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The study tackles the challenge of accurately modeling fracture behavior in beam lattices, which is

essential for designing robust architected materials. Our research focuses on evaluating how the lattice’s

microstructure and material properties affect fracture toughness. We employed finite element simulations

based on the Euler-Bernoulli beam theory to investigate crack propagation, using a failure criterion that

initiates beam fracture when maximum axial stress exceeds critical strength. Building on observations

from these simulations, we developed a multi-phase-field fracture model with Cosserat elasticity to

integrate consistent toughness characteristics into a comprehensive framework for lattice design. This

model was validated through experimental tests, ensuring a close match between theoretical predictions

and physical reality.

Our findings reveal that the energy release rate remains relatively stable during crack propagation,

underscoring its reliability as a measure of the toughness of periodic lattice structures. We discovered

that toughness is predominantly influenced by beam height and material properties such as tensile

strength and Young’s modulus, while slenderness has minimal impact. Additionally, cracks were observed

to preferentially propagate along the lattice’s structural directions due to stress localization effects,

highlighting the importance of the microstructure in fracture behavior.

The implications of this research are significant, suggesting that improved modeling of fracture in lattice

structures can enhance material design reliability and optimization. This study bridges the gap between

theoretical models and real-world applications, providing valuable insights for the development of

advanced materials with tailored fracture properties.

Keywords Cosserat elasticity, beam lattices, fracture toughness, homogenization, metamaterial

1 Introduction

Recent advancements in additive manufacturing have enabled the creation of metamaterials

with tailored microstructures (Askari et al. 2020). This small-scale fabrication process not

only enhances the stiffness of these materials but also strengthens their load-bearing capacity.

Additionally, as the size of the structural elements approach the microscopic length scale of

the material, the impact of manufacturing defects diminish. Consequently, materials that are

macroscopically brittle can exhibit ductile behavior (Ritchie et al. 2009; Zheng et al. 2016; Bauer

et al. 2016) at this small scale, leading to the development of materials that are not only lightweight

and stiff but also incredibly resistant.

This phenomenon mirrors what is observed in nature (Nepal et al. 2023) where structural

hierarchies are evident in the microstructure of various load-bearing components. Examples

include cork (Chen et al. 2010), several diatom species (Jang et al. 2013), honeycombs (Mousanezhad

et al. 2015), and trabecular bone (Lakes 1993; Ritchie 2011). In each case, smaller beam-like

elements form a complex network designed to withstand specific loads.

Given how rare it is to come up with new bulk materials, both scientific and the industrial

communities are turning to architected or composite materials to solve future problems. In

this regard, architected materials emerge as a promising avenue to address this pressing issue.

They not only serve as structural components but also offer additional functionalities such as

sensing, adaptation, selfrepair, morphing, and restoration. This versatile nature (Dimas et al.

2013; Libonati et al. 2016; Nepal et al. 2023) makes them applicable across various industrial

sectors, including energy storage, pharmaceuticals, wearable electronics, and human-computer
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interfaces. Moreover, they are crucial elements in key sectors like automotive, defense and

aerospace industries.

Mechanical metamaterials represent a transformative class of materials structured to exhibit

properties not found in naturally occurring bulk materials (Jiao et al. 2023). These synthetic

materials gain their unique mechanical properties from their designed geometry rather than

their composition. While these new materials offer significant advantages, the complexity of

their mechanical behavior, particularly under failure, must be thoroughly understood. Without

this understanding, current design processes cannot be effectively applied to these advanced

materials.

Modeling the elastic properties of beam structures using classical continuum mechanics

often fails to capture the size-dependent behavior observed in lattice structures. The Cosserat

medium (Cosserat et al. 1909), a type of generalized continuum model, incorporates additional

rotational degrees of freedom and couple stresses, which are essential for accurately describing the

mechanics of beam lattices and other architected materials. By employing the Cosserat medium,

we can better predict the behavior of beam structures, particularly when dealing with fine

microstructures where classical theories may fall short(Molnár and Blal 2023). Unfortunately, there

are only few lattice types, where analytic formulae are available to calculated the homogenized

Cosserat stiffness (Pradel et al. 1998; Sab et al. 2009). Recently, a study showed how to calculate

local Cosserat properties on non periodic 2D lattices (Liebenstein et al. 2018a; Liebenstein et al.

2018b). However, until now no unified algorithm is proposed to obtain the Cosserat stiffness of a

given type of architecture.

Even if works in the past few decades have concentrated on predicting the strength of

homogenized microstructured materials (Pichler et al. 2011; Kolpakov et al. 2020), they struggle to

predict the materials resistance in presents of a crack. Due to the theoretical stress singularity in

the homogenized model at the crack tip, scale separation cannot be assumed, as the gradient of

the stress peak becomes comparable to the scale of the microstructure. While the theoretical

concept of homogenized fracture toughness was initially introduced by Roux et al. (2008); Vasoya

et al. (2016); Lebihain et al. (2021), it has thus far been demonstrated only for Gaussian random

microstructure model materials. We asked ourselves, if the unit cell of a periodic beam lattice

contains all the information, how can the materials toughness be calculated? As brittle fracture is

a unique problem characterized by its dissipative nature, stress localization at the crack tip, and

the coupling with the microstructure, it is still a topical debate if intrinsic fracture properties can

be defined independent of the macroscopic structural context.

This theory lends itself well to implementation into the phase-field technique (Bourdin

et al. 2000; Molnár and Gravouil 2017), which has demonstrated capability in simulating crack

propagation in inhomogenous materials (Bharali et al. 2021). Furthermore, the phase-field

approach can be enhanced to account for anisotropy through degradation of elastic stiffness

(soft) and fracture energy using penalty functions (hard). The hard representation (Nguyen

et al. 2017) requires a penalty function which acts on the gradient of the damage in the phase

field formulations. While in the soft model (Bleyer et al. 2018; Scherer et al. 2022) introduces a

directional dependent 𝑔𝑀𝑐 . The soft model is preferred in our case as it accurately describes

the behavior of the unitary cell structure independent of crack length and geometry. While

promising, this soft representation has not yet been calibrated to a real cell structures.

In this study, we employed the Euler-Bernoulli beam theory to model crack propagation

within lattice structures, focusing on identifying the parameters that influence the critical energy

release rate during fracture. By testing the impact of various factors on crack propagation, we were

able to determine how the lattice’s microstructural and material properties affect its toughness.

To extend our findings, we proposed a unified algorithm for calculating Cosserat constants

applicable to arbitrary periodic beam lattices, which enhances the accuracy of macroscopic

elasticity predictions. Additionally, we utilized a multi-phase-field approach, calibrated using

real microstructures, to model the fracture behavior of these lattices. Our theoretical and

computational work was complemented by experimental verification, specifically on rectangular

beam lattices, to ensure the validity and applicability of our models in practical scenarios.

The paper is structured as follows. First, Section 2 states the elementary question, then

Section 3 presents the modeling techniques used to tackle the problem. This is followed by
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a comprehensive analysis of the energy release rate in the beam model in Section 4. After

presenting the phase-field results in Section 5 and the experimental validation in Section 6, the

paper concludes with a final discussion in Section 8.

2 Problem statement

This section introduces the mechanical problem under investigation and outlines the objectives

of the analysis. Specifically, it compares two approaches to modeling fracture in architected

materials: the Euler-Bernoulli beam theory and the phase-field fracture technique.

Given the well-established nature of these methods, this section provides a concise overview

of their fundamental principles, defines the necessary input variables, and outlines potential

outputs. The primary focus is on comparing how these methods model fracture in beam lattices,

a common type of architected material.

Fracture resistance is characterized differently by each approach. In the beam model, the

microstructure is explicitly represented, with individual beams modeled according to their

geometry and material properties. When a beam fractures, it can be discretely identified. In

contrast, the phase-field technique treats the material as a continuum, using homogenized

material parameters to describe its behavior. Here, cracks emerge gradually as a damage variable

diffuses through the material.

For the beam model, the microstructure is defined by parameters such as the height (ℎ𝑚)

and lengths (𝐿𝑚) of the elementary beams. These structures are characterized by their material

properties, which describe stiffness (Young’s modulus, 𝐸𝑚) and strength (the maximum tensile

stress they can withstand, 𝜎𝑚𝑐 ).

