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CONCLUSIONS

► Existing metamodels in the literature can be reformulated into a unified framework
with building blocks that can be freely composed

► Most multi-fidelity metamodels yield better results than a mono-fidelity metamodel

► Mapping and corrective metamodels require the same number of snapshots for each 
fidelity and require running the lower-fidelity simulator to make a high-fidelity prediction

► The best performing method and the associated ranking very much depend on the 
application case, justifying the need for a benchmark with various tests

► All referenced methods have been tested on 4 different test cases but the results 
are not displayed here due to a space constraints
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NUMERICAL COMPARISON

CONTEXT

► Simulations with a high computational cost
(e.g., Computational Fluid Dynamics (CFD))

► Need to build a metamodel for applications that
require a large number of calls to a simulator
(e.g., uncertainty quantification, optimization)

► The quantity of interest is a field (e.g., pressure
at the wall of a launch vehicle) discretized on a
mesh (temporal, spatial, frequential, etc.)

► Simulators of variable fidelity are available (e.g.,
simplified physics, mesh resolution)

NOTATIONS

► 𝐮 ∈ ℝ𝑝: vector of input variables 
(e.g., length of the vehicle, angle of 
attack)

► 𝐹𝑗 , 𝑗 = 1, … , 𝑆: fidelity level, 1

corresponds to the highest-fidelity

► 𝐱𝐹𝑗: mesh at fidelity 𝐹𝑗

► 𝐲𝐹𝑗 𝐮, 𝐱𝐹𝑗 ∈ ℝ
𝑑𝐹𝑗 : a field discretized 

on the mesh 𝐱𝐹𝑗 of dimension 𝑑𝐹𝑗

► ෝ□: prediction of the field □

BUILDING BLOCKS Manifold alignment by 
Procrustes analysis [4]

Operations on the low-dimensional 
representation of the fields to 
make them better match between 
fidelities.

Dimension reduction

Compression of a high-dimensional 
field into a lower-dimensional 
space (latent space), for instance 
with Principal Component Analysis 
(PCA) [1], Kernel PCA [2].

Orthogonal part

Information lost when performing 
dimension reduction.

For instance, this can be modeled 
by a kriging with tensorized 
covariance [3].

Regression

Mapping between the input 
variables and the low-dimensional 
representation of the fields, can be 
mono-fidelity (e.g., gaussian 
process regression [5]) or multi-
fidelity (e.g., autoregressive 
cokriging [6]).
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Illustrations adapted from [15]
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UNIFIED FRAMEWORK OF METAMODEL FAMILIES (ILLUSTRATED FOR 2 FIDELITIES)
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► Prediction capabilities measured for different numbers of high-fidelity samples, 
different ratios of number of low-fidelity samples over the number of high-
fidelity samples 𝜏, and multiple repetitions

► In the following figure, only the best performing method of each family is retained 
in addition to the mono-fidelity

* Only the common part of the design of 
experiment is used for training
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