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Abstract—Decades worth of experiments on the generation of
virtual creatures have led to a large corpus of morphological and
behavorial controllers. Yet despite these extensive researches, the
role of the environment in the emergence of complexity is often
experimenter-dependent. In this work, we present a framework
in which environmental variables are the sole control mechanism
for directing the evolution of an autonomous population of arti-
ficial creatures. The Environment-Driven Evolutionary Selection
(EDEnS) algorithm automatically and simultaneously explores
multiple alternatives, initially identical but with potentially dif-
fering dynamics with respect to their abiotic constraints. By
exposing populations to different sets of constraints, they are
subjected to divergent fitness functions both across the simulation
space and between successive elementary steps. This framework
is applied on a system composed of artificial plants autonomously
reproducing in a 2D environment subjected to three factors:
topography, temperature and hygrometry. We show that some of
the populations obtained via EDEnS exhibit increased capabilities
to invade foreign environments over populations evolved in
a hospitable, constant environment. Moreover, the data thus
collected highlighted two fundamental advantages of the auto-
mated exploration of abiotic constraints: the positive effects of
catastrophical trimming and the unbiased designing of dynamical
environments.

Index Terms—Evolutionary computing, Algorithm, Dynamic
environments, Complex systems

I. CONTEXT

The generation of virtual creatures has received much
attention in the late decades both in the context of isolated
individuals and ecosystems. However, much of the focus in
these works has been put on the capabilities of the individuals
and the means by which they could perform specific tasks.
In these cases, the role of the creature’s environment is often
that of a physical container which stores uniformly available
resources. Similarly, especially in the case of single-individual
evolution where simulation time is limited, these environments
are generally static.

For instance the seminal work of [15], in which an indi-
vidual’s surroundings were solely comprised of its opponent,
the target cube and the ground, was expended upon in [11]
by evaluating similar creatures in more complex contexts.
There, the authors show the stair-climbing, gap-crossing and
even skating capabilities of their resulting creatures. As can

be expected, these exhibit more complex behavior than their
ancestral counterparts by being evolved in a more demanding
context, even though the resulting set of abilities is explicitly
specified by the experimenters. Similar remarks can be made
for the creatures developed in [3], which also manage to
climb stairs, or the plant-looking demeanor of [16]’s Vascular
Morphogenesis Controller.

When considering ecosystems of vegetal creatures, in-
stances of more heterogeneous conditions can be found as in
the work of [4] where the use of non-flat topography increased
the inter-individual competition by providing a built-in bias.
Additionally, the presence of varying types of constraints in
[1] was shown to reproduce a distribution of survival strategy
with similar characteristics to that of natural plants. In a similar
fashion, dynamical conditions were experimented upon in [5]
with random directions and intensity of wind promoting the
emergence of robust morphologies in the evolution of a forest-
like ecosystem.

Digital ecosystems are one of the area with the highest
emphasis on varying environments, most notably with the
Avida platform. The main advantage of such systems is that
their lightweightness allows for the monitoring of population-
level trends over sufficiently large amounts of generations.
Such a sample of individuals makes it possible to study the
effect of dynamical constraints on the evolutionary process as
was done in [2], [10], where different sets of rewards were
tested, and [12] which introduced cataclysmic episodes. In
particular, these works have highlighted the benefits one can
draw from changing conditions namely increased robustness
and valley-crossing [14].

In this paper, we describe a framework which not only
alleviates the need for a human designer to devise fair but
challenging environments for their creatures to evolve in, but
also allows for a broader exploration of the set of viable
ecosystems. Human interaction is only required at the initial
stages to devise appropriate boundaries for the environmental
dynamics. This is obtained by relying on a population-based
evaluation coupled with an environment-centered selection as
detailed in the following section.
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Fig. 1: Methodology of the Environment-Driven Evolutionary Selection. Major steps (in red) are detailed below.

II. EDENS FRAMEWORK

In order to explore long evolutionary periods through vary-
ing environments, traditional methods of optimization or open-
ended evolution were deemed ill-suited to the task. Indeed, the
objective is neither to produce a genotype perfectly adapted
to a set of conditions, which by definition remain fluid, nor
to subject a single population to dynamical constraints, which
would more often than not result in extinctions.

