary function tests (PFTs), confirming the
robustness of the findings. Moreover, this study went beyond
comparing metrics; it also included comprehensive assess-
ments of the models’ interpretability and reliability, providing
valuable insights for their clinical application.

Index Terms— Segmentation, CT, cystic fibrosis, loss
function

1. INTRODUCTION

Deep learning algorithms are increasingly used in semantic
segmentation of medical imaging, especially in identifying and
segmenting multi-class disease-related abnormalities in CT
scans [1]. This progress is crucial in airway imaging, where
non-invasive methods are key for quantifying and characteriz-
ing lung abnormalities, essential in tracking the progression
and severity of diseases like cystic fibrosis (CF) [2].

Cystic fibrosis, characterized by excessive mucus produc-
tion, results in serious respiratory complications. CT scans
play a vital role in evaluating lung disease severity in CF. How-
ever, the commonly used visual scoring systems are subjective,
with interpretations varying among evaluators [3]. Moreover,
these systems typically categorize lung damage in broad terms,

potentially lacking the sensitivity required for detailed, longi-
tudinal monitoring of the disease.

As CF treatments advance, the need for non-invasive, quan-
titative biomarkers to assess lung disease has become more
pressing [4]. While 2D CNNs have been effective in detecting
CF markers in CT scans [5], the full potential of 3D volumetric
analysis to accurately depict the diverse forms of CF lesions
remains largely unexplored. These lesions, varying from tubu-
lar bronchiectasis and peribronchial thickening to centrilobular
mucus with ”tree-in-bud” patterns, and dense consolidations,
suggest that a 3D approach could offer more comprehensive
insights into these complex structures.

In addressing the segmentation challenges of CF lesions,
we employed the nnU-Net architecture in both its 2D and 3D
variants for semantic segmentation [6]. This approach facili-
tated an in-depth comparison between these methodologies in
segmenting CF lesions, which are characterized by a variety of
shapes, spatial distributions, and textures. We also refined the
nnU-Net’s loss function, moving beyond the traditional Dice
coefficient to better address the segmentation of both larger
and smaller, more intricate lesions [7].

2. OVERVIEW

In this study, we utilized 2D and 3D nnU-Net networks with
customized loss functions to segment CF lesions from 75 clin-
ical exams. For the training phase, we selected 50 CT scans,
ensuring a balanced representation of both healthy individuals
and patients with a range of lesion counts. For the network
input, two modalities were prepared: one including the lung
envelope and another excluding it.

The internal evaluation involved cross-validation on the 50
CT using metrics specifically designed for detecting lesions of
varying sizes. The best-performing models in 2D and 3D were
then externally evaluated on a separate cohort of 25 patients,
correlating their performance with FEV1% scores. Addition-
ally, these models underwent model-agnostic analysis with
Gradient-weighted Class Activation Mapping (Grad-CAM)



[8] and data-agnostic uncertainty calculation to provide inter-
pretability and enable a comprehensive comparison between
2D and 3D models. The methodological approach is illustrated
in the Figure 1.

(a) Example of patient labeling.

(b) Training and Testing Pipeline

Fig. 1. Study Method. CF lesions are color-coded as follows:
Red for Bronchiectasis, Green for Peribronchial Thickening,
Blue for Bronchial Mucus, Yellow for Bronchiolar Mucus, and
Cyan for Consolidation.

3. EXPERIMENTAL SETUP

3.1. Data Description

75 CT scans were conducted using equipment from major man-
ufacturers (GE Revolution® and Siemens Somatom Force®),
with slice thicknesses ranging from 1 to 1.25 mm. Manual
lesion segmentation was carried out using 3D Slicer 4.11 soft-
ware by three experienced observers from a CF reference
center. The CT images were displayed using parenchymal
window settings (width at 1500 Hounsfield Units; level at -450
Hounsfield Units). For validation purposes, a minimum of
80% visual agreement among the observers was required.

