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Adaptive Tuning of Hamiltonian Monte Carlo
Within Sequential Monte Carlo

Alexander Buchholz∗, Nicolas Chopin†, and Pierre E. Jacob‡

Abstract. Sequential Monte Carlo (SMC) samplers are an alternative to MCMC
for Bayesian computation. However, their performance depends strongly on the
Markov kernels used to rejuvenate particles. We discuss how to calibrate automat-
ically (using the current particles) Hamiltonian Monte Carlo kernels within SMC.
To do so, we build upon the adaptive SMC approach of Fearnhead and Taylor
(2013), and we also suggest alternative methods. We illustrate the advantages of
using HMC kernels within an SMC sampler via an extensive numerical study.

Keywords: Sequential Monte Carlo, Hamiltonian Monte Carlo.
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1 Introduction

Sequential Monte Carlo (SMC) samplers (Neal, 2001; Chopin, 2002; Del Moral et al.,
2006) approximate a target distribution π by sampling particles from an initial dis-
tribution π0, and moving them through a sequence of distributions πt which ends at
πT = π. In Bayesian computation this approach has several advantages over Markov
chain Monte Carlo (MCMC). In particular, it enables the estimation of normalizing
constants and can thus be used for model choice (Zhou et al., 2016). Moreover, particles
can be propagated mostly in parallel (Murray et al., 2016). Finally, SMC samplers are
more robust to multimodality (Schweizer, 2012b; Jasra et al., 2015).

SMC samplers iterate over a sequence of resampling, propagation and reweighting
steps. The propagation of the particles commonly relies on MCMC kernels, which de-
pend on some tuning parameters. Choosing these parameters in a sensible manner is
challenging and is of interest both from a theoretical and practical point of view; see
Fearnhead and Taylor (2013); Schäfer and Chopin (2013); Beskos et al. (2016).

One type of MCMC kernels that has raised attention recently is Hamiltonian Monte
Carlo (HMC), originally developed in physics (Duane et al., 1987) and used in statis-
tics since Neal (1993). It has become a standard tool for sampling distributions with
continuously differentiable densities (Neal, 2011). The main appeal of HMC is its bet-
ter mixing (compared to, say, random walk Metropolis) in high-dimensional problems
(Beskos et al., 2013; Mangoubi and Smith, 2017).

This paper compares methods for tuning HMC kernels within SMC. A few previ-
ous works have considered the use of HMC kernels within SMC (Gunawan et al., 2018;
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Burda and Daviet, 2018; Daviet, 2018; Kostov, 2016) without focusing on tuning. Tuning
MCMC kernels within SMC has a significant impact on performance, and particularly
so for HMC kernels. Calibration of HMC kernels is indeed recognised as a challenging
problem in the MCMC literature (e.g. Mohamed et al., 2013; Beskos et al., 2013; Be-
tancourt et al., 2014; Betancourt, 2016; Hoffman and Gelman, 2014). The advantage of
tuning Markov kernels within SMC is that a cloud of particles is available to inform on
the shape and scale of the current target distribution.

We base our approach on the work of Fearnhead and Taylor (2013), which concerned
the tuning of generic MCMC kernels within SMC samplers, and on existing approaches
to tuning HMC. We apply the proposed SMC sampler with HMC kernels to five ex-
amples; three toy examples, a binary Bayesian regression of dimension up to 95 and
a log Gaussian Cox model of dimension up to 16, 384. Our numerical study illustrates
the performance of SMC samplers for inference and model choice in high dimensions,
and the benefits brought by HMC relative to random walk and Langevin kernels. We
also investigate the effect of the tempering ladder and of the number of move steps.
The paper is organized as follows. Section 2 reviews SMC samplers and HMC kernels.
Section 3 discusses adaptive tuning procedures for SMC. Section 4 provides numerical
experiments, and Section 5 discusses the results.

2 Background

We will focus on target distributions that are posterior distributions and we will use
the associated terminology. We consider the problem of calculating expectations of a
test function ϕ : Rd �→ R with respect to a posterior distribution defined as π(x) =
p(x)l(y|x)/Z. The random variable x with density π(·) is defined on the space (Rd,
B(Rd)), where B(Rd) denotes the Borel sets of Rd. Here p(x) denotes the prior distri-
bution, l(y|x) is the likelihood of the observed data y given the parameter x ∈ Rd, and
Z =

∫
Rd l(y|x)p(x)dx denotes the normalizing constant, also called marginal likelihood

or evidence. We next describe Sequential Monte Carlo (SMC) and Hamiltonian Monte
Carlo (HMC). These are building blocks for the adaptive algorithms discussed in this
paper.

2.1 Sequential Monte Carlo samplers

Sequential Monte Carlo (SMC) approaches the problem of sampling from π by in-
troducing a sequence of intermediate distributions π0, · · · , πT defined on the common
measurable target space (Rd,B(Rd)), such that π0 is easy to sample from, and πT = π.

We construct intermediate distributions using tempering, that is πt(x)∝ p(x)l(y|x)λt ,
where the sequence of exponents λt is such that 0 = λ0 < · · · < λt < · · · < λT = 1.
These exponents may be automatically selected during the run of a SMC sampler, as
described later. Other choices of sequences of distributions are possible (see e.g. Chopin,
2002; Del Moral et al., 2006; Chopin et al., 2013). We assume throughout the article
that the prior distribution p(x) is a proper probability distribution.
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SMC samplers with MCMC moves on tempered posteriors

We denote by γt(x) = p(x)l(y|x)λt the unnormalized density associated with πt(x), and
by Zt the normalizing constant: Zt =

∫
γt(x)dx. One way of constructing SMC samplers

is as follows. Suppose that at time t − 1 an equally weighted particle approximation
{x̃i

t−1}i∈1:N of πt−1 is available, with possible duplicates among the particles. This cloud
of particles is then moved with a Markov kernel Kt, that leaves the distribution πt−1

invariant: for each i, xi
t ∼ Kt(x̃

i
t−1, dx). Consequently a set of new samples {xi

t}i∈1:N

is obtained. These particles are then weighted: particle xi
t is assigned an importance

weight wi
t = γt(x

i
t)/γt−1(x

i
t), so that the next distribution πt is approximated by the

set {xi
t, w

i
t}i∈1:N . After resampling particles according to their weights, one obtains

an equally weighted set {x̃i
t}i∈1:N and the procedure is repeated for the next target

distribution πt+1. The procedure is described in Algorithm 1.

Algorithm 1: SMC sampler with MCMC moves on tempered posteriors.