To tackle this problem, we designed a framework inspired
by the 1 + λ evolutionary strategy in which the concurrent
evaluations can be seen as alternative futures, given an iden-
tical starting point. Thus, to reach a reasonably large number
of generations, we approximate a single, continuous evolution
by a succession of smaller simulations as summarized by
figure 1. Each so-called epoch allows the populations to adapt
and diversify, while the Selection-Branching bottleneck pro-
vides direction for the evolutionary process. In this instance,
n = 250 epochs, each of length e = 4 years, are performed
with a branching factor m = 10.

Step I, Initialisation

The first ecosystem is seeded with a mostly uniform popula-
tion and a neutral environment i.e. with average figures across
all its dimensions. The controller is also neutral ensuring
constant conditions for this phase. The individuals are left free
to colonize the area and reach a viable state.

Step II, Branching

The branching procedure uses as input a given ecosystem
(resulting from Step I or IV) and produces m alternatives.
The contents of the provided simulation are deep-copied as-is
into each alternative. The environmental controller, however, is
subjected to mutation, except in the case of the first alternative
(Ci,1 in the figure). This implies that the difference between
populations at the beginning and end of an epoch only result

from differences in the dynamics they were subjected to.
Keeping the first alternative as-is also allows for reduced risks
of suffering a complete extinction as, given that this alternative
was viable at the previous epoch, it should still be.

Step III, Evolution

Each alternative is allowed to run for a full epoch without
external feedback of any kind. Evolution is thus only guided
by the combination of fitness functions resulting from the
interaction between the individuals and the environmental
dynamics. Indeed, as we will see in the following section,
the state of the abiotic component has profound impacts on
the metabolism and reproductive capabilities of our plants
thus changing conditions imposes changes in their survival
strategies.

Step IV, Selection

After all m alternatives have run their full course, they
are evaluated by the external (human-designed) set of fitness
functions. The resulting ecosystems are thus selected based on
the state they have reached thanks to the indirect control of
the environment. The ecosystem thus singled out is designed
as the active alternative and is used to generate the next batch
as seen in Step II.

Step V, Termination

After n−1 such epochs have been performed, the algorithm
terminates and the final active alternative is obtained. From
this point, one has access not only to a population which has
endured for a large amount of time in the face of changing
environmental conditions but also to the complete timeline of
its evolution. Indeed by unrolling the succession of selected
alternatives, one can build a continuous set of “realities” which
provide the complete historical background of this evolution,
including the response to environmental perturbation and the
specific sets of favored or shunned conditions.



III. IMPLEMENTATION ON ARTIFICIAL PLANTS

The system on which we deployed EDEnS is identical to
that described in details in [8], a brief overview of which is
given below, including this contribution’s extensions.1

Individuals are virtual plants whose body plans are gener-
ated through a step-wise L-System: rules are applied one at a
time, depending on resource levels and available space. Their
metabolism requires water uptake and photosynthesis to pro-
duce glucose which, in addition to water, feeds both the growth
process and the reproduction-oriented organs. Indeed, thanks
to a Bail-Out Crossover [7], individuals have a genetic control
over which other individuals they want to mate with, thus
allowing species barriers to spontaneously emerge and limiting
the risks of nonviable offspring. Reproductive maturity is
reached when a flower organ accumulates a sufficient amount
of biomass, upon which potential mates are searched in the
surrounding area. Successful mating results in the replacement
of the corresponding pistil by a fruit containing the result of
multiple independent crossover operations.

These creatures inhabit a 100-meters wide environment,
partitioned into 1m patches which have local values for each
of the three studied variables: topography t, temperature h
and hygrometry w. These impact the behavior and welfare of
plants in a number of ways with the former mainly acting
as a reproduction and migration inhibitor. Water availability
has obvious consequences on the plants’ metabolism while
external heat acts on uptake efficiency, evapo-transpiration and
wastes production. Baseline conditions correspond to a flat
ground with a hygrometry of 0.5 and a temperature of 10◦C.