3.2. Segmentation model

nnU-Net served as the cornerstone of our segmentation frame-
work. Its encoder, comprising multiple blocks, each contained
a sequence of layers. These layers included a convolutional
layer, dropout, instance normalization, and Leaky ReLU acti-
vation, collaboratively working to extract and process features
from the input data. The decoder in nnU-Net was divided into
two main sections. The first section involved deconvolution,
crucial for creating high-resolution feature maps, and was con-
stituted by a single convolutional layer. The second section,
known as Features Localization, consisted of three layers: a

convolutional layer, instance normalization, and Leaky ReLU
activation. The convolution kernel sizes in the 2D version of
nnU-Net were 3× 3 with a 2× 2 stride, while the 3D variant
utilized 3 × 3 × 3 kernels with a stride of 2 × 2 × 2. Skip
connections between the encoder and decoder established di-
rect links between layers at various depths within the network,
facilitating the propagation of information and contributing
to enhanced segmentation accuracy. The learning rate (LR)
schedule began at 10−2 and was updated every 30 epochs. In
the optimization process, Stochastic Gradient Descent (SGD)
with Nesterov momentum of 0.99 was employed, aiding in
iterative parameter updates and model convergence. Notably,
nnU-Net used patch sizes of 512×512 in 2D and 96×160×160
in 3D, with batch sizes set to 12 in 2D and 2 in 3D.

3.3. Loss Function

We considered the cross-entropy (CE), which was defined as
CE = − 1

N

∑N
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)], where

yi was the true label of pixel i, ŷi was the predicted probability
for that pixel, and N represented the total number of pixels
in the image. Additionally, the Dice coefficient was utilized,
defined as Dice =

2×
∑N

i=1 yiŷi∑N
i=1 yi+

∑N
i=1 ŷi

, where yi and ŷi were the
true and predicted labels, respectively, for each pixel i.

The initial loss function was defined as Loss = CE+Dice,
which had been effective in accurately segmenting larger le-
sions [9]. However, considering the complexity of tasks
involving lesions of various sizes, we adopted a loss function
that initially prioritized the Dice coefficient for the effec-
tive segmentation of larger lesions within the folds. As
training progressed, the focus shifted towards improving
the segmentation of the 50% of pixels that were less accu-
rately predicted by the model. This loss function, which
leveraged cross-entropy as its base and incorporated over-
lap measurements as weighted regularizers, demonstrated
stability during training, particularly in adapting to smaller
structures [10]. The Top50 variant of CE, focusing on
the most challenging 50% of the pixels, was defined as
Top50 = − 1

N

∑
i∈P50

[yi log(ŷi) + (1− yi) log(1− ŷi)],
where P50 represented the set of pixels with the largest
prediction errors.

The customized loss function was the Weighted Dice
Top50, formulated as WDiceTop50 = (1 − α) × Dice +
α × Top50, where α indicated the ratio between the current
training epoch and the total number of epochs.

3.4. Internal Evaluation

To assess the accuracy of the CF lesion segmentation models,
the Dice coefficient was primarily utilized. This measure was
proficient in determining the degree of overlap between pre-
dicted and actual lesion areas. However, its performance was
reduced for smaller structures [11]. Consequently, the Normal-
ized Surface Distance (NSD) was also considered, owing to its



strength in identifying cases where predictions were close but
not exactly coincident with the actual lesions [7]. The NSD
assessed the similarity between the predicted segmentation
and the ground truth, taking into account a margin around the
object’s boundary. In our study, this margin was set at 3 pixels
(=1.8mm) to accommodate small variations or uncertainties
at the segmentation’s edge. Sensitivity and Specificity were
used to ensure the thorough detection of significant structures.
Furthermore, the Area Under the Curve (AUC) reflected the
model’s ability to effectively differentiate between various
classes.

3.5. External Evaluation

In the external evaluation of our study, we specifically focused
on the correlation between the volumes predicted by the 2D
and 3D nnU-Net models and the FEV1% volumes measured
in a cohort of 25 patients. FEV1% indicates the volume of
air a patient can forcibly exhale in one second. To establish
this relationship, we employed the Spearman’s rank correla-
tion test, which was particularly apt for our analysis due to
the involvement of non-linear relationships and non-normally
distributed data. Our goal was to validate the results of the
internal evaluation by confronting the models with clinical
data.