Input: Number of particles N , distributions πt(x) ∝ p(x)l(y|x)λt , rule for
constructing Markov kernels Kh

t that are πt−1 invariant.
Result: Set of weighted samples and normalizing constant estimates.
Initialization: t = 1, λ0 = 0;
Iteration:

1 while λt−1 < 1 do
2 if t = 1 then
3 foreach i ∈ 1:N do
4 Sample xi

1 ∼ π0;

5 else
6 Tune Markov kernel parameters h using particles; see Algorithm 5 or 6;
7 foreach i ∈ 1:N do
8 Move particle xi

t ∼ Kh
t (x̃

i
t−1, dx);

9 (Move step can be iterated, see Algorithm 3);

10 Choose next exponent λt ∈ (λt−1, 1] based on particles; see Algorithm 2;
11 foreach i ∈ 1:N do

12 Weight particle wi
t =

γt(x
i
t)

γt−1(xi
t)
;

13 Calculate ̂Zt/Zt−1 = N−1
∑N

i=1 w
i
t;

14 Resample particles {xi
t, w

i
t}i∈1:N to obtain {x̃i

t}i∈1:N ;
15 Set t = t+ 1;

Upon completion, the algorithm returns weighted samples {xi
t, w

i
t}i∈1:N , which may

be used to estimate expectations with respect to the target distributions, in the sense
that weighted averages of the form

∑N
i=1 w

i
tϕ(x

i
t)/

∑N
i=1 w

i
t converge to Eπt [ϕ(x)] as

N → +∞, in probability. The algorithm also returns estimates of the ratios Zt/Zt−1,
and thus of ZT /Z0; see line 13 in Algorithm 1. One may also use the path sampling
identity to derive an alternate estimate of Zt/Zt−1 (Zhou et al., 2016).



748 Adaptive Tuning of HMC Within SMC

The kernels Kt may be chosen as Metropolis–Hastings (MH) kernels (see e.g. Chopin,
2002; Jasra et al., 2011; Sim et al., 2012; Fearnhead and Taylor, 2013; Zhou et al., 2016).
More details on the choice of kernels and on optimality can be found in Del Moral et al.
(2006, 2007). In general Markov kernels may depend on a set of tuning parameters h,
and are hereafter denoted by Kh

t .

Tuning of the SMC sampler

Different design choices have to be made for the SMC sampler of Algorithm 1 to be
operational.

(a) The choice of the next exponent λt, at line 10 of Algorithm 1, may be based on
available particles; for instance on their effective sample size, as explained below.

(b) The number of move steps, at line 9 of Algorithm 1, may be based on the observed
performance of the Markov kernels; see below.

(c) The tuning of the Markov kernel parameters h, at line 6 of Algorithm 1, may be
based on the particles, which is the main difference with the standard MCMC
setting. The main contribution of this paper is to investigate this tuning in the
case of HMC kernels, and is described in Section 3.

(a) Choice of the next exponent A common approach (Jasra et al., 2011; Schäfer
and Chopin, 2013) to choose adaptively intermediate distributions within SMC is to
rely on the ESS (effective sample size, Kong et al., 1994). The ESS is a measure of
performance for importance sampling estimates (Agapiou et al., 2017). This criterion is
calculated as follows:

ESS(λt) =

(∑N
i=1 w

i
t

)2

∑N
i=1

(
wi

t

)2 , (1)

where wi
t = γt(x

i
t)/γt−1(x

i
t) = l(y|xi

t)
λt−λt−1 in the setting considered here. The ESS

is a Monte Carlo approximation of N/(1 + χ2(πt, πt−1)) where χ2(πt, πt−1) is the χ2

divergence from πt−1 to πt.

We may choose λt by solving (in λ) the equation ESS(λ) = αN , for some user-chosen
value α ∈ (0, 1). The corresponding algorithm is described in Algorithm 2. The validity
of adaptive SMC samplers based on an ESS criterion is studied in Beskos et al. (2016);
Huggins and Roy (2018); Whiteley et al. (2016). Another approach for choosing the
sequence of temperature steps is exposed in Friel and Pettitt (2008).

(b) Number of move steps The mixing of MCMC kernels plays a crucial role in the
performance and stability of SMC samplers (see e.g. Del Moral et al., 2006; Schweizer,
2012a; Ridgway, 2016).

For any MCMC kernel targeting π, mixing can be improved by repeated application
of the kernel, for a linear cost in the number of repetitions. We propose to monitor
the product of componentwise first-order autocorrelations of the particles to decide how
many repetitions to use. Autocorrelations are calculated w.r.t. {x̃i

t}i∈1:N , the cloud of
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Algorithm 2: Choice of the next exponent based on the effective sample size.

Input: Target value α, likelihood l(y|xi
t) for the N particles, current λt−1.

Result: Next temperature λt.
1 Define βi(λ) := l(y|xi

t)
λ−λt−1 and

ESS(λ) =

(∑N
i=1 β

i(λ)
)2

∑N
i=1 (β

i(λ))
2
;

2 if ESS(1) ≥ αN then
3 λt = 1

4 else
5 Solve ESS(λ) = αN in λ ∈ [λt−1, 1], using bisection, assign result to λt.

particles after reweighting and resampling at time t. After k move steps through the
kernel Kh

t the cloud of particles is {xi
t,k}i∈1:N . We then calculate the empirical correla-

tion of the component-wise statistic xi
t,k(j)+xi

t,k(j)
2, where xi

t,k(j) denotes component

j of the vector xi
t,k, using the successive states of the chain xi

t,k(j) and xi
t,k−1(j). This

empirical correlation is denoted by ρ̂k(j). This statistic is chosen to reflect the first two
moments of the particles, but is otherwise arbitrary. We suggest to continue applying
the Markov kernel until a large fraction (e.g. 90%) of the product of the first order au-
tocorrelations drops below a threshold α′ = 0.1, for example. The resulting algorithm is
described in Algorithm 3. Instead of using component-wise autocorrelations, one could
draw on the recent work of Vats et al. (2015) on performance evaluation of MCMC, or
on approaches based on the Stein discrepancy (Gorham and Mackey, 2015).

Algorithm 3: Adaptive move step based on autocorrelations.

Input: Particles {x̃i
t}i∈1:N , proposal kernel Kh

t .
Result: Particles after k move steps {xi

t,k}i∈1:N .

Initialization: {xi
t,0}i∈1:N ← {x̃i

t}i∈1:N , k ← 0.

1 while #{j :
∏k

l=1 ρ̂l(j) > α′}/d ≥ 10% do
2 Set k ← k + 1;

3 Move particle xi
t,k ∼ Kh

t (x
i
t,k−1, dx) for all i;

4 Calculate the correlation ρ̂k(j) for all j;

2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) consists in proposing moves by solving the equations
of motion of a particle evolving in a potential. We follow the exposition in Neal (2011),
before turning to the question of tuning.
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MCMC based on Hamiltonian dynamics

Let L(x) = log γ(x) be the unnormalized log density of the random variable of interest x.
We introduce an auxiliary random variable p ∈ Rd with distributionN (0,M), and hence
unnormalized log density log f(p) = −1/2 pTM−1p. The joint unnormalized density of
(p, x) is given as μ(p, x) = f(p)γ(x) and the negative joint log-density is denoted by

H(p, x) = − log μ(p, x) = −L(x) + 1

2
pTM−1p.