On the other hand, the phase-field approach is a diffuse damage model that represents the

elastic behavior of the material using homogenized continuum stiffness, described here by the

Cosserat theory. This theory is essential for capturing the complex behavior of beam lattices, as

demonstrated previously (Molnár and Blal 2023). Fracture initiation and propagation in this

model are governed by the critical energy release rate (𝑔𝑀𝑐 , referred to as toughness) and a

regularization length scale (𝑙𝑀𝑐 ), which controls the extent of damage diffusion.

This analysis seeks to answer three key questions: (i) Can we define a unique fracture

toughness for a given beam lattice? If so, what parameters influence this toughness? (ii) Can we

develop a phase-field continuum model that accurately describes cracks in beam lattices? (iii)

How do the predicted fracture patterns compare with experimental observations?

For consistency, this study focuses on a single lattice type: the square beam lattice with equal

beam heights in both directions, analyzed in 2D. This type of structure is unique in that the

undamaged elastic Cosserat stiffness constants are available analytically, allowing validation of

the numerical technique proposed here. However, the fracture behavior is distinct enough to

necessitate a fairly complex homogenized model.

Figure 1 schematically illustrates the problem statement. Our goal is to test whether a unique

toughness exists and to identify a homogenized phase-field model (characterized by stiffness, 𝑔𝑀𝑐 ,

and 𝑙𝑀𝑐 ) that behaves similarly to the beam lattice in terms of fracture (characterized by the

parameters ℎ𝑚 , 𝐿𝑚 , 𝐸𝑚 , and 𝜎𝑚𝑐 ).

The superscript ⃝𝑚
denotes a microscopic (or beam-level) quantity, while ⃝𝑀

represents a

macroscopic (or Cosserat) homogenized quantity.

3 Methods

The following sections are dedicated to detail the three elementary approaches used in this paper.

First, the Euler-Bernoulli beam model is explained, then the basic theory of the phase-field model

is presented. Finally, a computational homogenization technique is proposed to calculate the

elastic and damaged Cosserat stiffness constants of periodic beam lattices.

3.1 Beam lattice model

To analyze slender beam structures, the Euler-Bernoulli beam theory offers the most appropriate

framework. This classical theory is adapted to characterize the behavior of extended load-bearing

elements with one side significantly larger than the others. It relies on three key assumptions:
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Figure 1: Schematic illustration of the two models used to study crack propagation in beam lattices.

(i) plane cross sections remain planar, (ii) the cross sections are perpendicular to the neutral

axis, and (iii) the beam’s deformation angles are small. Consequently, the equilibrium can be

mathematically described by the following equations:

𝑑2𝑀𝑚

𝑑𝑡2
+ 𝑝𝑚𝑛 = 0,

𝑑𝑁𝑚

𝑑𝑡
+ 𝑝𝑚𝑡 = 0.

(1)

In this context,𝑀𝑚
and 𝑁𝑚

denote the bending moment and normal force, while 𝑝𝑚𝑛 and 𝑝𝑚𝑡
represent distributed loads perpendicular and parallel to the neutral axis (𝑡 ). These equations are

complemented by Neumann and Dirichlet boundary conditions. The Euler-Bernoulli beam theory,

in its simplification neglecting shear deformation effects, is particularly suited for characterizing

the behavior of slender beams. The linear elastic response can be derived as follows:

𝑀𝑚 = 𝐸𝐼𝜅𝑚,

𝑁𝑚 = 𝐸𝐴𝜀𝑚,
(2)

Here, 𝜅𝑚 and 𝜀𝑚 correspond to the two types of deformations that slender beams can undergo:

(i) curvature/bending and (ii) elongation/compression. The parameters 𝐸 (Young’s modulus), 𝐼

(bending moment of inertia around the 𝑧 axis), and 𝐴 (cross-sectional area) are essential in this

context.

To establish the connection between degrees of freedom and deformations, we make use of

the following assumptions:

𝜅𝑚 =
𝜕𝜙𝑚

𝜕𝑡
=

𝜕2𝑢𝑚𝑛

𝜕𝑡2
, 𝜀𝑚 =

𝜕𝑢𝑚𝑡

𝜕𝑡
. (3)

Here, 𝜙𝑚 represents rotation, 𝑢𝑚𝑛 signifies perpendicular displacement, and 𝑢𝑚𝑡 corresponds

to parallel displacement concerning the neutral axis.

To determine whether the beams have failed, we compare the maximum axial stress in the

beam cross section (𝜎𝑚𝑛 ) to the material’s tensile strength (𝜎𝑚𝑐 ) using the following equation:

𝜎𝑚𝑛 =
𝑁𝑚

𝐴
+ |𝑀𝑚 |

𝐼

ℎ𝑚

2

≤ 𝜎𝑚𝑐 . (4)

Here, ℎ𝑚 is the height of the beam.

Given the linear nature of the problem, the load is increased until the point at which the first

beam fails. After registering the force maximum, the beam’s stiffness is deactivated, and the

load is increased again. In the event of unstable propagation, the load remains constant, and all

beam elements in which the stress is larger than 𝜎𝑚𝑐 are iteratively deactivated to track the

development of the crack. Once there are no remaining beams experiencing stress levels beyond

the material’s strength, the loading is resumed.
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3.2 Phase-field fracture model

Bourdin et al. (2000) introduced the widely used theory for modeling fracture with variational

methods, based on damage mechanics (Kachanov 1958) and the regularization of discontinuities

with a continuous field (Ginzburg et al. 1950; Cahn et al. 1958). This theory replaced the discrete

fracture surface concept from (A. A. Griffith 1921; A. Griffith 1924) with a continuous damage

density function within the variational framework of Francfort et al. (1998). It utilized the

Mumford and Shah functional (Mumford et al. 1989), part of the broader Ambrosio and Tortorelli

elliptic regularization framework (Ambrosio et al. 1990).

In this section we give a general description of the phase-field model used in this study. Then

later in Section 5 we will detail how it was used to model a square beam lattice.

3.2.1 Basic equation

The phase-field fracture model represents cracks with a damage variable (𝑑) ranging from 0

(undamaged) to 1 (fully fractured). This method allows for the simulation of crack initiation and

propagation without explicit crack tracking. The evolution of damage is governed by partial

differential equations coupled with linear elasticity. Fundamentally, the energy of the solid body,

as shown in eq. (5), is minimized:

Π
(
u𝑀 , 𝑑

)
= Ψ𝑒𝑙

(
uM, 𝜙𝑀 , 𝑑

)
+ Ψ𝑑 (𝑑,∇𝑑) . (5)

In this equation Ψ𝑑 (𝑑,∇𝑑) represents the energy consumed by the crack:

Ψ𝑑 (𝑑,∇𝑑) =
𝑔𝑀𝑐

𝑐𝜔𝑙
𝑀
𝑐

∫
Ω

[
𝜔 (𝑑) +

(
𝑙𝑀𝑐

)
2

|∇𝑑 |2
]
𝑑Ω, (6)

with𝑔𝑀𝑐 being the macroscopic fracture toughness, 𝑙𝑀𝑐 , the internal length scale, 𝑐𝜔 a normalization

constant. In this study we used an AT1 formulation (Pham et al. 2011), thus 𝜔 (𝑑) = 𝑑 and

𝑐𝜔 = 8/3.
This damage is induced by the crack driving force generated by the elastic strain energy:

Ψ𝑒𝑙

(
uM, 𝜙𝑀 , 𝑑

)
=

∫
Ω
𝜓𝑀
𝑒𝑙

(
uM, 𝜙𝑀 , 𝑑

)
𝑑Ω =

∫
Ω

[
𝑔 (𝑑)𝜓𝑀

0

(
uM, 𝜙𝑀

)]
𝑑Ω, (7)

where 𝜓𝑀
𝑒𝑙

is the damaged and 𝜓𝑀
0

is the undamaged strain energy densities and 𝑔 (𝑑) is the
degradation function of form which will be given later.

The mechanical and damage problems are solved in a staggered manner using a single

iteration Molnár, Doitrand, Jaccon, et al. 2022; therefore, the time step was controlled automati-

cally Molnár, Doitrand, Estevez, et al. 2020 to capture possible unstable propagation.