3.6. Interpretability

3.6.1. Model-agnostic

To enhance our understanding of nnU-Net’s functionality, we
used Grad-CAM [8], which produces heatmaps highlighting
key image regions according to the model’s focus. This process
involved isolating each label, inputting unseen CT-images into
nnU-Net, calculating gradients for feature maps in the final
convolutional layer, and determining the importance of each
feature map. A final Grad-CAM heatmap was generated by
applying ReLU activation to emphasize positively contributing
features.

3.6.2. Data-agnostic

We modified the network into a Bayesian framework, treat-
ing weights as probabilistic distributions. This involved using
Monte Carlo Dropout [12] with a 0.3 dropout rate in the con-
volutional block, creating five distinct network versions. Pre-
dictions were computed for each version, and variance among
these predictions was calculated across cross-validation folds.
This approach quantified the model’s uncertainty and provided
insights into its prediction confidence.

4. RESULTS AND DISCUSSION

The internal evaluation, as shown in Table 1, revealed that
both 2D and 3D nnU-Net models were effective in segmenting

Fig. 2. The comparison of CF lesion segmentations is pre-
sented. The first column displays the Ground Truth 3D seg-
mentations, while the second and third columns show the
predictions by the modified nnU-Net 3D and 2D models, re-
spectively.

Fig. 3. The analysis showcases CF lesion feature maps:
Ground Truth segmentations in the first row, followed by Grad-
CAM feature maps of modified nnU-Net 3D and 2D models
in the second and third rows, respectively. The maps’ intensity
levels correlate with prediction probabilities, where higher
intensity signifies higher probabilities.

bronchiectasis and peribronchial thickening, achieving Dice
scores of 80% and 64%, respectively, and NSD scores of 80%
for both. The 3D model, however, demonstrated superior
performance in detecting smaller lesions such as mucus and
consolidations. The custom loss function, designed to enhance
the detection of smaller structures, significantly improved the
2D model’s performance. Specifically, bronchial and bronchio-
lar mucus detection improved by 6% and 4% (p<0.05) in Dice
scores, and 2% (p<0.05) in NSD for both. While the Dice
score for consolidation detection in the 2D model decreased by
2%, the NSD increased by 6%, indicating more accurate detec-
tion despite imperfect overlap in multiple slices. Despite these
improvements, the 2D model could not match the 3D model’s
performance, which saw a marginal increase in performance
due to the change in loss function, with a 1% overall increase
in Dice and NSD scores. Sensitivity and specificity analysis
showed that all four models were specific, with the modified
loss enhancing the sensitivity of the 2D model. However, the
2D model’s AUC of 77% was still lower than the 3D model’s
80%.

For external evaluation, as detailed in Table 2, models with
the modified loss were selected based on their superior perfor-



Metrics Configuration Bronchiectasis
Peribronchial
Thickening

Bronchial
mucus

Bronchiolar
mucus Consolidation Avg

2D DiceCE 0.77 0.63 0.55 0.28 0.61 0.57
Dice 2D WDiceTop50 0.80 0.64 0.61 0.32 0.59 0.59

3D DiceCE 0.80 0.64 0.64 0.39 0.61 0.61
3D WDiceTop50 0.80 0.65 0.64 0.39 0.60 0.62

2D DiceCE 0.79 0.81 0.60 0.44 0.53 0.63
NSD 2D WDiceTop50 0.78 0.79 0.62 0.46 0.59 0.65

3D DiceCE 0.80 0.80 0.67 0.51 0.67 0.69
3D WDiceTop50 0.80 0.81 0.68 0.51 0.65 0.70

2D DiceCE 0.74 0.63 0.47 0.22 0.65 0.54
Sensibility 2D WDiceTop50 0.76 0.64 0.52 0.43 0.62 0.59