That function is called the Hamiltonian, with the first term representing potential energy
at position x, and the second term representing kinetic energy, for the momentum p and
mass matrix M. The trajectory of a particle with position x and momentum p can be
described via the Hamilton equations,{

dx
dτ = ∂H

∂p = M−1p,
dp
dτ = −∂H

∂x = ∇xL(x),

where dx/dτ, dp/dτ denote the derivatives of the position and the momentum with
respect to the continuous time τ . The solution of this differential equation induces a
flow Φτ that describes the evolution of a system with initial momentum and position
(p0, x0) such that Φτ (p0, x0) = (pτ , xτ ). The solution is (a) energy preserving, e.g.
H(pτ , xτ ) = H(p0, x0); (b) volume preserving and consequently the determinant of the
Jacobian of Φτ equals one; (c) the flow is reversible w.r.t. time. In terms of probability
distributions this means that if (p0, x0) ∼ μ(p, x) then also (pτ , xτ ) ∼ μ(p, x).

In most cases an exact solution of the equation is not available and one resorts
to numerical methods. One widely used integrator is the Störmer-Verlet or leapfrog
integrator (Hairer et al., 2003). The leapfrog integrator iterates the steps:

pτ+ε/2 = pτ + ε/2∇xL(xτ ),

xτ+ε = xτ + εM−1pτ+ε/2,

pτ+ε = pτ+ε/2 + ε/2∇xL(xτ+ε),

where ε is a step size. Thus, in order to let the system evolve from τ to τ + κ with
κ = L × ε we perform L steps as given above. This induces a numerical flow Φ̂ε,L

such that Φ̂ε,L(pτ , xτ ) = (p̂τ+κ, x̂τ+κ). In general we have ΔEκ �= 0 where ΔEκ =
H(p̂τ+κ, x̂τ+κ) − H(pτ , xτ ) is the variation of the Hamiltonian. The dynamics can be
used to construct a Markov chain targeting μ on the joint space, with a MH step that
corrects for the variation in energy, as described in Algorithm 4.

Existing approaches to tuning HMC

The error analysis of geometric integration gives insights on choices of step sizes ε that
yield stable trajectories. For the leapfrog integrator the error of the energy is

|H(p̂τ+κ, x̂τ+κ)−H(pτ , xτ )| ≤ C1ε
2, (2)
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Algorithm 4: Hamiltonian Monte Carlo algorithm.

Input: Gradient function ∇xL(·), initial state xs, energy function ΔE
Result: Next state of the chain (ps+1, xs+1)

1 Sample ps ∼ N (0d,M)

2 Apply the leapfrog integration: (p̂s+1, x̂s+1) ← Φ̂ε,L(ps, xs)
3 Sample u ∼ U [0, 1]
4 if log(u) ≤ ΔEs then
5 Set xs+1 ← x̂s+1

6 else
7 Set xs+1 ← xs

and the error of the position and momentum is∥∥∥Φ̂ε,L(p̂τ , x̂τ )− Φ(pτ , xτ )
∥∥∥
2
≤ C2ε

2, (3)

see Leimkuhler and Matthews (2016); Bou-Rabee and Sanz-Serna (2018) for more de-
tails. It can be shown that the constant C1 > 0 in (2) stays stable over exponential long
time intervals εL ≤ exp(h0/2ε) for some constant h0 (Hairer et al., 2006, Theorem 8.1),
whereas the constant C2 > 0 in the (3) typically grows with L. Hence, care must be
taken when choosing (ε, L). Using the error control in (2), Neal (2011) following Creutz
(1988) provides an informal reasoning motivating the scaling of ε as d−1/4, at least for
targets that factorize into products of d independent components. To maintain a fixed
integration time εL one should then scale L as d1/4.

From a practical point of view the tuning of the HMC kernel requires the consider-
ation of the following aspects. If ε is too large, the numerical integration of the HMC
flow becomes unstable and results in large variations in the energy and thus a low ac-
ceptance rate, see (2). On the other hand if ε is too small, for a fixed number of steps
L the trajectories tend to be short and high autocorrelations will be observed, see Neal
(2011). To counterbalance this effect a large L would be needed and thus computation
time would increase. If L gets too large, the trajectories might also double back on
themselves (Hoffman and Gelman, 2014).

From a theoretical perspective Beskos et al. (2013) and later Betancourt et al. (2014)
show that the integrator step size ε should be chosen such that acceptance rates between
0.651 and 0.9 are obtained, when the dimension of the target space goes to infinity. This
idea has been exploited in Hoffman and Gelman (2014) where stochastic approximation
is used to tune ε.

A different approach is to choose tuning parameters such that the expected squared
jumping distance (ESJD) is maximized, see Pasarica and Gelman (2010), where

ESJD = E

[
‖xs − xs−1‖22

]
= 2(1− ρ1)Varπ[x],

in one dimension, assuming stationarity. In this sense maximizing the ESJD of a Markov
chain is equivalent to minimizing the first order autocorrelation ρ1. In d dimensions
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maximizing the ESJD in Euclidean norm amounts to minimizing the correlation of the
d dimensional process in Euclidean norm. In the context of HMC this has been discussed
in Mohamed et al. (2013); Hoffman and Gelman (2014). Mohamed et al. (2013) tune
the HMC sampler with Bayesian optimization and vanishing adaptation, in the spirit of
adaptive MCMC (Andrieu and Thoms, 2008). The ESJD is then maximized as a function
of (ε, L). Hoffman and Gelman (2014) discuss the ESJD as a criterion for tuning L. At
a high level the simulation of trajectories could be interrupted when the ESJD starts
to decrease. However, a naive application of the idea impacts the reversibility of the
Markov kernel. This problem can be solved by adjusting the acceptance mechanism as
in NUTS (No U-Turn Sampler, Hoffman and Gelman, 2014), a technique employed in
the probabilistic programming language Stan (Carpenter et al., 2017).

Neal (2011) suggests preliminary runs to find reasonable values of (ε, L) and proposes
to randomize these values. The randomization avoids some pathological behavior that
might occur when (ε, L) are poorly selected. Other approaches on identifying the optimal
trajectory length are discussed in Betancourt (2016).

Another important tuning parameter is the mass matrix M used to sample the mo-
mentum. When the target distribution is close to a Gaussian, rescaling the target by
the Cholesky decomposition of the inverse covariance matrix eliminates the correlation
of the target and can improve the performance of the sampler. Equivalently, the inverse
covariance matrix can be set to the mass matrix of the momentum (Neal, 2011). Re-
cently, Girolami and Calderhead (2011) suggest using a position dependent mass matrix
that takes local curvature into account.

3 Tuning of Hamiltonian Monte Carlo within Sequential
Monte Carlo

We now discuss the tuning of the Markov kernel in line 6 of Algorithm 1. The tun-
ing of Markov kernels within SMC samplers has the advantage that information on
the intermediate distributions is available from the particles. Moreover, different ker-
nel parameters can be assigned to different particles so that various parameters can be
tested in parallel. These points were made in Fearnhead and Taylor (2013), which we
will follow closely. We first describe the tuning of the mass matrix. Second, we present
our adaptation of the approach of Fearnhead and Taylor (2013) to the tuning of HMC
kernels, abbreviated by FT. Then we present an alternative approach based on a pre-
tuning phase at each intermediate step, abbreviated by PR for preliminary run. Finally,
we discuss the advantages and drawbacks of the two approaches.