A. Environmental controller

The basis of the framework presented in this work is
the use of automated evolution of environmental constraints
and, as such, the hand-written equations used in the previous
setting cannot be applied here. They have been replaced by a
Cartesian Genetic Program (CGP) which was shown to be a
powerful tool for generating complex functions [13].

For each patch in the environment, the CGP is fed its
normalized abscissa x, current value for the three variables
(t, h, w) and a sinusoidal input D of 1-year period thus de-
signed to prevent abrupt transition for one year to another. The
outputs correspond to the theoretical values for the same envi-
ronmental variables at the next time step with two additional
points requiring detailing. First, topography is only updated
once per day (i.e. every 10 steps) to reduce the computational
cost resulting from updating each plants’ altitude. Second, in
order to prevent excessively brutal transitions (e.g. from 40◦C
to -20◦C in 1/10th of a day), an inertia factor α = 0.95 is used
to transform the theoretical output v̂t+1 into the actual value
vt+1 as given by vt+1 = αvt+(1−α)v̂t+1. Such a smoothing
operator is of particular interest when the controllers use
functions with rapidly changing values such as rand or step.

1The code for this experiment is available at https://github.com/kgd-al/
ReusWorld/releases/tag/alife2020.

Randomly generated CGPs were composed of 100 internal
nodes and designed to produce 0 across all outputs until the
first mutation operator is applied, thus guarantying initially
hospitable conditions for the primordial plants. While this
implied artificially setting one internal node to the zero
function and connecting it to the three outputs, all other 99
internal nodes were left untouched thereby retaining a large
variability in the subsequently available dynamics.

Mutations are performed according to the Accumulation
operator defined in [9] where point-mutations are iteratively
effected until one which has an impact on the network’s output
is found. With such a difference in mutation rates between
expressed and reserve DNA, unused portions of the genome
are explored much more quickly. This bias towards mutation
of reserve DNA was deemed a necessity when considering
that, initially, it comprises more than 98% of mutable values.

B. Fitness functions

Step IV of the EDEnS algorithm (selection) is performed
through a set of fitness functions from which a pareto front
is derived. These can be classified into two categories: the
functions maintaining acceptable conditions and those aiming
at specific features.

Two such control functions were used: CP that rewards
population size when inside [500; 2500] (a fair density given
the environment’s width) and CT that penalizes simulation
time so that computationally heavy alternatives are naturally
trimmed out. These, however, can be seen as safeguards
against the vagaries of evolution as they only sustain the
process and do not contribute to it.

The other two are focused on promoting the emergence of
particular patterns. The first, FS , uses the species information
extracted by APOGeT (described in [6]), to promote speci-
ation patterns. This is achieved by favoring large variance
in the genetic distance between individuals from different
evolutionary niches. The second, FD operates at the allelic
level by rewarding alternatives where the genepool2 is the most
different between the beginning and end of a given epoch.
This acts as a disturbance factor, both promoting optimization
in the current direction and exploration of different regions of
the genetic space.

The selected alternative is obtained by random picking one
item from the pareto front obtained after evaluating all m
alternatives.

IV. EXPERIMENT ON INVASIVE CAPABILITIES

To determine whether individuals resulting from EDEnS
gained an advantage in terms of invasive capabilities, we
compared the performances of a group e of 10 replicates
against a smaller group c of 5 controls. The populations of
e were obtained with the same initial parameters, with the
exception of the random number generator used to control
the selection (Step IV). The control group c results from
evolutions of identical duration (1K years) in the constant and
hospitable initial environment.

2The set of all alleles. Decimal values are first quantized

https://github.com/kgd-al/ReusWorld/releases/tag/alife2020
https://github.com/kgd-al/ReusWorld/releases/tag/alife2020


Environment Temperature Hygrometry

Neutral 10◦C .5
Hot 40◦C -
Cold -20◦C -
Dry(1/4) - .25
Dry(1/8) - .125
Periodic(1/2) .5D -
Periodic(3/4) .75D -
Periodic(1) D -

TABLE I: Environmental variables for the different tests. Un-
specified values are identical to the Neutral state

For all evolutions, we define ci and ei as the final ecosystem
produced by the ith run of the control and evolved group,
respectively. When the distinction becomes necessary, the
exponents p, e, c denote the population, environment (vari-
ables) and controller, respectively. To determine whether or
not the use of EDEnS resulted in “better” populations we
subjected each runs to multiple types of evaluation falling into
two categories: Plants-versus-Environment (PvE) and Plants-
versus-Plants (PvP).