3.2.2 Multi-phase-field model

Anisotropy in the failure behavior can be induced in a hard and soft manner. The hard includes a

penalty function in the damage energy, the soft introduces the degradation of the stiffness in an

anisotropic manner. The advantage of the first is that the crack can be enforced to propagate in a

direction relatively easily. The inconvenience is that it is not possible to introduce different

fracture toughness values in different directions, which may reflect the physical reality. Moreover,

if we neglect the gradient of the damage and calculate the homogeneous solution, the maximum

stress remains direction-independent, and the penalty function is removed.

Therefore, in this paper, we introduce anisotropy in a soft manner and use multiple damage

variables (𝑑𝑖 ) for different lattice orientations. As a result, in each direction, we can choose the

fracture toughness and length scale associated with the beam structure:

Ψ𝑑 (d,∇d) =
𝑛∑︁
𝑖=1

𝑔𝑀𝑐,𝑖

𝑐𝜔𝑙
𝑀
𝑐,𝑖

∫
Ω

[
𝑑𝑖 +

(
𝑙𝑀𝑐,𝑖

)
2

|∇𝑑𝑖 |2
]
𝑑Ω. (8)
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In our phase-field calculation, compressive and tensile strain energies are distinguished only

along the two directions parallel to the beam structure, which, in our case, align with the global

axes. Specifically, if the normal deformations are less than zero (indicating compressive strains),

their energies do not contribute to the crack-driving force, and, accordingly, the stiffness in these

cases remains undegraded.

Damage irreversibility is enforced using Lagrange multipliers (Lu et al. 2020). More about the

implementation can be found in reference (Molnár, Doitrand, Jaccon, et al. 2022).

3.2.3 Cosserat elasticity

The classical description of continuum mechanics is ill-suited to characterize the response of

materials with an inhomogeneous microstructure, a characteristic microscopic length scale.

However, the mechanical behavior of architected materials (lattice structures) is often determined

by their specific micro-scale configurations. Therefore, the Cosserat theory (or micropolar

elasticity) incorporates rotational degrees of freedom (𝜙) into the mechanical description.

The Cauchy model is completed with an additional set of equations describing momentum

equilibrium:

∇ · 𝝈 = 0 in Ω,

∇ · 𝝁 − 𝜺 · 𝝈 = 0 in Ω,

𝝈 · n = t̄ on Γ𝑁 ,

𝝁 · n = 𝑴̄ on Γ𝑁 ,

u = ū on Γ𝐷 ,

𝝓 = 𝝓 on Γ𝐷 .

(9)

In this equation, 𝝈 is now a non-symmetric (𝜎𝑥𝑦 ≠ 𝜎𝑦𝑥 ) force-stress tensor, 𝝁 is the moment

or couple-stress tensor, and 𝜺 is the three dimensional Levi-Civita symbol. The bar symbol

represents external forces (t̄), couples (𝑴̄), prescribed displacements (ū), and rotations (𝝓).
The literature (Forest, Pradel, et al. 2001) recounts various ways to define linear elastic

behavior using the Cosserat continuum. In this paper, we chose to correlate the complete stress

tensor to the deformation components using the following model:

[
𝝈

𝝁

]
=



𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

𝜎𝑦𝑥

𝜇𝑥

𝜇𝑦


= C (d)

[
𝜺

𝜿

]
= C (d)



𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

𝜀𝑦𝑥

𝜅𝑥

𝜅𝑦


. (10)

As a result, the first four elements of the stress vector correspond to the Cauchy stress

components, however paying attention that in the Cosserat case 𝜎𝑥𝑦 and 𝜎𝑦𝑥 are not necessarily

equal. Finally, the last components are the couple stresses.

Similarly the deformation components can be written as a function of the macroscopic

degrees of freedoms, the displacements (𝒖) in the 𝑥 and 𝑦 directions and the rotation around the 𝑧

axis (𝜙):

𝜀𝑥 =
𝜕𝑢𝑥

𝜕𝑥
, 𝜀𝑦 =

𝜕𝑢𝑦

𝜕𝑦
, 𝜀𝑥𝑦 =

𝜕𝑢𝑥

𝜕𝑦
+ 𝜙, 𝜀𝑦𝑥 =

𝜕𝑢𝑦

𝜕𝑥
− 𝜙,𝜅𝑥 =

𝜕𝜙

𝜕𝑥
, 𝜅𝑦 =

𝜕𝜙

𝜕𝑦
. (11)

The 6 × 6 (in 2D) Cosserat stiffness tensor C (d) as a function of the damage variables is

going to be discussed later.
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3.2.4 Degradation function

To better control soft anisotropy in stiffness degradation (Scherer et al. 2022), the traditional

energy degradation function 𝑔 (𝑑) = (1 − 𝑑)2 is replaced by a more complex one, which reverts

to the traditional formulation when necessary (Lorentz et al. 2011):

𝑔 (𝑑) =
(

1 − 𝑑

1 + 𝑑 · 𝛾

)
2

, (12)

where 𝛾 is a parameter, which describes stress localization in the lattice structure from a

macroscopic perspective.

The way how the degradation function acts on the elastic strain energy and the exact values

of 𝛾 are dependent on the micro-structure. The identification procedure is detailed in Section 5

for the rectangular lattice.

3.3 Computational homogenization

One of the main disadvantage of the Cosserat theory, that its rigidity is available only for a few

types of lattices. Fortunately, for a rectangular beam lattice it can be calculated analytically.

To identify the constants in the degradation function described in Section 3.2, we analyze the

damaged structure, for which the stiffness constants can no longer be determined analytically.

Consequently, we employ a computational homogenization algorithm to calculate the residual

stiffness.

We employed a two-step homogenization process to determine the macroscopic Cosserat

constants for a specific beam lattice and its representative volume element (RVE).

First, we conducted discrete beam calculations on an RVE with periodic boundary conditions,

using the resulting beam forces and moments to calculate the local Cauchy and coupled stress

tensors at the junction nodes (Liebenstein et al. 2018a). Next, employing a second-order

computational homogenization framework (Geers et al. 2001), we extracted the average stresses

and strains. Finally, by correlating the deformation measures with the stress responses, we

derived the elastic Cosserat constants.

3.3.1 Local stresses

(a) Euler-Bernoulli beam
(RVE)

(b) Cosserat continuum
(macro element)

ut
m

ux
M

uy
M

φy
M

un
m

φm

Nm Mm

n

t

y
x

beam element

Vi
m

ninj
1 nj

2

XP

XQ

XC

σ i
meso

mi
meso

control volume

Figure 2: Computational Cosserat homogenisation of elastic properties of Euler-Bernoulli beam lattices.

Local stress tensors are derived from the discrete beam forces and moments using the

principle of virtual work to establish energy-consistent stress fields within each control volume

(Liebenstein et al. 2018a, pp.5-7). According to this principle, the internal work done by forces

and moments within the discrete beam network of a control volume 𝑉𝑖 (as shown in Figure 2)

must be equal to the internal work done by an equivalent continuum stress field over the same

volume. To achieve this, we calculate the virtual work associated with nodal displacements and

rotations in each control volume, ensuring energy equivalence between the discrete beam model

and the continuum representation.

7



Molnár et al.

The Cauchy stresses at the 𝑖th junction node can then be obtained using the following

equation:

𝝈meso

𝑖 =
1

𝑉𝑖

𝑛𝑐∑︁
𝑗=1

F𝑚𝑗 ⊗ l𝑗 , (13)

where F𝑚𝑗 represents the forces acting on a beam element (assumed constant along the beam) in a

Cartesian coordinate system, and l𝑗 is the middle point vector, defined as the difference between

the midpoint of two junctions and the junction node itself. This sum runs up to 𝑛𝑐 , covering all

beam segments connected to the junction node. The symbol ⊗ denotes the outer product, which

produces a matrix by multiplying two vectors, preserving directional relationships between them.

Since the forces are constant along each beam and their directional sum is zero at each

junction, it can easily be shown that the divergence of Equation (13) is zero in both directions.

Thus, the equilibrium in Equation (9) is respected locally as well.