3.1 Tuning of the mass matrix of the kernels

The HMC kernels depend on a mass matrix M used to sample momentum variables.
We will exploit the information in the available particles to calibrate the mass matrix,
following what was done in Chopin (2002); South et al. (2019) for the covariance of HM
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proposals. Specifically we use the matrix Mt at iteration t,

Mt = diag(V̂arπt [xt])
−1, (4)

where V̂arπt [xt] is an estimate of the covariance of πt. The restriction to a diagonal
matrix makes this approach more applicable in high dimensions. Alternatively a full
covariance or precision matrix could be estimated with sparsity assumptions (e.g. Liu
et al., 2016).

3.2 Adapting the tuning procedure of Fearnhead and Taylor (2013)

Consider line 6 during iteration t of Algorithm 1, and the task of choosing parame-
ters h for the propagation kernel Kh

t . Fearnhead and Taylor (2013) consider the ESJD
criterion:

gt(h) =

∫
πt−1(dxt−1)Kh

t (xt−1, dxt)‖xt−1 − xt‖2M , (5)

where ‖x − y‖2M = (x − y)tM−1(x − y) stands for the Mahalanobis distance with
respect to matrix M ; in our case we set M = Mt−1, see (4). Fearnhead and Taylor
(2013) set M to the full covariance matrix of the particles at time t − 1, but, again,
this can incur computing costs that are cubic in the dimension which may be too
expensive in high-dimensional problems. By maximizing gt(h) we minimize the first-
order autocorrelation of the chain. This leads to a reduced asymptotic variance of the
chain and hopefully to a reduced asymptotic variance for estimates obtained from the
SMC sampler.

The tuning procedure referred to as FT has the following steps:

1. Assign different values of hi
t according to their performance to the resampled

particles x̃i
t−1.

2. Propagate xi
t ∼ Khi

t
t (x̃i

t−1, dx).

3. Evaluate the performance of hi
t based on xi

t, x̃
i
t−1.

In Step 1, we use the following performance metric, which is a Rao-Blackwellized
estimator of (5):

Λ̃(x̃i
t−1, x̂

i
t) =

∥∥x̃i
t−1 − x̂i

t

∥∥2
M

L
×min(1, exp[ΔEi

t ]). (6)

Here x̂i
t is the proposed position based on the Hamiltonian flow Φ̂ε,L(x̃

i
t−1, p

i
t) before the

MH step. The acceptance rate min(1, exp[ΔEi
t ]) of the MH step is based on the variation

of the energy ΔEi
t , and serves as weight. This metric is the same as in Fearnhead and

Taylor (2013), except that it is divided by L, in order to account for the fact that the
CPU (Central Processing Unit) cost of an HMC kernel increases linearly with L.
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The pairs hi
t = (εit, L

i
t) are weighted according to the performance metric Λ̃(x̃i

t−1, x̂
i
t).

The next set of parameters hi
t+1 are sampled from

χt+1(h) ∝
N∑
i=1

Λ̃(x̃i
t−1, x̂

i
t)R(h;hi

t),

where R is a perturbation kernel. We suggest to set R to

R(h;hi
t−1) = T N (ε; εit−1, 0.015

2)⊗
{
1

3
1{Li

t−1−1}(L) +
1

3
1{Li

t−1}(L) +
1

3
1{Li

t−1+1}(L)

}
,

where T N denotes a normal distribution truncated to R+. The part in curly brackets
corresponds to a discrete mixture for the variable L. Thus ε is perturbed by a small
(truncated) Gaussian noise, and L has an equal chance of increasing, decreasing or
staying the same. (When L = 1, decreasing is forbidden, and the kernel is adapted to
assign equal probabilities to either increasing L or keeping it constant.) The variance
of the Gaussian noise is set to the value used by Fearnhead and Taylor (2013). In our
simulations we found that tuning was robust to the choice of this value. The procedure
is described in Algorithm 5.

Algorithm 5: (FT) Tuning of HMC based on Fearnhead and Taylor (2013).

Input: Previous parameters hi
t−1, estimator of associated utility Λ̃(x̃i

t−2, x̂
i
t−1),

i ∈ 1:N , perturbation kernel R
Result: Sample of hi

t = (εit, L
i
t), i ∈ 1:N

1 foreach i ∈ 1:N do

2 Sample hi
t ∼ χt(h) ∝

∑N
i=1 Λ̃(x̃

i
t−2, x̂

i
t−1)R(h;hi

t−1);

3.3 Pretuning of the kernel at every step

The previous tuning algorithm relies on the assumption that parameters suited for the
kernel used at time t− 1 will also achieve good performance at time t. We suggest the
following two-stage procedure as an alternative:

1. Apply an HMC step targeting to πt−1 to the N current particles. For each particle
the value of (ε, L) is chosen randomly from a certain uniform distribution (see
next section). Then construct a new distribution for (ε, L) based on the observed
performance (Section 3.3). The HMC trajectories are then discarded.

2. Apply again an HMC step to the N current particles, this time with (L, ε) gener-
ated from the distribution constructed in the previous step.

Range of values for ε

In the first stage ε is generated from U [0, ε	t−1], and L uniformly in {1, . . . , Lmax}. We
discuss how to choose ε	t−1. The very first value ε	0 is given in Section 4. Our approach is
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Figure 1: Tempering of a normal distribution to a shifted and correlated normal dis-
tribution in dimension 10 (see the example in Section 4.1 for more details). Left: The
normalized and weighted squared jumping distance (z-axis) as a function of ε (y-axis)
and L (x-axis) for the temperature 0.008. Right: Variation of the difference in energy
ΔE as a function of ε for the same temperature. The values of L are randomized. Based
on an SMC sampler with an HMC kernel based on N = 1,024 particles.

motivated by the upper bound in (2). If for different step sizes ε̂it and different momenta
and positions (pit, x̃

i
t−1) for i ∈ {1:N} we observe |ΔEi

t | = |H(p̂it, x̂
i
t) − H(pit, x̃

i
t−1)|,

this information may be used to fit a model of the form |ΔEi
t | = f(ε̂it) + ξit, where ξit

is assumed to be such that ∀i,E[ξit] = 0,Var[ξit] = σ2 < ∞ and f : R+ → R+. We may
then choose ε	 so that f(ε	) = | log 0.9|. This ensures that the acceptance rate of the
HMC kernel stays close to 90%, following suggestions in Betancourt et al. (2014).

In particular we suggest the model f(ε̂it) = α0 + α1(ε̂
i
t)

2, and we minimize the

sum of absolute errors
∑N

i=1 |ξit| w.r.t. (α0, α1), which amounts to a median regression.
Compared to least squares this approach is more robust to fluctuations in energy, which
typically occur when ε approaches its stability limit, as illustrated in Figure 1b.

Construction of a random distribution for (ε, L)

Algorithm 6 describes how to generate values (ε, L) during the second stage. These
values are sampled from the weighted empirical distribution supported by the values
(ε̂it, L̂

i
t) obtained during the first stage, with weights given by the performance metric

(6). We visualize this metric as a function of (ε, L) in Figure 1a.