A. Plants versus Environments

In this context, “abiotic robustness” is evaluated as the
capacity to survive, or even thrive, in a multitude of abi-
otic constraints. The test environment is composed of the
ecosystem under investigation side-by-side with an empty
environment, controlled by trivial, hand-crafted equations.
Three dimensions of variations have been used, in addition to
the neutral environment, as summarized by table I. While the
Neutral state corresponds to the same conditions as those under
which the control group has been evolved, we also explore
resilience to different sets of temperatures (Hot and Cold), of
water availability (Dry) and of seasonal patterns of different
amplitude using the built-in 1-year periodicity of input D
(Periodic). Additionally, once the simulation is populated, all
plants are translated so that the right most coordinate of the
population’s bounding box is placed exactly at the coordinate
0 (i.e. the starting line) thus ensuring fair initial conditions.

The objective, in this evaluation, is for a plant to “reach” the
right-most environmental boundary which can only be done
through successive generations colonizing, and surviving in,
the foreign conditions. In order to prevent needlessly long
evaluation times, we provide an external source of stress in
the form of an increasingly large area utterly inimical to life.
Starting at the left edge, this region is increased by 5% of the
total range every year. In addition to reducing computational
costs, this ensures that we measure the adaptive capacities of
the population, as this does not leave enough time for any
meaningful evolution to occur. The score derived from such
an evaluation is thus the normalized distance covered on the
foreign soil with 1 indicating that the goal has been reached.

As can be gathered from figure 2, the control (on the left)
and evolved groups showed diverging sets of capabilities.
While, in c, colonizing the familiar Neutral environment is
trivially done by all but c1 it is almost the full extent of their

Fig. 2: Synthesis of the scores obtained by each population on
the PvE evaluation. The area indicates the portion of foreign
environment covered by the end of the alloted time. Asterisks
indicate cases of complete colonizations.

resiliency with only two success under different abiotic con-
straints. On the other hand, e showed an altogether different
trend: one half exhibits fair adaptive capacity while the other
fails to reach the goal in all test environments. Additionally,
one can see the peculiar case of e8 which, being embedded
in an environment with a hostile right-most region, cannot
compete in any meaningful way in this particular evaluation.

Nonetheless, despite this broad variability of abiotic robust-
ness in the evolved group, it was found to out-perform the
control group (Mann-Whitney, p-value < 0.05, outlier e8 was
not considered).

B. Plants versus Plants

Another facet we investigated is that of “biotic robustness”,
that is the capacity for a population to out-perform a wide va-
riety of peers. With this in mind, we subjected each population
to pair-wise evaluations in two types of scenarios: Merged and
Contiguous.

In the first type, both competing populations Ap and Bp

are placed in the same environment, the contents of which are
defined by Ae and Ac, for a maximal duration of 104 years. In
practice, this implies that the foreign population Bp is tasked
with surviving in the local conditions of Ap which should
prove to be difficult given the obvious asymmetrical bias in
favor of the former. The second type involves placing both
A and B ecosystems next to each other and normalizing all
topographies to zero so as to ensure no impassible boundaries
exist. In this case both populations can persist in their own
local niche with those exhibiting sufficiently efficient invasive
behavior potentially colonizing the other population’s domain.