The Cauchy stresses account only for the contribution of the normal forces. The contribution

of the moments, however, is represented by the couple stress tensor, denoted as 𝝁meso

𝑖 , which can

be calculated at junction 𝑖 using the following expression:

𝝁meso

𝑖 =
1

𝑉𝑖

𝑛𝑐∑︁
𝑗=1

[
M𝑚

𝑗 −
(
F𝑚𝑖 × l𝑗

) ]
⊗ l𝑗

2𝐷
=

1

𝑉𝑖

𝑛𝑐∑︁
𝑗=1

(
𝑀𝑚

𝑗 −


F𝑚𝑖 × l𝑗



) ⊗ l𝑗 , (14)

where M𝑚
𝑗 is the moment vector of the beam. In 2D, this reduces to a scalar moment𝑀𝑚

𝑗 around

the 𝑧-axis (denoted𝑀𝑧). The magnitude is used in the second term because the cross product

F𝑚𝑖 × l𝑗 is perpendicular to the 𝑥𝑦-plane.

In these calculations, we assume that, (i) within a given control volume (and thus at a

given node), the stress fields are homogeneous; (ii) each beam contributes equally to both of its

connecting nodes; and (iii) nodes have no spatial extension—the volume is used solely for the

final step in the weighting process.

We note that by calculating local, mesoscopic strain values (deformations and curvatures) at

each junction node, it would be possible to obtain local elastic constants associated with these

node. However, this is beyond the scope of this paper, and interested readers are referred to the

relevant section of the article (Liebenstein et al. 2018a, p.8).

3.3.2 Macroscopic boundary conditions and deformations

The limitations of first-order deformation approximations become evident when modeling

Cosserat media, as these approximations assume uniform deformation fields across the RVE.

Cosserat media, with their intrinsic rotational and bending effects, require a second-order

homogenization approach. Geers et al. (2001) and Kouznetsova et al. (2002) proposed a second-

order computational homogenization scheme that incorporates the second term in the Taylor

series expansion to approximate the deformed state of an infinitesimal material line element:

xj =
(
∇u𝑀 + I

)
· X𝑗 +

1

2

3Φ𝑀 ·
(
X𝑗 ⊗ X𝑗

)
, (15)

where ∇u𝑀
is the applied displacement gradient, and

3
𝚽
𝑀

is a third order tensor representing

second-order deformations (Geers et al. 2001; Kouznetsova et al. 2002), which arise from the finite

size of the RVE. It is calculated as
3
𝚽
𝑀 = ∇

(
∇u𝑀

)
, and contains only the applied curvatures in

our case (Forest and Sab 1998). The symbol ⊗ denotes the outer product.

To simulate periodic, uniform deformations, the RVE is deformed using periodic boundary

conditions, enforced by constraining the degrees of freedom between opposite boundary nodes

through Lagrange multipliers. As illustrated in Figure 2, for boundary nodes 𝑗 , the displacement

difference can be calculated as follows:

(
u2

𝑗 − u1

𝑗

)
=

(
∇u𝑀 + I

)
· 𝑑X𝑗 +

1

2

3Φ𝑀 ·
(
𝑑X𝑗 ⊗ 𝑑X𝑗

)
− 𝑑X𝑗 (16)
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To apply bending, rotations are prescribed as follows:

(
𝝓2

𝑗 − 𝝓1

𝑗

)
= 𝑑X𝑇

𝑗 · 𝜿𝑀 , (17)

with 𝑑X𝑗 = X2

𝑗 − X1

𝑗 and 𝜿
𝑀
representing the prescribed curvature tensor.

To apply a homogeneous rotation field (𝜙𝑀
), the junction nodes (𝑛 𝑗 ) were rotated clockwise.

Thus, following the work of Liebenstein et al. (2018), the macroscopic Cosserat strain tensor 𝜺𝑀

(see details in Section 3.2.3), can be obtained the traditional manner using the following equations:

𝜺𝑀 = ∇u𝑀 + 𝜺
1

𝑉

𝑛jnt∑︁
𝑖=1

𝝓𝑖𝑉
𝑚
𝑖 = ∇u𝑀 + 𝜺𝝓𝑀 , (18)

where 𝑉 is the total volume of the RVE, 𝑛jnt is the number of junctions in the RVE, 𝝓𝑖 are the
rotations of these junction nodes, 𝑉𝑖 are the volumes defined by the Voronoi cell around each

junction (shown in Figure 2a with transparent blue) and 𝜺 is the Levi-Civita tensor.

3.3.3 Macroscopic stresses

In the second step of our homogenization, we define energy-equivalent stresses at the macroscopic

scale (the scale of the RVE) using the Hill–Mandel energy condition. This condition states that

the mean energy at the microscopic scale must equal the energy density of the RVE at the

macroscopic scale. For the current problem, the Hill–Mandel condition is expressed as:

1

𝑉

∫
𝑉

[𝝈meso
: 𝜺meso + 𝝁meso

: 𝜿meso] 𝑑𝑉 = 𝝈𝑀
: 𝜺𝑀 + 𝝁𝑀

: 𝜿𝑀 + 3Q𝑀 ...3𝚽𝑀 . (19)

Applying static equilibrium and conservation of moments in the microstructure (Equation (9)),

and assuming no body forces, we can use the divergence theorem on the left side, yielding the

following expression for incremental work:

𝛿𝑊 meso =
1

𝑉

∫
Γ

[
nT · (𝝈meso)𝑇 · 𝛿x + nT · (𝝁meso)𝑇 · 𝛿𝝓

]
𝑑Γ+ =

1

𝑉

∫
Γ

[
tT · 𝛿x +𝑴𝑇 · 𝛿𝝓

]
𝑑Γ,

(20)

where n denotes the normal vector on the boundaries, and t and M represent surface traction and

surface couple, respectively. Substituting from Equation (15) and using the curvature definition

from Equation (11), we obtain:

𝛿𝑊 meso =
1

𝑉

∫
Γ

[t ⊗ X] 𝑑Γ : 𝛿∇uM+ 1

2𝑉

∫
Γ

[t ⊗ X ⊗ X] 𝑑Γ
...𝛿3Φ𝑀+ 1

𝑉

∫
Γ

[M ⊗ X] 𝑑Γ : 𝛿∇𝜙𝑀 .

(21)

By converting these contour integrals back into volumetric form, we derive the energy-

equivalent stresses as follows:

𝝈𝑀 =
1

𝑉

∫
𝑉

𝝈meso𝑑𝑉 , (22)

3Q𝑀
=

1

2𝑉

∫
𝑉

[
(𝝈meso)𝑇 ⊗ X + X ⊗ 𝝈meso

]
𝑑𝑉 , (23)

9
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𝝁𝑀 =
1

𝑉

∫
𝑉

𝝁meso𝑑𝑉 . (24)

The detailed simplifications are given in Kouznetsova et al. (2002) and in Appendix A.

Substituting Equation (13) and Equation (14) into Equations (22)-(24) allows us to express

macroscopic stress measures from the discrete microscopic beam elements as follows:

𝝈𝑀 =
1

𝑉

𝑛
beam∑︁
𝑖=1

F𝑚𝑖 ⊗ lei , (25)

3Q𝑀 =
1

2𝑉

𝑛
beam∑︁
𝑖=1

[ (
F𝑚𝑖 ⊗ lei

)𝑇 ⊗ XC,i + XC,i ⊗
(
F𝑚𝑖 ⊗ lei

) ]
, (26)

𝝁𝑀 =
1

𝑉

𝑛beam∑︁
𝑖=1

[
M𝑚

𝑖 −
(
F𝑚𝑖 × 1

2

l𝑒𝑖

)]
⊗ l𝑒𝑖

2𝐷
=
1

𝑉

𝑛beam∑︁
𝑖=1

(
𝑀𝑚

𝑖 −




F𝑚𝑖 × 1

2

l𝑒𝑖





) ⊗ l𝑒𝑖 , (27)

where l𝑒𝑖 is the beam vector, and XC,i denotes the coordinates of the beam element midpoint. With

no body forces on the beams, a single beam element between two junction nodes is sufficient,

making l𝑒 = 2l.
We assume that the second-order term does not contribute to the constitutive response in

homogenization. Were we to replace the beam lattice with a homogeneous Cosserat model under

simple bending, second-order deformations and stresses would arise independently, and the

energy would scale with model size (e.g., multiple unit cells). Thus, second-order deformation

effects persist irrespective of the model choice.

3.3.4 Constitutive response

Following the stiffness calculation based on a Cauchy continuum for atomic-scale samples

(Molnár, Ganster, et al. 2016), we present an analogous description for the Cosserat theory

applied to beam lattices.