Range of values for L

During the first stage of our pre-tuning procedure, L is generated uniformly within
{1, . . . , Lmax}. The quantity Lmax is initialized to some user-chosen value (Lmax = 100
in our simulations). Whenever a large proportion of the Li

t generated by Algorithm 6
is close to Lmax, we increase Lmax by a small amount (5 in our simulations). Similarly,
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Algorithm 6: (PR) Pre-tuning of the HMC kernel.

Input: Resampled particles x̃i
t−1, i ∈ 1:N , HMC flow Φ̂ (targeting πt−1), ε

	
t−1

Result: Sample of (εit, L
i
t), i ∈ 1:N , upper bound ε	t

1 foreach i ∈ 1:N do

2 Sample ε̂it ∼ U [0, ε	t−1] and L̂i
t ∼ U{1:Lmax};

3 Sample pit ∼ N (0d,Mt−1);

4 Apply the leapfrog integration: (p̂it, x̂
i
t) ← Φ̂ε̂it,L̂

i
t
(pit, x̃

i
t−1);

5 Calculate ΔEi
t and Λ̃(x̃i

t−1, x̂
i
t)

6 Calculate ε	t based on the quantile regression of ΔEi
t on ε̂it ∀i ∈ 1:N ;

7 Sample (εit, L
i
t) ∼ Categorical(wi

t, {ε̂it, L̂i
t}), where wi

t ∝ Λ̃(x̃i
t−1, x̂

i
t) ∀i ∈ 1:N ;

whenever a large proportion of these values are far away from Lmax, we decrease Lmax

by some small amount.

3.4 Discussion of the tuning procedures

Comparison of the two algorithms The difference between the two procedures con-
sists in the pre-tuning phase at each intermediate step of the sampler. On one hand,
pre-tuning makes the SMC sampler more costly per intermediate step. On the other
hand this approach makes the sampler more robust to sudden changes in the sequence
of distributions. We illustrate this point in our numerical experiments. Both of the sug-
gested tuning procedures have computational costs linear in the number of particles N ,
in line with the other operations in the SMC sampler.

Other approaches to tuning HMC within SMC One could try to maximize the
squared jumping distance as a function of the position of the particle, based on the
associated values of (ε, L). However, learning optimal parameters for each position ap-
pears challenging, possibly harder than the original Monte Carlo problem at hand. In
line with Girolami and Calderhead (2011) one could use a position dependent mass
matrix that would take more information about the target into account, for instance
with higher-order derivatives.

Returning to the choice of (ε, L) one could use Bayesian optimization (Snoek et al.,
2012), based on the performance of (εit−1, L

i
t−1) at the previous iteration. This idea

would amount to a parallel version of Mohamed et al. (2013). However, it is not clear how
this approach would behave if the underlying distributions evolve over time. Avoiding
a pre-tuning step reduces the computational load at the expense of making the sam-
pler potentially less robust. Moreover, the approach of Fearnhead and Taylor (2013)
already explores the hyperparameter space adaptively, without additional model spec-
ifications. If framed as a bandit problem, fixing over time a grid of possible values
(ε, L) could be problematic if the grid misses relevant parts of the hyperparameter
space.
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Extensions The procedure based on pre-tuning can be adapted to random walk MH
(RWMH) or MALA (Metropolis adjusted Langevin) kernels. In the first case we may
use median regression to find an upper bound for the scale such that the acceptance rate
is close to 23.4% (Roberts et al., 1997). In the second case one may target an acceptance
rate of 57.4% (Roberts and Rosenthal, 1998). Recall also that MALA kernels may be
viewed as HMC kernels with L = 1. It recently came to our knowledge that the work of
Salomone et al. (2018) also uses a pre-tuning approach for MCMC kernels within SMC
samplers. A notable difference is that Salomone et al. (2018) focus on finding a single
tuning parameter rather than a distribution.

4 Experiments

Our experiments highlight the importance of adapting SMC samplers, in particular
the parameters of their Markov kernels. Specifically, we try to answer the following
questions. How important is it to adapt (a) the number of temperature steps and (b)
the number of move steps? (c) Does our tuning procedure of HMC kernels provide
reasonable values of (ε, L) compared to other tuning procedures of HMC? (d) To what
extent does HMC within an SMC sampler scale with the dimension and may be applied
to real data applications? (e) How robust are SMC samplers to multimodality? We
compare adaptive (A) and non-adaptive (N) versions of HMC-based SMC samplers,
where the adaptation may be using either the FT approach (Fearnhead and Taylor,
2013) or the PR (pre-tuning) approach. We include in our comparison SMC samplers
based on random walk (RW) and MALA kernels using FT adaptation. We call our
algorithms accordingly: i.e. HMCAFT stands for an SMC sampler using HMC kernels,
which are adapted using the FT procedure.

In all the samplers under consideration the mass matrix Mt is set to the diagonal of
the covariance obtained at the previous iteration. Unless otherwise stated, the number of
particles is set to N = 1,024 and resampling is triggered when the ESS drops below N/2.
The computational load of each sampler is defined as the number of gradient evaluations,
plus the number of likelihood evaluations. Note that this is a conservative choice as
computations of the likelihood and the gradient often involve some common operations.
Most comparisons are in terms of adjusted variance or adjusted mean squared error
(MSE), by which we mean variance or MSE multiplied by computational load.

The HMC-based samplers are initialized with uniform draws of ε on [0, 0.1] and
of L on {1, . . . , 100}. The MALA and RW-based samplers are initialized with uniform
draws of the scale in [0, 1]. The initial mass matrix is set to the identity. All samplers
choose the number of move steps using Algorithm 3. Code for reproducing the figures
is available at https://github.com/alexanderbuchholz/hsmc.

4.1 Tempering from an isotropic Gaussian to a shifted correlated
Gaussian

We first consider a tempering sequence that starts at π0 = N (0d, Id), and finishes at
πT = N (μ,Ξ), where μ = 2×1d for different d. For the covariance we set the off-diagonal

https://github.com/alexanderbuchholz/hsmc
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Figure 2: ESS and temperature steps in dimension d = 500 (Figure 2a) and computa-
tional load (number of gradient and density evaluations, Figure 2b).

correlation to 0.7 and the marginal variances to elements of the equally-spaced sequence
Ξ̃ = [0.1, · · · , 10]. We get the covariance Ξ = diag Ξ̃1/2 corr(X) diag Ξ̃1/2. This toy
example is challenging due to the different length scales of the variance, the correlation
and the shifted mean of the target. The true mean, variance and normalizing constants
being available, we can report the mean squared error (MSE) of the estimators. We use
normalized importance weights and thus ZT /Z0 = 1.