To determine which population is victorious we define,
for each individual, a coefficient τ which accounts for its
population of origin. That is individuals from Ap and Bp are
arbitrarily assigned τ = 1 and τ = 0, respectively. Given
that, in this model, plants can hybridize with members of
a different species, both population could merge back into
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Fig. 3: Aggregated scores in both types of PvP evaluation. One can see that the control groups fares better when out-reproducing
the competition is a viable solution while the evolved group shows a stronger capacity for invasion.

a single genepool. To keep track of the most contributing
original population, the τ parameter of an offspring is defined
by the average of that of its parents. The raw score of biotic
robustness, for population Ap, given a final population P , is
thus given by:

S =
1

|P |
∑
p∈P

τp (1)

This computation, however, does not take into account the
initial distribution of population and thus a normalized version
is used which, for an initial proportion S0, a final score Sf

and a difference d = Sf − S0, is given by:

Ŝ =

{
d

1−S0
if d ≥ 0

d
S0

if d < 0
(2)

This provides a more intelligible interpretation of the relative
capabilities of both population with a score of +100% indicat-
ing a perfect colonization and -100% a perfect defeat.

The aggregated results (fig. 3) once more show diverging
behavioral trends, although less strongly than in the PvE
case. Indeed this type of evaluation essentially being a zero-
sum game, these histograms highlight the relative strength of
each population. At first glance one can see that runs from
the control group are more suited to the Merged type of
PvP evaluation, in which the inter-plant competition is most
intense. Indeed, in this scenario, being able to out-reproduce
the invading population is a straightforward strategy for which
member of c have optimized because of the constant conditions
they were evolved in. To test which group fares best, we
performed Wilcoxon tests on the respective rates of success
which confirmed the advantage of c over e (p-value < 0.05).

Conversely, results are more mitigated in the case of the
Contiguous evaluation, due to the need of competing against
both the foreign population and its environment. As a matter
of fact, while there is a clear champion in the form of e5,
no statistically significant difference was found between the
performances of both groups.

V. DETAILS OF INDIVIDUAL STRATEGIES

In order to gain a better understanding of the kind of events
that produced and characterize the individuals from e, we
briefly detail, in this section, the specifics of one strongly
performing ecosystem, e5, and of the least successful e4.

A. The case of e5
This particular population showed great proficiency in all

evaluation types, indeed being the champion in the PvE and
Contiguous PvP evaluations. In figure 4, some of the most
important dimensions of e5’s evolution are presented.

Panel 4a consists of the plant population where we can
see fluctuations of varying intensities, the largest being la-
beled above the graph. The bottom row comprises the per-
patch values of the environment in which e5 evolved with
the topographical variations on the left and the temperature
dynamics on the right. Sub-figure 4b shows the evolution of
the genetic field controlling the optimal temperature, each slice
corresponding to the distribution of the population’s alleles at
the end of the given epoch.

By observing all four pictures simultaneously, we can see
the impact of environmental variations on the dynamics of the
population, both at the individual and genetic levels. Indeed,
the large dips in population size are quickly compensated by a
renewal of reproduction through which newly available areas
are recolonized. This however, is not without impact on other
portions of the simulation such as the explored regions of the
genetic space. In the case of the optimal temperature, one
can see that each such transitions results either in tightening
of allelic diversity (markers A,B,C) or in a sudden transition
from one region to another (D).

As can be seen in the environmental dynamics, this is caused
by variations in the plants’ external conditions: A and B result
from a transition from a smooth topography to a random one,
C from a seasonal pattern of temperature to desert-like con-
ditions and D from a two-fold variation where heterogeneous,
albeit constant, heat levels further diverged before “switching”.
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Thus in the case of e5, catastrophic environmental variations
induced beneficial trimming in the population by selecting
those which exhibited the most robust behavior.

B. The case of e4
By contrast, the evolutionary trajectory of e4 was found

different on two major points: population size and environ-
mental harshness. With respect to the former, we observed
that the average size is about a third that of e5, which given
the well known effect of population size on genetic diversity
and competitive success, can go some way to explaining this
run’s poorer performances.

On the latter point, we noted that environment-induced
stress was of a lower magnitude: while some epochs contain
random dynamics or even harsh transitions, these are much
sparser with larger periods of relative calm. For instance,
during the first 400 years, e4 has only encountered two
different patterns of temperature whereas, by this time, e5
is closer to twenty. Thus, in this specific instance, we can
note that poor results are observed alongside small population
subjected to lenient conditions.