To calculate the Cosserat rigidity of the lattice structure the RVE is deformed in six different

ways similar to the deformations of the Cosserat model: 2 axial extensions (𝜀𝑀𝑥 , 𝜀𝑀𝑦 ), 2 asymmetric

shears (𝜀𝑀𝑥𝑦, 𝜀
𝑀
𝑦𝑥 ), and 2 curvatures (𝜅𝑀𝑥 , 𝜅𝑀𝑦 ).

Six different quasi-static deformation cases result in 36 equations. The stiffness matrix is

symmetric. Therefore, in 2D, an anisotropic material can be described by 21 unknowns with the

Cosserat theory. The six individual equations were rewritten as an overdetermined equation

system:

∥Mc − s∥ = min (28)

which, relates the Cosserat moduli to the stresses (Equation (25) and Equation (27)). The coefficient

matrix (M, size: 36×21) contains six blocks with the applied strain values for each deformation

case. The stiffness components are the unknowns (c, size: 21×1):
c =

[
𝐶11 .. 𝐶16 𝐶22 .. 𝐶26 𝐶33 .. 𝐶36 𝐶44 𝐶45 𝐶46 𝐶55 𝐶56 𝐶66

]T
, and the

stress values are the constant terms in six blocks for each deformation case (s, size: 36×1):
s =

[
.. 𝜎

𝑀,( 𝑗 )
𝑥 𝜎

𝑀,( 𝑗 )
𝑦 𝜎

𝑀,( 𝑗 )
𝑥𝑦 𝜎

𝑀,( 𝑗 )
𝑦𝑥 𝜇

𝑀,( 𝑗 )
𝑥 𝜇

𝑀,( 𝑗 )
𝑦 ..

]𝑇
. To solve the overdetermined

system QR decomposition was used.
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Figure 3: (a) Plate with a central crack of length 2𝑎0, composed of a rectangular beam lattice with beam

dimensions 𝐿𝑚 and ℎ𝑚 . (b) One-quarter model of the symmetric geometry with size 𝐿𝑀 , with broken

beams highlighted in red. (c) Energy release rate 𝐺𝑀
as a function of normalized crack advancement.

4 Lattice toughness

Fracture in beam lattices is defined by the failure of individual beams. We consider beams failed,

when the maximum axial stress defined in Equation (4) equal or overcomes their elementary

strength 𝜎𝑚𝑐 . In this case, their stiffness, thus the stress which they support goes to zero. Basically,

we deactivate the element, only leaving a very small residual stiffness to avoid the singularity of

the global stiffness matrix of the model.

The length of the crack (𝑎) is measured by the incremental position of the furthest beam

broken. The advantage of this consideration is that it remains consistent with a macroscopic

(continuum) approach, where we follow a crack tip. The disadvantage, is that we have trouble

following branched cracks and potential crack widening.

Nevertheless, if the crack length is defined, the differential energy release rate (𝐺𝑀
) is

expressed by the following energy balance equation:

𝐺𝑀 (𝑎 + Δ𝑎/2) = −Πint (𝑎 + Δ𝑎, 𝑃) − Πint (𝑎, 𝑃) − ΔΠ𝑒𝑥𝑡 (𝑃)
Δ𝑎

, (29)

where Πint is the elastic strain energy, ΔΠext is the external work, and 𝑃 represents the applied

displacements or external forces on the boundaries. Here, 𝑎 is the initial crack length, and Δ𝑎 is

the crack increment.

Let us consider a simple problem depicted in Figure 3(a). A plate with a 2𝑎0 length crack in its

middle is subjected to tensile stress on its upper and lower boundaries. While the perpendicular

sides are left free to displace. The plate is constructed from a rectangular beam lattice with an

elementary beam length of 𝐿𝑚 and a beam height of ℎ𝑚 . The beams have a Young’s modulus of

𝐸 and a failure strength of 𝜎𝑚 . As the problem is symmetric, we only model one forth of the

geometry depicted in Figure 3(b). The size of the model is taken as 𝐿𝑀 with a crack length in

the bottom left corner of 𝑎0. On the left and bottom sides (except along the crack) symmetric

boundary conditions are defined in both the displacement and rotation degrees of freedoms. The

load is applied through displacement Dirichlet boundary conditions on the top. The broken

beams are highlighted in red.

Finally, Figure 3(c) illustrates 𝐺𝑀
as a function of normalized crack advancement for a model

with 𝐿𝑚 = 5 mm, 𝐸 = 3 GPa, ℎ𝑚 = 1 mm, and 𝜎𝑚𝑐 = 100 MPa. The geometry used has 𝑎0 = 25𝐿𝑚

and 𝐿𝑀 = 150𝐿𝑚 . The plot shows that, after crack initiation, the energy release rate𝐺𝑀
varies by

less than 10%, indicating that it can be considered approximately constant.

Figure 3(c) shows that the energy release rate𝐺𝑀
remains relatively constant as a function of

crack advancement, even when the crack shape deviates from its original form. This observation

suggests that 𝐺𝑀
may be a definable property for a given lattice structure. In the following

sections, we will examine how various model and material parameters influence 𝐺𝑀
and identify

the trends associated with these effects. We will begin by analyzing the impact of model size,

followed by an investigation of microscopic dimensions, and finally, we will explore the influence

of the elementary material properties.
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4.1 Macroscopic geometry

A. A. Griffith (1921) originally postulated that the critical energy release rate, 𝑔𝑀𝑐 , is a material

parameter. Thus, for a given material strength, 𝑔𝑀𝑐 should be unique and independent of the size

of the sample. The structural and material properties used in this test are 𝐿𝑚 = 5 mm, ℎ𝑚 = 1

mm, 𝐸 = 3 GPa and 𝜎𝑚𝑐 = 100 MPa.

Figure 5 shows 𝐺𝑀
as a function of normalized crack advancement for different model sizes

with a fixed initial crack length of 𝑎0 = 25𝐿𝑚 .
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Figure 4: Effect of sample with 𝑎0 = 25𝐿𝑚 on the critical energy release rate.

The propagation was followed until the same absolute crack length.

It is clearly visible that after an initial minor fluctuation, the values of 𝐺𝑀
are relatively

independent of the macroscopic geometry. However, it is important to note that if 𝐿𝑀 or 𝑎0
approaches 𝐿𝑚 , scale separation cannot be guaranteed. As a result, the definition of 𝐺𝑀

becomes

more difficult.

4.2 Microstructure

The microstructure significantly influences the homogenized elastic stiffness of a beam lattice

(Pradel et al. 1998; Sab et al. 2009). In this section, with a fixed model ratio at 𝐿𝑀 = 150𝐿𝑚 , an

initial crack length of 𝑎0 = 25𝐿𝑚 , and material properties 𝐸 = 3 GPa and 𝜎𝑚𝑐 = 100 MPa, we will

examine the effects of beam height (ℎ𝑚) and slenderness (𝐿𝑚/ℎ𝑚) on the energy release rate𝐺𝑀
.

Figure 5(a) shows the variation of 𝐺𝑀
along the propagating crack as a function of the

elementary beam height for constant slenderness. It is evident that the energy release rate

depends linearly on ℎ𝑚 (with 𝑅2 = 1.00). During propagation, 𝐺𝑀
remains independent of 𝑎, as

shown previously.

While Figure 5(b) illustrates the effect of slenderness with constant ℎ𝑚 = 1 mm. Interestingly,

the influence of slenderness is much smaller compared to ℎ𝑚 . As slenderness increases, the

influence diminishes and 𝐺𝑀
converges to a constant value. The mean values of 𝐺𝑀

were fitted

with a hyperbolic function (with 𝑅2 = 0.996).

Thus, we conclude that the beam height ℎ𝑚 is the primary factor affecting 𝐺𝑀
, while

slenderness has only a minor, negligible impact on the energy release rate. This contrasts with its

effect on the elastic homogeneous behavior, where 𝐿𝑚/ℎ𝑚 had a significant influence (Pradel

et al. 1998; Sab et al. 2009).

Although not shown here, we have found that also the type of structure significantly affect

𝐺𝑀
. However, due to length constraints, this analysis will be presented in a separate paper.