We compare the following SMC samplers: MALA, HMCAFT and HMCAPR, ac-
cording to the denomination laid out in the previous section. We add to the comparison
HMCNFT, an SMC sampler using adaptive FT-based HMC steps, but where the se-
quence of temperatures is fixed a priori to an equi-spaced sequence, the length of which
is set according to the number of temperatures chosen adaptively during one run of HM-
CAFT. Figure 2a plots the ESS as a function of the temperature, for dimension d = 500,
for algorithms HMCAFT and HMCNFT. Figures 2b and 3 compare the SMC samplers
in terms of computational load and adjusted MSE (i.e. MSE times the computational
load) for the normalizing constant and the target expectation of the first component.
The results for other components are similar to the results for the first component, and
not shown here.

A first observation is that it seems useful to adapt the sequence of temperatures:
HMCNFT is outperformed by all the other algorithms. Secondly there is no clear rank-
ing between the other samplers. HMC-based samplers, and particularly HMCAFT, do
perform better than the MALA-based sampler for the normalizing constant, but the
picture is less clear for the posterior expectation. We remark that MALA kernels may
be competitive even in 500 dimensions.

In a second step, we consider the impact of adapting the number of move steps of the
samplers. We restrict the comparison to a MALA-based sampler that uses FT tuning
and an HMC-based sampler that uses PR tuning. For the non-adaptive samplers (N)
the number of move steps is fixed to the average number of move steps obtained from
the run of an adaptive sampler. The temperatures are chosen adaptively. We consider
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Figure 3: Mean squared error of the normalizing constant (Figure 3a) and of the first
mean (Figure 3b), multiplied by computational cost. Based on 40 repetitions of the
samplers with N = 1,024 particles.

Figure 4: Mean squared error of the trace of the estimated variance (Figure 4a) multi-
plied by computational cost (Figure 4b). Based on 40 repetitions of the samplers with
N = 1,024 particles.

the task of estimating the trace of the variance Ξ. The results are shown in Figure 4a
and the computational cost is shown in Figure 4b. The adaptive samplers seem to offer
a similar trade-off in terms of MSE versus computational load.

In order to assess the performance of the two tuning procedures (FT and PR),
we compare the tuning parameters obtained at the final stage of our SMC samplers
(HMCAFT and HMCAPR) with those obtained from the following MCMC procedures:
NUTS (Hoffman and Gelman, 2014) and the adaptive MCMC algorithm of Mohamed
et al. (2013). NUTS iteratively tunes the mass matrix M, the number of leapfrog steps L
and the step size ε in order to achieve a high ESJD (expected squared jumping distance).
The adaptive HMC sampler of Mohamed et al. (2013) uses Bayesian optimization in
order to find values of (ε, L) that yield a high ESJD. For this purpose we run HMC-
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Dimension SMC HMCAPR SMC HMCAFT SMC MALA NUTS adaptive HMC
10 50.64 61.03 9.89 59.88 134.70
50 174.64 255.98 30.56 204.34 190.67

200 639.35 989.97 85.22 1,281.06 927.30
500 1,556.27 1,311.60 154.05 2,210.44 1,731.04

Table 1: Average squared jumping distance for the Gaussian target in the first example,
based on 40 runs. Results based on 1,024 samples for the SMC samplers. For the MCMC
samplers 2,000 states were generated, with the first 1,000 states discarded as burn-in.

based SMC samplers and record the achieved ESJD of the HMC kernel at the final
distribution πT . NUTS and the adaptive HMC sampler are run directly on the final
target distribution. For NUTS we use the implementation available in Stan; for the
adaptive HMC sampler we reimplemented the procedure of Mohamed et al. (2013).
After convergence of the tuning procedures, we run the chain for 2,000 iterations and
discard 1,000 samples as burn-in. The ESJD is calculated on the remaining 1,000 states.
The results are shown in Table 1. We see that the two HMC-based SMC samplers, NUTS
and the adaptive HMC sampler achieve an ESJD of the same order of magnitude. Thus,
our tuning procedure gives values of (ε, L) that yield an ESJD comparable to other
existing procedures.

4.2 Tempering from a Gaussian to a mixture of two correlated
Gaussians

The aim of the second example is to assess the robustness of SMC samplers with respect
to multimodality. We temper from the prior π0 = N (μ0, 5Id) towards a mixture of
shifted and correlated Gaussians πT = 0.3N (μ,Ξ1) + 0.7N (−μ,Ξ2), where μ = 4× 1d

and we set the off-diagonal correlation to 0.7 for Ξ1 and to 0.1 for Ξ2. The variances
are set to elements of the equally spaced sequence Ξ̃j = [1, · · · , 2] for j = 1, 2. The
covariances Ξj are based on the same formula as in the first example. To make the
example more challenging we set μ0 = 1d, making the starting point biased towards one
of the two modes. We assess performance by evaluating the signs of the particles via the
statistic Ti := d−1

∑d
j=1 1{signxi

j = +1}, where xi
j is the j-th component of the i-th

particle. We would expect 30% of the signs to be positive (1/N
∑N

i=1 Ti ≈ 0.3) if the
modes were correctly recovered. We define a measure of error as the squared deviation
from this value. We consider the following SMC samplers: MALA, RW, HMCAFT,
and HMCAPR. All the samplers choose adaptively the number of move steps and the
temperatures.

Figure 5b shows that the two HMC-based samplers yield a lower error of the recov-
ered modes adjusted for computation in moderate dimensions. In terms of the recovery
of the modes all samplers behave comparably, see Figure 5a. Nevertheless, as the di-
mension of the problem exceeds 20 all samplers tend to concentrate on one single mode.
This problem may be solved in this case by initializing the sampler with a wider distri-
bution, but in general such a fix relies on some knowledge of the location of the modes.
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Figure 5: Left: Violin plots of 1/N
∑N

i=1 Ti − 0.3. Right: Mean squared error of the
proportion of recovered modes adjusted for the computation (based on 40 runs).

Consequently, SMC samplers are robust to multimodality only in small dimensions and
care must be taken. That said, HMC-based samplers seem slightly more robust to mul-
timodality; see e.g. results for d = 10 in Figure 5a. Interested readers are referred to
Mangoubi et al. (2018) for the performance of HMC versus RWMH on multimodal
targets.

4.3 Tempering from an isotropic Student distribution to a shifted
correlated Student distribution

We next study the tempering sequence from a Student distribution π0 = T3(0d, Id)
with ν = 3 degrees of freedom to a shifted and correlated Student with ν = 10, i.e.
πT = Tν(μ,Ξ). The mean and scale matrix are as in Section 4.1. This example presents
the challenge that the target πT has heavy tails. We vary the dimension between d = 5
and d = 150. The temperature steps are chosen such that an ESS of 90% is maintained.
The adaptive samplers (A) adjust the number of move steps according to Algorithm
3. For the non-adaptive samplers (N) the number of move steps is fixed to the aver-
age number of move steps obtained over a complete run of an adaptive sampler. The
MALA-based sampler uses FT tuning, the HMC-based sampler uses our pre-tuning
(PR) approach.