VI. ANALYSIS OF EVOLUTIONARY DYNAMICS

We have seen that populations from the evolved group
exhibited greater cross-environment resilience than those ob-
tained in the control setting and observed in more details the
specifics of the runs. These however do not provide the large-
scale viewpoint required to determine what advantages the use
of EDEnS brought. Thus the following section is devoted to
investigating the evolutionary dynamics, notably with respect
to the different types of robustness.

A. Population-level observations

First and foremost we observe a positive correlation between
all three types of evaluation3. Summarized in table II, are
the Spearman correlations for the variables with the most
salient results where SPF is the number of seed per fruit (i.e.
litter size), σT the acceptable temperature range and P̄l the
average population count. Comparisons can be made between
the trends obtained when considering all 15 evolutions as a

30.94 for both PvP. 0.64 and 0.71 for PvE versus Merged and Contiguous,
respectively. All p-values < 0.05.



Variable
c & e e only

PvE PvP PvE PvP

M C M C

SPF -.682 -.314 -.496 -.782 -.782 -.867
σT .457 .043 .386 .782 .745 .709
P̄l .696 .589 .421 .697 .648 .697
Pr .757 .625 .682 .685 .697 .733
P−r .793 .589 .679 .770 .661 .733
P̄r .564 .125 .511 .891 .758 .794
P̄−r .529 .193 .571 .782 .927 .927

TABLE II: Spearman correlations between scores and popu-
lation variables. Grayed-out values are not significant under a
p-value < 0.05 threshold.

single group or when only focusing on the population resulting
from EDEnS, in all scenarios.

For instance we can see a fairly high, negative, correlation
between the litter size and reproductive success but only
inside the evolved group e. This trend is most notable in
the Contiguous evaluation where high birth rates are not
the privileged mechanism by which colonization is achieved.
Similarly, we can observe that the introduction of temperature-
related stress induced the expected response of increasing
the range of tolerable temperatures, although not too strongly
due to the adverse effects produced by large values. We can
also formally observe that the assertion previously made on
population size P̄l was found correct although less strongly
so in the case of the Merged naturalisation.

The lower portion of the table is concerned with measuring
the effect of the so-called perturbations. That is, given Pl(t)
the population size at time t, we define:

de = Pl(4(e− ν))− Pl(4(e+ ν)) Pr =

249∑
e=1

|de|
249

d−e =

{
de if de < 0

0 otherwise
P−r = −

249∑
e=1

d−e
249

P̄r =
Pr

P̄l
P̄−r =

P−r
P̄l

with ν = 0.25, i.e. a quarter of a year. The first metric, Pr,
is the most straightforward: it computes the average variation
of population size around each epoch. For members of e, this
gives a notion of how stressful their successive environments
where perceived. We also apply it to members of c to define
the level of “background noise” which is to say the amount
of perturbation measured when none should be expected.
The other three metrics are variations around Pr, with P−r
only measuring negative perturbations that is those in which
the population size was drastically reduced4. P̄r and P̄−r
are normalized by P̄l to untangle the effect of perturbations
themselves with that of population size.

4P+
r was also tested and only found mildly significant.

 0

 20

 40

 60

 80

 100

964 966 968 970 972

X

Years

-20

-10

 0

 10

 20

 30

 40

d
e
g

re
e
 C

e
ls

iu
s

Temperature

 0

 20

 40

 60

 80

 100

964 966 968 970 972

X

Years

 0

 0.2

 0.4

 0.6

 0.8

 1

h
y
g

ro
m

e
tr

y

Hygrometry

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

964 966 968 970 972

P
la

n
ts

Years

Population

Fig. 5: Example of extreme variations. The second epoch
imposes maximal-range temperature alternance which hinders,
but does not destroy, the population.

Though we obtain fairly high correlations for the two non-
normalized metrics in all instances, results are more telling
when relying on their normalized counter-parts. Indeed we
have already seen that population size has an effect on both
robustnesses, thus partially explaining the mild results. When
decoupled from such an effect, however, we see a very
strong response: 0.89 for normalized perturbations and 0.92
for normalized catastrophes when linking with the PvE and
PvP scores, respectively.

This implies that the most successful populations were also
those that were subjected to strong cataclysmic transitions, a
result in concordance with the observations made on e5.