4.3 Material properties

Finally, we turn our attention to the microscopic material properties, which are also known to

influence the homogenized properties of the lattice. We use a model size of 𝐿𝑀 = 150𝐿𝑚 and

an initial crack length of 𝑎0 = 25𝐿𝑚 , with a microscopic beam length of 𝐿𝑚 = 5 mm and beam

height of ℎ𝑚 = 1 mm.

Firstly, Figure 6(a) demonstrates the effect of failure strength. As expected, 𝜎𝑚𝑐 is the primary

variable influencing the fracture toughness of the material. The energy release rate depends

quadratically on the tensile strength (with 𝑅2 = 1).
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Figure 5: Effect of micro-structure: (a) Beam height with a slenderness ratio of 𝐿𝑚/ℎ𝑚 = 5; (b) Slenderness

with ℎ𝑚 = 1 mm.

Figure 6(b) shows the effect of Young’s modulus. A hyperbolic dependence was found (with

𝑅2 = 1).
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Figure 6: Effect of material properties: (a) Tensile strength; (b) Young’s modulus.

4.4 Beam summary

Fracture behavior in beam lattices is defined by the failure of individual beams when the axial

stress exceeds their critical strength, 𝜎𝑚𝑐 . Once a beam fails, it no longer contributes to the

structural stiffness. For a given set of structural and material parameters the energy release

rate, 𝐺𝑀
, remains nearly constant as the crack advances. This invariance suggests that𝐺𝑀

is a

characteristic property of the lattice structure itself.

The impact of macroscopic geometry on 𝐺𝑀
is minimal, with significant changes only

observed when the geometry approaches the scale of the individual beams. This stability of𝐺𝑀

with respect to macroscopic dimensions highlights its role as an intrinsic characteristic of the

lattice.

Microstructural and material properties have a more pronounced effect on 𝐺𝑀
. The beam

height ℎ𝑚 significantly influences 𝐺𝑀
, showing a strong linear relationship. In contrast,

the slenderness has a smaller, vanishing effect. Material properties also affect 𝐺𝑀
: it scales

quadratically with the failure strength 𝜎𝑚𝑐 and exhibits a hyperbolic dependence on Young’s

modulus 𝐸. These results are consistent with theoretical models Irwin (1958) and phase-field

studies (Molnár, Doitrand, Estevez, et al. 2020; Molnár, Doitrand, and Lazarus 2024) on solid,

homogeneous materials, suggesting a correlation between discrete microscopic parameters and

homogenized phase-field characteristics.
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Figure 7: Normalized Cosserat stiffness coefficients as a function of the reduction in height of the

horizontal beams.

5 Phase-field homogenization

The previous section demonstrated that the energy released in rectangular beam lattice is

quite constant respect to the length of the crack opened. This result encouraged us to define a

continuum model capable of reproducing the crack patterns observed in the discrete beam lattice.

With the anisotropic multi-phase-field model (presented in Section 3.2), the key is to correctly

identify how many damage variables do we need, and which variable acts on which stiffness.

This way it is going to be clear, how to calculate the crack driving force to induce damage in a

given direction.

The square lattice is one of the rare examples, where the undamaged Cosserat stiffness is

available analytically. The stiffness matrix results in a diagonal matrix with constants (Pradel

et al. 1998; Sab et al. 2009):

𝐶11 = 𝐶22 =
ℎ𝑚

𝐿𝑚
𝐸,

𝐶33 = 𝐶44 =

(
ℎ𝑚

𝐿𝑚

)
3

𝐸,

𝐶55 = 𝐶66 =
(ℎ𝑚 )3
12𝐿𝑚

𝐸.

(30)

We note that these constants are available in this analytic form only for the undamaged state,

with equal lattice spacing and equal beam heights in the principal two directions. For cases, when

the beams start to break or are already broken, we will use the computational homogenization

technique described in Section 3.3. Nevertheless, these constants provide a valuable tool for

verifying the numerical technique.

From the structural configuration of a rectangular grid it is easy to see, that there are two

principal directions. Thus, we will use two independent damage variables (𝑛 = 2 in eq. (8)). 𝑑1
will correspond to the horizontal grid, while 𝑑2, the vertical grid direction.

5.1 Damage coupling

Until this point we have not yet discussed how damage variables act on the stiffness matrix. It is

critical to do so, as this will decide which deformation will induce which damage.

To analyze the effect of damage on the stiffness properties, we considered an RVE of a

rectangular lattice. We sequentially removed the horizontal and vertical beams and recalculated

the Cosserat stiffness using the computational homogenization method described in Section 3.3.

Figure 7 illustrates the variation in stiffness as the height of the horizontal beams is reduced.

The parameter ℎ𝑚𝑥 was progressively decreased to simulate damage (𝑑1). As expected, completely

removing the horizontal beams causes the stiffness components 𝐶11 and 𝐶55 to approach zero.

However, it is notable that 𝐶44 also decreases significantly, indicating that its contribution is lost

as well. The remaining stiffness coefficients remain unaffected.

When the vertical beams are removed, a similar pattern emerges in the orthogonal direction:

the components 𝐶22, 𝐶33, and 𝐶66 are reduced to zero. These observations suggest that the

degradation functions influence the stiffness components in the following manner:
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C =



𝑔 (𝑑1, 𝛾11)𝐶11

𝑔 (𝑑2, 𝛾22)𝐶22 ∅
𝑔 (𝑑2, 𝛾23)𝐶33

𝑔 (𝑑1, 𝛾14)𝐶44

𝑠𝑦𝑚. 𝑔 (𝑑1, 𝛾55)𝐶55

𝑔 (𝑑2, 𝛾66)𝐶66


,

(31)

with 𝛾𝑖 𝑗 values representing stress localization. The identification process is presented in the next

section.

5.2 Homogeneous solution

The traditional phase-field approach needs two parameters to be identified. One is the fracture

toughness, the other one is the internal length scale. As a consequence two types of tests are

recommended. One represents the "flawless" behavior, when there are no cracks present. the

second measures the response when there is a crack.

In the first test, the homogeneous phase-field solution is solved. This step involves neglecting

the gradient of the damage in eq. (8), then taking the derivative respect to 𝑑𝑖 and solving the

resulting equation. In the following we will demonstrate it for 𝑑1, but the equivalent method was

used for 𝑑2. The aim is to define an acceptable 𝑔𝑀𝑐,1/𝑙𝑀𝑐,1 ratio and the 𝛾1𝑖 localization constants.

𝜕Π
𝜕𝑑1

= 0 → 𝜕𝜓𝑀
𝑒𝑙

𝜕𝑑1
+ 3𝑔𝑀

𝑐,1

8𝑙𝑀
𝑐,1

= 0. (32)

In the AT1 model, the maximum stress is reached when 𝑑1 = 0. Thus with:

𝜕𝑔(𝑑1=0,𝛾1𝑗 )
𝜕𝑑1

=

−2
(
1 + 𝛾1𝑗

)
, we get:

∑︁
𝑗

2

(
1 + 𝛾1𝑗

)
𝜓𝑐𝑟
0, 𝑗 =

3𝑔𝑀𝑐,1

8𝑙𝑀
𝑐,1

, (33)

where𝜓𝑐𝑟
0, 𝑗 are critical deformation energies which were identified using the RVE of the beam

model. To identify 𝛾1𝑗 we assumed that the phase-field model is supposed to break at the same

state as the RVE in each independent deformation. Thus for example for pure unidirectional

extension in the 𝑥 direction we can write:

(1 + 𝛾11)𝐶11

(
𝜀𝑀𝑥,𝑐𝑟

)
2

=
3𝑔𝑀𝑐,1

8𝑙𝑀
𝑐,1

, (34)

with 𝜀𝑀𝑥,𝑐𝑟 being the critical deformation applied on the RVE, when the local maximum tensile

stress reaches the microscopic tensile strength 𝜎𝑐 :

𝜀𝑀𝑥,𝑐𝑟 =
𝜎𝑐

𝐸
. (35)

For the rectangular grid, this value can be identified analytically for 𝜀𝑀𝑥 , however could be

and was calculated numerically for arbitrary structures and deformations.