3D DiceCE 0.77 0.63 0.58 0.34 0.64 0.59
3D WDiceTop50 0.77 0.64 0.57 0.36 0.61 0.60

2D DiceCE 1.00 1.00 1.00 1.00 0.99 0.99
Specificity 2D WDiceTop50 1.00 1.00 1.00 0.80 0.99 0.96

3D DiceCE 1.00 1.00 1.00 1.00 0.99 0.99
3D WDiceTop50 1.00 1.00 1.00 1.00 0.99 0.99

2D DiceCE 0.87 0.81 0.73 0.61 0.82 0.77
AUC 2D WDiceTop50 0.88 0.82 0.76 0.61 0.80 0.77

3D DiceCE 0.88 0.81 0.79 0.67 0.82 0.79
3D WDiceTop50 0.88 0.82 0.78 0.68 0.80 0.80

Table 1. Internal Evaluation of the nnU-Nets predictions. Best results are reported with bold characters.

n=25
2D

FEV1%
3D

FEV1%

Bronchiectasis ρ -0.46 -0.60
p-value 0.02 <0.001

Peribronchial Thickening ρ -0.45 -0.59
p-value 0.02 <0.001

Bronchial mucus ρ -0.34 -0.50
p-value 0.09 0.005

Bronchiolar mucus ρ -0.30 -0.49
p-value 0.10 0.006

Consolidation ρ -0.24 -0.39
p-value 0.18 0.04

Table 2. External Evaluation on FEV1% of the modified 2D
and 3D nnU-Nets. ρ = Spearman correlation coefficient.

mance in internal validation. Correlation analysis with FEV1%
indicated significant correlations for bronchiectasis and peri-
bronchial thickening volumes predicted by the modified 2D
and 3D nnU-Net models. However, correlations for mucus and
consolidation were not significant for the 2D model, whereas
they were significant for the 3D model, supporting the find-
ings of the internal evaluation. Figure 2 presents an example
in 3D of CF predictions, where mucus and consolidation are
less detected in the modified nnU-Net 2D compared to its 3D
counterpart.

Interpretability, as demonstrated in Figure 3 with Grad-
CAM feature maps for the same patient, showed that the 2D
model exhibited more hesitation, particularly in identifying
mucus, compared to the 3D model. Additionally, uncertainty
estimation, calculated through variances across the five ver-
sions of nnU-Net in both 2D and 3D, indicated only a 10−4

deviation, suggesting comparable robustness in network pre-
dictions between the 2D and 3D models.

Our study challenged the prevalent belief in the literature
[13] about the superiority of 2D models, showing that 3D
models perform better in segmenting diverse CF lesion forms,
notably tubular bronchiectasis and centrilobular mucus. The
3D models’ performance is attributed to their efficient use of
spatial information, a crucial factor even with limited training
data. The importance of this discovery is amplified by our
dataset’s challenges, dominated by small mucus plugs and
bronchiolar impactions, as depicted in grads 1 and 2.

Exploring the use of separate networks for each lesion type
and analyzing metrics individually for each class [14] could
provide more in-depth insights. Furthermore, incorporating
attention mechanisms [15] might enhance decoder guidance
through spatial attention maps. This study contributes to the
ongoing discourse on the role of Dice loss in semantic segmen-
tation [16], highlighting the necessity for a variety of metrics
and approaches in the design and evaluation of networks, par-
ticularly in the complex context of multi-class segmentation.

5. CONCLUSION

The 2D and 3D models demonstrate comparable effective-
ness in detecting bronchiectasis and peribronchial thickening.
However, the 3D model is better in identifying more com-
plex lesions like mucus and consolidations, benefiting from its
ability to analyze spatial relationships across sequential slices.
Our study also highlights the potential advantages of alterna-
tive loss functions over the traditional Dice loss in semantic
segmentation, particularly for nuanced structures. The results
of this study could pave the way for new, fully automated,



volumetric scoring systems to quantify CF severity in future
clinical applications.
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