B. Resilience and Creativity

Given that, every epoch, the plant populations strive to reach
the optimal phenotype for the set of environmental constraints
they are subjected to, even infrequent, mild variations of
controller could be enough to disturb the fragile balance thus
reached. However, when performing a classification of the
different types of environments encountered by all runs (across
the main timeline) we observed that neutral environments
were a relatively rare occurrence (11.5%, 27% and 18.7%
for the topography, temperature and hygrometry, respectively).
No link was found between the amount of neutral states and
scores, thereby showing that poorly fairing runs were not doing
so for lack of environment-induced stress.

In fact the opposite occurred: 3/4 of the strongest per-
turbations (the top 5%) were catastrophic trimmings. While
some of these transitions took very simple forms such as
mild temperatures suddenly raising all the way up to 40◦C,
others were much more intricate. For instance, consider figure
5 where the temperature initially varies between -20 and -10◦C
with a half-year period. The change in controller results in
a much wider amplitude which leads to a near-extinction,
partially compensated by the increase in available water.

Another area in which the evolutionary process proved
surprisingly resourceful is that of the exploration of counter-
intuitive equation sets. Indeed, while it might be reasonably
expected that smooth, periodic functions would result in
favorable environmental dynamics, more exotic functions have
nonetheless been successfully used throughout these runs.
Consider the example in figure 6: one can see that the initially
continuous conditions are replaced by a chaotic alternation of
values induced by a massive use of the rand function.
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Fig. 6: Creative compositions of the rand function. All three
environmental variables depend on unpredictable dynamics
resulting in a massive, albeit not fatal, drop in population.

Formally the equation set for the second epoch is:

t̂ = rand; ĥ = x(rand < x); ŵ = h− t

where x is the normalized patch abscissa (∈ [0, 1]). Thanks to
the mediating effect of the inertia factor α, these variations are
not instantaneous by nonetheless result in unpredictable con-
ditions to which the plants needs to adapt. This high level of
stress has a very marked impact upon the population size with
a survival rate of only 7.5%. However, the selection process,
as defined in this implementation of the EDEnS algorithm,
rejects un-populated alternatives. It is thus possible to explore
such sets of constraints, with potentially catastrophic effects,
with only limited risk of reaching a complete extinction (i.e.
across all alternatives).

VII. CONCLUSION

In this article we introduced a novel paradigm in which the
evolution of a population is indirectly controlled by external
sources of stress in a manner hand-crafted environments
would struggle to achieve. The EDEnS framework produced
populations that fared better, in terms of foreign environments
colonization, than those of the control group.

By exploring the dynamics of successful communities we
observed that catastrophic events resulted in evolutionary tran-
sitions which allowed the emergence of more robust demeanor.
Indeed the bottleneck effect, strongly identified for instance
with e5, allowed selective trimming of less resilient variants,
thereby freeing space for their more robust alternatives. It
remains unclear, however, whether these populations were
robust because of the cataclysms or if these cataclysms were
selected because the populations could cope with them. Further
studies are thus warranted to determine whether the causality
is in the expected direction (i.e. adversity causing resilience).

As a straightforward extension of this work, we can note
that no mention of the phylogenetic dynamics were made
due to a striking lack of speciation. Direct methodologies
could be devised for favoring the emergence and maintain-
ing of multiple, potentially cohabiting species. This could
be addressed either by providing a larger environment, thus
allowing different regions to be differently inhabited, at the
price of more computationally costly simulations. Another
direction would be to artificially create isolated “islands”
thus effectively enforcing impassible geological barriers. An
additional CGP could be used to control the migration rates

between different such islands, the pattern of which would
allow insights into the mechanisms of similar phenomenon in
biological life.

Additionally, given the loose requirements of this frame-
work (self-sustaining populations, mutable environmental con-
troller and a set of objectives) deployment on a broad range of
problems is possible. One direct application, currently being
investigated, is the manner in which predation could emerge in
land-based motile creatures in response e.g. to famine. Another
direction would be to use EDEnS as an interpolator: given an
initial and target ecosystems, one could explore the succession
of evolutionary events that led from the former to the latter,
both in artificial and biological life.
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