By applying the same procedure on each deformation case, assuming that in each step the

𝑔𝑀𝑐,1/𝑙𝑀𝑐,1 are equal, and normalizing each row, that 𝛾11 = 0 and 𝛾22 = 0, we can identify 𝜸 to be:

𝜸 =

[
0 0 0 8 2 0

0 0 8 0 0 2

]
, (36)
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Figure 8: Homogeneous solution of the phase-field model compared with the beam results.

where each row corresponds to the 𝑖𝑡ℎ damage variable and each column corresponds to the

given member of the stiffness tensor (now diagonal).

From these results it is clearly visible, that shear for example generates a stress peak 3 times

larger, than unidirectional extension in the rectangular lattice. This value corresponds exactly to

the square root of the ratio 1 + 𝛾14, which associated with the energy difference in the phase-field

model between extension and shear.

Of course these parameters would have to be recalculated for a different lattice type, and 𝜸
would potentially become longer as matrix C might have off-diagonal elements as well.

The homogeneous solution calculated using the beam model and the phase-field formulation

is compared in Figure 8 for various load angles. In the beam model, the RVE is subjected to an

extension along the direction 𝜔 and an equal magnitude of compression in the perpendicular

direction. This deformation represents a pure shear mode in homogeneous materials. Our aim is

to evaluate the structural response using both methods to understand how the resistance changes

between pure and combined deformation modes, depending on the loading direction relative to

the structural orientation.

It is evident that the two methods show good agreement at pure deformation angles, such as

𝜗 = 0
◦, 45◦, 90◦, which can be attributed to the calibrated constants of 𝜸 . For mixed deformation

modes, however, a slight difference is observed. This discrepancy arises because, in the beam

model, stresses are summed directly, while in the phase-field approach, the energies are summed.

5.3 Effect of initial crack length

The homogeneous solution presented in Section 5.2 helps to identify appropriate ratios for

𝑔𝑀𝑐 /𝑙𝑀𝑐 . However, to fully calibrate these parameters, an additional test case is required. Typically,

in phase-field simulations, one uses a scenario where size effects are minimal (no defects) and a

case involving a sufficiently large crack, as in classical fracture mechanics (Griffith-type cases).

To investigate the impact of initial defect size, the maximum force was recorded at two key

points: when the crack initiated and when the sample reached its maximum load-bearing capacity.

Figure 9 shows the moment of the first beam fracture with red circles and the final load-bearing

capacity with red crosses. The critical loading is normalized using the homogeneous solution:

𝜎𝑀
𝑐,𝑦 = 𝜎𝑐

ℎ𝑚

𝐿𝑚
. (37)

When 𝑎0 < 𝐿𝑚 , the critical loading matches the homogeneous solution since the crack is

smaller than the beam spacing. As 𝑎0 increases, a power-law behavior is observed in both crack

initiation and maximum loading, aligning with linear elastic fracture mechanics. We note that a

similar dependence on the crack length was observed regarding the load at failure in three-point

bending experiments for cordierite square lattices (Quintana-Alonso et al. 2010).

Thus, by setting 𝑙𝑀𝑐 equal to 𝐿𝑚 , the phase-field results closely replicate those observed in the

beam model. It is important to note that, due to the gradual appearance of damage in the model,

pinpointing the exact loading state corresponding to the first beam fracture is challenging. For

the remainder of the analysis, we therefore set 𝑙𝑀𝑐,𝑖 = 𝐿𝑚 .
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Figure 9: Critical loading normalized by the homogenized macroscopic strength as a function of the initial
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Figure 10: (a) Experimental geometry. (b) Principal loading directions and structural orientations in a

square beam lattice.

When eq. (35), (30) and 𝐿𝑚 is substituted into eq. (34), we get:

𝑔𝑀𝑐,1 =
8ℎ𝑚𝜎2

𝑐

3𝐸
. (38)

From this equation we recover the correlations found in the beam simulations. The critical

fracture toughness has indeed a quadratic dependence on the tensile strength, a hyperbolic

dependence on Young’s modulus, and a linear dependence on the beam height. Interestingly,

the correlation identified through the homogeneous phase-field solution fails to capture the

vanishing effect of slenderness observed in the beam model.

6 Experimental validation

The phase-field model was initially calibrated to the beam model for tensile opening, but

beam-architected materials are inherently anisotropic and may exhibit different behaviors

under varying loading directions. To investigate the primary mechanical couplings present in a

rectangular beam lattice, we conducted a series of tests inspired by the work of Ayatollahi et al.

(2009). The basic concept involves extending a rectangular plate at two of its opposite corners, as

shown in Figure 10(a), which allows for the application of both tensile and shear loading in a

tensile testing machine with relative ease.

In the original study by Ayatollahi et al. (2009), the load was applied through pinholes in

homogeneous materials. However, due to the weakened nature of the material in our lattice

structure, a concentrated load could cause the sample to fracture around the point of load

application. To address this, we replaced the pinhole with a solid section, depicted in dark gray in

Figure 10(a), and applied the load using clamps.

In a rectangular grid, the orthotropic microstructure introduces a third notable direction, in

addition to the orientation of the loading and the crack: the orientation of the microstructure
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itself. To validate our numerical models, we selected four configurations designed to test the

relative loading between these directions:

- Case 1: Tensile opening with microstructure parallel to the crack,

- Case 2: Shear opening with microstructure parallel to the crack,

- Case 3: Shear opening with microstructure oriented at 45
◦
to the crack,

- Case 4: Tensile opening with microstructure oriented at 45
◦
to the crack.

These elementary cases are illustrated in Figure 10(b).

The experimental samples were cut from 5 mm thick polymethyl methacrylate (PMMA)

sheets using a laser cutter. The microscopic unit spacing was chosen to be 𝐿𝑚 = 5 mm, with a

beam height of ℎ𝑚 = 0.66 mm. The macroscopic size of the samples was 𝐿𝑀 = 141 mm. Prior to

the experiments, a series of numerical tests were conducted to determine the appropriate length

of the clamping zone. The clamping zone length and the initial crack length were carefully set to

ensure that fracture initiation occurred at the initial crack. If the clamped zone was either too

small or too large, the crack tended to initiate at the edges of the clamped zone rather than at the

intended location. Consequently, we selected a clamped width of 𝐿𝑐 = 10𝐿𝑚 = 50 mm and an

initial crack length of 𝑎0 = 9𝐿𝑚 = 45 mm.

The samples were loaded gradually at a rate of 0.02mm/s to minimize the influence of

viscoelastic effects. The results from these tests are displayed in the first column of Figure 11,

with the cracks highlighted in red.

To replicate the asymmetric crack initiation observed in the experiments, the tensile strength

and fracture toughness in the numerical models were varied by 5 %. The results from the

Euler-Bernoulli beammodel are shown in the second column of Figure 11, while the corresponding

phase-field simulations are presented in the third column.

The results from all models exhibit coherence and agreement, with the crack consistently

favoring the direction of the original microstructure. This behavior aligns with expectations,

as the shear contribution (third and fourth columns of eq. (36)) is the most significant factor

influencing crack propagation.

Our analysis demonstrates that both simulation techniques accurately represent physical

reality and can be used as predictive tools for modeling fracture in lattice structures.

To further explore the limitations of our model, we conducted additional tests on two

geometries with varying slenderness, focusing on the tensile case with a parallel material

structure to the crack (Case 1). In the first scenario, the unit length was reduced to 2.5 mm, while

keeping all other dimensions constant. In the second scenario, the overall geometry was doubled

in size, with the beam height remaining unchanged.

The results of these tests are presented in Figure 12, where the crack is highlighted in red. It

is evident that in the case of thick beams with a slenderness ratio of 3, the crack propagated

horizontally, consistent with the behavior of solid (homogeneous) materials. This result diverged

from the predictions made by both numerical methods. However, in the more slender sample, the

crack followed the patterns observed in the numerical simulations, reinforcing the applicability of

our models. This outcome underscores the limitations of the Euler-Bernoulli beam theory, which

remains accurate up to a slenderness ratio of 5 (Molnár and Blal 2023).