The HMC-based samplers perform better when it comes to estimating the normaliz-
ing constant (see Figure 6a) and the mean (see Figure 6b). Both samplers using MALA
tend to perform poorly for the normalizing constant as dimension increases. Here we
observe that the adaptation of the number of move steps can have some negative impact
on performance. We suspect that this is due to the heavy tails of the target, as this
did not occur in our first example. Furthermore Livingstone et al. (2016) show that an
HMC kernel cannot be geometrically ergodic when the target is heavy-tailed. Thus, set-
ting the number of move steps to a fixed large value may be beneficial for heavy-tailed
targets.



762 Adaptive Tuning of HMC Within SMC

Figure 6: Figure 6a shows the squared error of the estimator of the normalizing constant.
Figure 6b shows the squared error of the sum of the mean components over different
dimensions adjusted for computation. The results are based on 100 runs of the samplers
with N = 1,024 particles.

4.4 Binary regression posterior

We next consider a Bayesian binary regression. We observe J vectors zj ∈ Rd and J
outcomes yj ∈ {0, 1}. We assume yj ∼ Bernoulli(r(zTj β)) where r : R �→ [0, 1] is a link

function. The parameter of interest is β ∈ Rd, with prior β ∼ N (0d, Id). With the logit
link r : x → exp(−x)/(1 + exp(−x)) we obtain a logistic regression with unnormalized
log posterior given by

γ(β) =

J∑
j=1

[
(yj − 1)zTj β − log(1 + exp(−zTj β)

]
− 1/2 ‖β‖22 .

With a link function given by the cumulative distribution function of a standard Gaus-
sian, denoted by Φ, we obtain a probit regression, with unnormalized log posterior

γ(β) =

J∑
j=1

[
yj log Φ(z

T
j β) + (1− yj) log

(
1− Φ(zTj β)

)]
− 1/2 ‖β‖22 .

We set π0 as a Gaussian approximation of the posterior obtained by Expectation Prop-
agation (Minka, 2001; Chopin and Ridgway, 2017). We consider two datasets available
in the UCI (University of California, Irvine) machine learning repository: sonar (d = 61
covariates, J = 208 observations) and musk (d = 95, J = 476, after removing a few
covariates that are highly correlated with the rest). In both cases an intercept is added
and the predictors are standardized to be centered with unit variance.

We compare the following SMC samplers: RW, MALA, HMCAFT, HMCAPR. Fig-
ure 7 illustrates the estimation of marginal likelihoods, which may be used for model
choice, and Figure 8 shows the estimation of the posterior expectation of the first com-
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Figure 7: Normalizing constants for probit and logit regression models, based on 40
runs. Left: sonar dataset, with 61 predictors. Right: musk dataset, with 95 predictors.

Figure 8: Estimated first mean for probit and logit regression. Left: sonar dataset, with
61 predictors. Right: musk dataset, with 95 predictors.

ponent. The results for other components are similar and not shown. For all samplers
we adapt the number of move steps and the temperatures.

The four samplers perform similarly on the sonar dataset, while they perform differ-
ently on the musk dataset. In the latter case, the MALA-based and RW-based samplers
did not complete after 48 hours of running, so we had to remove them from the com-
parison. This was due to the slow mixing of the Markov kernels, resulting in a large
number of steps in the while loop in Algorithm 3. In contrast, the two HMC-based
samplers took less than 45 minutes to complete. In addition, FT adaptation leads to a
high variance of the normalizing constant estimator.

Table 2 reports the logarithm of the adjusted variances for the four considered
samplers, the two considered datasets, the two considered models (logit and probit)
and a varying number of particles for the sonar dataset. By and large, HMCAPR seems
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Normalizing constant
Logit Probit

Dataset Dim HMCAPR HMCAFT MALA RW HMCAPR HMCAFT MALA RW
Sonar, N = 210 61 4.183 3.489 5.776 6.459 3.315 2.98 5.915 6.081
Sonar, N = 213 61 2.685 2.233 4.384 5.362 2.788 3.686 4.883 5.285
Musk 95 6.09 11.519 – – 6.596 8.62 – –

Mean first component
Logit Probit

Dataset Dim HMCAPR HMCAFT MALA RW HMCAPR HMCAFT MALA RW
Sonar, N = 210 61 -3.409 -3.644 -0.978 -0.875 -3.86 -3.842 -1.706 -0.604
Sonar, N = 213 61 -5.482 -5.792 -3.668 -3.255 -5.688 -3.346 -3.413 -2.961
Musk 95 -1.643 -1.147 – – -0.633 0.014 – –

Table 2: Inefficiency of the estimators of the normalizing constant and the expectation of the first component; based on 40
runs. Smaller is better. The inefficiency is the log of the variance multiplied by the mean number of gradient and likelihood
evaluations. For the RWMH sampler the variance is adjusted by the mean number of likelihood evaluations. The best performing
sampler for a particular model and number of particles is in bold.
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the most robust approach: it often gives either the smallest adjusted variances, or a
value close to the smallest one.

4.5 Log Gaussian Cox process model

In order to illustrate the performance of HMC-based SMC samplers in high dimensions
we consider the log Gaussian Cox process model as in Girolami and Calderhead (2011),
applied to the Finnish pine saplings dataset. The dataset consists of the position of 126
trees. The aim is to recover the latent processX ∈ Rd×d from the realization of a Poisson
process Y = (yj,k)j,k with intensity mΛ(j, k) = m exp(xj,k), where m = 1/d2 and
X = (xj,k)j,k is a Gaussian process with mean E[X] = μ×1d×d and covariance function

Σ(j,k)(j′,k′) = σ2 exp(−δ(j, j′, k, k′)/(dβ)), where δ(j, j′, k, k′) =
√

(j − j′)2 + (k − k′)2.
The posterior density of the model is given as

p(x|y, μ, σ2, β) ∝

⎧⎨⎩
d∏
j,k

exp(yj,kxj,k −m exp(xj,k))

⎫⎬⎭×exp
{
−1/2(x− μ)TΣ−1(x− μ)

}
,

where the second factor is the Gaussian prior density.

Following the results of Christensen et al. (2005) we fix β = 1/33, σ2 = 1.91 and
μ = log(126)−σ2/2. We vary the dimension of the problem from d = 100 to d = 16, 384
by considering different discretizations. We consider three SMC samplers: MALA, HM-
CAFT and HMCAPR. The starting distribution is the prior. Figure 9b shows that the
HMC-based samplers estimate well the normalizing constant, even for a large dimension
d. Moreover, we estimate the sum of the marginal expectations throughout different di-
mensions with relatively low variance, see Figure 9a. We omitted the simulation for the
MALA-based samplers, as the simulation took excessively long in dimension 4,096 due
to slow mixing of the kernel and the while loop in Algorithm 3. The estimated posterior
mean of the latent field for dimension 900 is plotted in Figure 9c.

Table 3 reports adjusted variances for the different samplers. We see that the MALA-
based sampler is less competitive as the dimension increases. Regarding adaptation, FT
outperforms PR, especially in high dimensions.

5 Discussion

Our experiments indicate that the relative performance of HMC kernels within SMC
depends on the dimension of the problem. For low to medium dimensions, RW and
MALA are much faster, and tend to perform reasonably well. On the other hand, for high
dimensions, HMC kernels outperform RW and MALA kernels, sometimes significantly.