7 Discussion

The paper presents a complex phase-field formulation to model fracture in beam lattices, following

a step-by-step modeling strategy. We advocate starting with the simplest approach that captures

the phenomenon of interest. Initially, we employed a Cosserat continuum to model the elastic

response of the beam lattice, but this proved insufficient as cracks in uniaxial tension propagated

horizontally, similar to bulk materials. The next step was to introduce anisotropy (specifically,

orthotropy for square lattices) in the damage phase-field formulation, aiming to replicate the

homogeneous beam response using a soft anisotropic approach with multiple damage variables

to control toughness in different directions. However, this still did not produce the correct

crack paths. Ultimately, we modified the traditional degradation function by enriching it with

coefficients to capture stress localization, leading to accurate results for both homogeneous

solutions and crack paths under various loading conditions.
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Figure 11: Comparison between experiments (left) and simulations using beam theory (center) and

phase-field models (right). Red highlights the crack.
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Figure 12: Experiments on other samples with different slenderness. Cracks are highlighted in red.
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8 Conclusion

In this study, we examined the fracture behavior of rectangular beam lattices using finite element

simulations based on Euler-Bernoulli beam theory. We employed a straightforward failure

criterion where beams fracture when the maximum axial stress exceeds their critical strength,

leading to progressive crack propagation as beams fail. To quantify the fracture toughness, we

calculated the energy release rate 𝐺𝑀
using an energy balance approach. Our results indicate

that 𝐺𝑀
remains relatively stable with crack advancement, underscoring its robustness as a

material property intrinsic to the lattice structure. This stability suggests that 𝐺𝑀
is a reliable

indicator of the lattice’s overall toughness.

Building on this observation, we developed a multi-phase-field fracture model to more accu-

rately represent the homogenized toughness of these architected materials. This model integrates

the consistent toughness characteristics observed in our simulations into a comprehensive

framework for lattice design and analysis.

To validate our theoretical and computational findings, we conducted an experimental

campaign to compare the results from our simulations with physical tests. This comparison

provided valuable insights into the accuracy and applicability of our models, bridging the gap

between theoretical predictions and practical outcomes.

Our findings reveal that 𝐺𝑀
is largely insensitive to changes in macroscopic geometry, such

as the size of the model or the initial crack length, provided these dimensions are sufficiently

larger than the beam dimensions. This stability emphasizes that 𝐺𝑀
is primarily influenced

by the lattice’s microstructure and material properties. Specifically, we found that the beam

height ℎ𝑚 and material properties such as tensile strength and Young’s modulus significantly

affect𝐺𝑀
, whereas the beam length 𝐿𝑚 has a less pronounced impact. The linear, quadratic,

and hyperbolic dependencies of 𝐺𝑀
on beam height, tensile strength, and Young’s modulus,

respectively, align with theoretical expectations and phase-field models, thereby confirming the

lattice’s homogenized fracture characteristics.

In subsequent phases of the study, we employed phase-field homogenization techniques to

model the lattice behavior, with the goal of replicating the observed crack patterns and toughness

metrics. The phase-field parameters were derived from the homogeneous phase-field solution

and size-effect tests conducted in tensile opening scenarios. Our phase-field model, calibrated

against the discrete beam model, demonstrated good correspondence to experimental results

across various loading directions. This validation underscores the efficacy of both the beam and

phase-field approaches in capturing the anisotropic fracture behavior of beam lattices, providing

a reliable framework for predicting lattice performance in fracture.

We observed that, in all cases, the crack preferentially propagated along the original directions

of the rectangular beam lattice. This phenomenon can be explained by stress localization, which

was most pronounced in shear. This localization effect caused higher stress concentrations along

specific directions, leading to preferential crack growth in those orientations. Such behavior

underscores the significance of lattice orientation and loading conditions in determining fracture

paths within beam lattices.

A Macroscopic-microscopic stress relationship

In this section, we derive the relationship between Equation (21) and Equations (22)-(24). The

symbol ⊗ denotes the outer product.

Applying the divergence theorem, the first contour integral in Equation (21) is converted to a

volumetric form:

1

𝑉

∫
Γ

[t ⊗ X]𝑑Γ =
1

𝑉

∫
Γ

[
n𝑇 · (𝝈meso)𝑇 ⊗ X

]
𝑑Γ =

1

𝑉

∫
𝑉

∇ ·
[
(𝝈meso)𝑇 ⊗ X

]
𝑑𝑉 . (39)

Using the microscopic equilibrium, defined by the local equilibrium at each junction,

∇ · 𝝈meso = 0 (see Equation (9)1), and the identity ∇X = I, we establish the following:
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∇ ·
[
(𝝈meso)𝑇 ⊗ X

]
= ∇ · (𝝈meso)𝑇 ⊗ X + 𝝈meso · ∇X = 𝝈meso. (40)

As a result, the energy contribution of the first term in Equation (21) linked to the displacement

gradient simplifies to the average microscopic stress:

1

𝑉

∫
𝑉

𝝈meso 𝑑𝑉 : 𝛿∇uM. (41)

The higher-order term derivation follows similarly:

1

2𝑉

∫
Γ

[t ⊗ X ⊗ X]𝑑Γ =
1

2𝑉

∫
Γ

{[
n𝑇 (𝝈meso)𝑇

]
⊗ X ⊗ X

}𝑇1,2
𝑑Γ

=
1

2𝑉

∫
𝑉

{
∇ ·

[
(𝝈meso)𝑇 ⊗ X ⊗ X

]}𝑇1,2
𝑑𝑉 ,

(42)

where the subscript
𝑇1,2

represents left conjugation, thus the permutation of indexes 𝐼 and 𝐽 ,

𝑎
𝑇1,2

𝐼 𝐽 𝑘
= 𝑎 𝐽 𝐼𝑘 . Furthermore, with the equality:

∇ ·
[
(𝝈meso)𝑇 ⊗ X ⊗ X

]
=

[
∇ · (𝝈meso)𝑇

]
⊗ X ⊗ X + 𝝈meso · ∇X ⊗ X + (X ⊗ 𝝈meso · ∇X)𝑇1,2

= 𝝈meso ⊗ X + (X ⊗ 𝝈meso)𝑇1,2,
(43)

we reach the expression in Equation (23). The third and final part of Equation (21) includes the

diagonal couple stress tensor:

1

𝑉

∫
Γ

(M ⊗ X) 𝑑Γ : 𝛿∇𝜙𝑀 =
1

𝑉

∫
Γ

[
n𝑇 · 𝝁meso ⊗ X

]
𝑑Γ : 𝛿∇𝜙𝑀

=
1

𝑉

∫
𝑉

∇ · [𝝁meso ⊗ X] 𝑑𝑉 : 𝛿∇𝜙𝑀

=
1

𝑉

∫
𝑉

[∇ · 𝝁meso ⊗ X] 𝑑𝑉 : 𝛿∇𝜙𝑀

+ 1

𝑉

∫
𝑉

∇X · 𝝁meso 𝑑𝑉 : 𝛿∇𝜙𝑀 .

(44)

To simplify the first term, we use the fact that the geometric center is located at the origin of

the Cartesian coordinate system, making the integral
1

𝑉

∫
𝑉

X𝑑𝑉 = 0. Thus, it follows that:

1

𝑉

∫
𝑉

[∇ · 𝝁meso ⊗ X] 𝑑𝑉 = 0. (45)

While, the second term simplifies to yield the macroscopic couple stress tensor, as shown in

Equation (24).

We have not yet accounted for the applied uniform micro-rotation. This case is treated with

an alternate boundary condition, where the uniform rotation is applied to all nodes in the RVE.

When applying a uniform rotation (𝝓 = 𝝓𝑀
), bending cannot be applied simultaneously due to

the intersection with the side boundaries, resulting in ∇𝝓𝑀 = 0. Writing the work of the external

moments under these conditions and applying the divergence theorem, we obtain:
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1

𝑉

∫
Γ𝜙

[
M𝑇 · 𝛿𝝓

]
𝑑Γ =

1

𝑉

∫
Γ𝜙

[n · 𝝁meso] 𝑑Γ : 𝛿𝝓𝑀

=
1

𝑉

∫
𝑉

∇ · 𝝁meso 𝑑𝑉 : 𝛿𝝓𝑀

= −𝜺
∫
𝑉

𝝈meso 𝑑𝑉 : 𝛿𝝓𝑀 .

(46)

Considering the strain definition in Equation (18), we can show that, by including both the

traditional deformations and rotations, the work-conjugate stress of the potentially asymmetric

strain tensor is obtained from the volume average of the mesoscopic values.

It is important to note that if the asymmetric part of ∇u𝑀
equals 𝝓𝑀

, the RVE undergoes a

rigid body rotation, resulting in zero associated strain and, consequently, zero stress.
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