The key to good performance of SMC samplers, based on HMC or other kernels, is
to adaptively tune the Markov kernels used in the propagation step. We have consid-
ered two approaches. On posterior distributions with reasonable correlations between
components, our adaptation of Fearnhead and Taylor (2013) works best. Our approach
based on pre-tuning of the HMC kernels is more robust to changes in the intermediate
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Figure 9: Tempering from a Gaussian prior to the posterior in a log Gaussian Cox process
model. Figure 9a illustrates the estimated sum of the posterior marginal expectations.
Figure 9b illustrates the estimation of the normalizing constant. Figure 9c illustrates
the recovered posterior mean of the process in dimension 900.

Normalizing constant Mean first component
Dim HMCAPR HMCAFT MALA HMCAPR HMCAFT MALA
100 2.292 2.03 2.933 -6.4 -5.613 -5.559
400 3.296 2.255 3.812 -5.895 -5.913 -4.765
900 3.89 2.776 4.373 -6.192 -6.141 -4.276
1,600 4.735 3.226 5.224 -5.217 -6.046 -4.162
2,500 4.5 4.072 6.246 -4.405 -5.636 -3.476
4,096 7.055 5.071 – -3.2 -4.701 –
16,384 10.002 8.864 – 0.538 0.142 –

Table 3: Inefficiency of the normalizing constant estimators and for the first mean, based
on 40 runs. The inefficiency is the log of the variance multiplied by the mean number
of gradient and likelihood evaluations. Smaller is better.

targets as illustrated in the binary regression example. This holds in particular when
using SMC samplers for normalizing constant estimation. Moreover, we observed that
SMC samplers with HMC kernels can scale to high dimensional problems when sensibly
tuned. From a practical point of view and if the structure of the posterior is unknown
the pre-tuning approach may be more prudent.
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Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo.” Scandi-
navian Journal of Statistics, 38(1): 1–22. MR2760137. doi: https://doi.org/10.
1111/j.1467-9469.2010.00723.x. 748

Kong, A., Liu, J. S., and Wong, W. H. (1994). “Sequential imputation and Bayesian
missing data problems.” Journal of the American statistical association, 89: 278–288.
MR3738474. 748

Kostov, S. (2016). “Hamiltonian sequential Monte Carlo and normalizing constants.”
Doctoral thesis, University of Bristol . URL https://ethos.bl.uk/OrderDetails.

do?uin=uk.bl.ethos.702941 745

Leimkuhler, B. and Matthews, C. (2016). Molecular Dynamics. Springer. MR3362507.
751

Liu, H., Fan, J., and Liao, Y. (2016). “An overview of the estimation of large covariance
and precision matrices.” The Econometrics Journal , 19(1): C1–C32. MR3501529.
doi: https://doi.org/10.1111/ectj.12061. 753

Livingstone, S., Betancourt, M., Byrne, S., and Girolami, M. (2016). “On the geo-
metric ergodicity of Hamiltonian Monte Carlo.” arXiv preprint arXiv:1601.08057.
MR3648031. doi: https://doi.org/10.3150/16-BEJ810. 761

Mangoubi, O., Pillai, N. S., and Smith, A. (2018). “Does Hamiltonian Monte
Carlo mix faster than a random walk on multimodal densities?” arXiv preprint
arXiv:1808.03230. 761

Mangoubi, O. and Smith, A. (2017). “Rapid mixing of Hamiltonian Monte Carlo on
strongly log-concave distributions.” arXiv preprint arXiv:1708.07114. 745

Minka, T. P. (2001). “Expectation propagation for approximate Bayesian inference.”
In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
362–369. Morgan Kaufmann Publishers Inc. 762

Mohamed, S., de Freitas, N., and Wang, Z. (2013). “Adaptive Hamiltonian and Riemann
manifold Monte Carlo samplers.” arXiv preprint arXiv:1302.6182. 746, 752, 756,
759, 760

Murray, L. M., Lee, A., and Jacob, P. E. (2016). “Parallel resampling in the particle fil-
ter.” Journal of Computational and Graphical Statistics, 25(3): 789–805. MR3533638.
doi: https://doi.org/10.1080/10618600.2015.1062015. 745

Neal, R. M. (1993). “Bayesian learning via stochastic dynamics.” In Advances in neural
information processing systems, 475–482. 745

https://www.ams.org/mathscinet-getitem?mr=3892330
https://doi.org/10.3150/17-bej999
https://arxiv.org/abs/arXiv:1509.08775\/
https://www.ams.org/mathscinet-getitem?mr=3892321
https://doi.org/10.3150/17-bej988
https://www.ams.org/mathscinet-getitem?mr=2760137
https://doi.org/10.1111/j.1467-9469.2010.00723.x
https://doi.org/10.1111/j.1467-9469.2010.00723.x
https://www.ams.org/mathscinet-getitem?mr=3738474
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702941
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702941
https://www.ams.org/mathscinet-getitem?mr=3362507
https://www.ams.org/mathscinet-getitem?mr=3501529
https://doi.org/10.1111/ectj.12061
https://arxiv.org/abs/arXiv:1601.08057
https://www.ams.org/mathscinet-getitem?mr=3648031
https://doi.org/10.3150/16-BEJ810
https://arxiv.org/abs/arXiv:1808.03230
https://arxiv.org/abs/arXiv:1708.07114
https://arxiv.org/abs/arXiv:1302.6182
https://www.ams.org/mathscinet-getitem?mr=3533638
https://doi.org/10.1080/10618600.2015.1062015


770 Adaptive Tuning of HMC Within SMC

Neal, R. M. (2001). “Annealed importance sampling.” Statistics and computing , 11(2):
125–139. MR1837132. doi: https://doi.org/10.1023/A:1008923215028. 745

Neal, R. M. (2011). “MCMC using Hamiltonian dynamics.” Handbook of Markov Chain
Monte Carlo, 2(11). MR3185067. 745, 749, 751, 752

Pasarica, C. and Gelman, A. (2010). “Adaptively scaling the Metropolis algorithm using
expected squared jumped distance.” Statistica Sinica, 343–364. MR2640698. 751

Ridgway, J. (2016). “Computation of Gaussian orthant probabilities in high dimension.”
Statistics and computing , 26(4): 899–916. MR3515028. doi: https://doi.org/10.
1007/s11222-015-9578-1. 748

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). “Weak convergence and opti-
mal scaling of random walk Metropolis algorithms.” The annals of applied probabil-
ity , 7(1): 110–120. MR1428751. doi: https://doi.org/10.1214/aoap/1034625254.
757

Roberts, G. O. and Rosenthal, J. S. (1998). “Optimal scaling of discrete approxima-
tions to Langevin diffusions.” Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 60(1): 255–268. MR1625691. doi: https://doi.org/10.1111/
1467-9868.00123. 757

Salomone, R., South, L. F., Drovandi, C. C., and Kroese, D. P. (2018). “Unbi-
ased and consistent nested sampling via sequential Monte Carlo.” arXiv preprint
arXiv:1805.03924. 757
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